
 

 

 © 2019 Vahideh Naderifar, Zarina Shukur and Shahnorbanun Sahran. This open access article is distributed under a Creative 

Commons Attribution (CC-BY) 3.0 license. 

 Journal of Computer Science 

 

 

Original Research Paper 

Distributed Learning Automata Approach for Workflow 

Mining: Discovering Process Model Using Condensate Drops 

Method 
 

Vahideh Naderifar, Zarina Shukur and Shahnorbanun Sahran 

 
Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia 

 
Article History 

Received: 12-04-2019  

Revised: 14-10-2019 

Accepted: 27-11-2019 

 

Corresponding Authors: 

Zarina Shukur  

Faculty of Information Science 

and Technology, Universiti 

Kebangsaan Malaysia, Bangi, 

Malaysia 
Email: zarinashuku@ukm.edu.my 

Abstract: An information system is a process of collecting, processing, 

storing and distributing information, which leads to efficient decision-

making and control in organizations. Examples of information systems 

include classical management systems, systems for workflow management, 

systems for case handling and middleware. Information systems collect 

information concerning important people, locations and other important 

matters in an organization and store relevant events in some form of 

structure. Based on event logs, from information systems, the discovery of 

process models can be made automatically by process mining techniques, 

without having an a priori model. By learning from the event logs, process 

mining aims to discover, monitor and improve processes. This paper 

proposes a method to discover a process model based on distributed 

learning automata and the condensate approach. In this proposed method, 

each event in the log is called a drop, which had its condensate and can be 

combined with other condensates. Each drop is connected to other drops 

and become a larger drop. All of those drops would obtain reward if it 

represents sequence of an event log. The evaluation results demonstrated 

that the proposed method could detect various patterns in the event log and 

discover a more efficient process model in terms of fitness, total node and 

total path of the mined process model.  

 

Keywords: Condensate Drops, Distributed Learning Automata, Process 

Mining, Event Log 

 

Introduction 

Process mining is a relatively new field that aims to 

investigate methods of uncovering actual processes that 

took place in organizations. The process mining method 

can be used to understand ‘as-is’ processes in 

organizations and to subsequently improve or change 

them (van der Aalst and van Dongen, 2002; Xumin et al., 

2018; Xiao et al., 2016). It includes process discovery, 

inspection, social network/organizational mining, 

automated simulation model construction, extension 

models, repair models and forecast cases (van der Aalst and 

van Dongen, 2002). The fundamental idea in process 

mining is to start with event logs that are recorded by an 

information system and gain knowledge from them (van 

der Aalst and van Dongen, 2002). Here, each event is 

associated with a process instance (case) and an activity 

(van der Aalst et al., 2003). The analysis of such event 

logs can provide insights into how processes take place 

and the extent to which actual processes differ from a 

normative process model. The events recorded by the 

information system track the completion of activities of 

specific types, among other things. For example, an event 

can report that a specific license application activity has 

been completed (Goedertier et al., 2009). From event logs, 

roles in the organization can be discovered and these roles 

are used to establish relationships between individuals and 

activities (van der Aalst and van Dongen, 2002). Figure 1 

illustrates the workflow of process mining. 

There are three types of process mining from event 

logs, namely discovery, conformance and 

enhancement. Discovery techniques take an event log 

and builds a model with no prior assumption or 

information (van der Aalst et al., 2003). A new 

process model can be constructed automatically based 

on the behavior derived from the event log.



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1695 

 
 

Fig. 1: Graphic representation of process mining workflow (Source: van der Aalst and van Dongen, 2002) 
 

 
 

Fig. 2: Overview of three types of process mining based on input and output (Source: van der Aalst et al., 2003) 
 
Conformance checking techniques compare an 
existing process model with the actual process derived 
from the event log and checks whether actual process 
conforms with the existing model. Lastly, 
enhancement techniques can be applied to extend or 
improve the model based on actual events. Figure 2 
shows the three types of mining concept. 

Most process mining algorithms have limitations. 

The constructs that cannot be mined by all techniques 

are loops and duplicate tasks (van der Aalst et al., 

2010). As a result, existing process mining algorithms 

encounter problems with incorrect control-flow 

constructs. This paper proposes a method of process 

model discovery that can simultaneously overcome 

the loop and duplicate challenges. 

Related Works 

Many researchers investigated the problem of process 

discovery. This study uses a specific website, 

www.processmining.org, that gives a complete overview 

of the entire process mining research area. Among the 

earliest researchers that investigated the mining of 

process models were Agrawal et al. (1998). Their mined 

model demonstrated the dependencies in the log between 

tasks. Their algorithm could not overcome duplicate 

tasks, loops, or a re-labeling process because the 

algorithm assumed that a task appeared only once in a 

process instance. Cook and Wolf (1998) have discovered 

models of software processes from data in event logs. 

Herbst (2000) was one of the first researchers who 

“World” 

Process-aware 

information system 

Supports/

controls 

Records evening, 

e.g., messages, 

transactions, etc. Specifies 

configures 

implements 

analyzes 

Models 

analyzes 

Discovery 

Conformance 

Extension 

Process 

models 
Event 

logs 

Event log Discovery Model 

Event log 
Conformance 

checking 

Model 

Diagnostic 

Event log 

Model 

Enhancement New 

../AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/www.processmining.org


Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1696 

investigated processes with duplicate tasks. However, 

their proposed algorithm was unable to solve non-free-

choice problems. Schimm (2000; 2002; 2003; 2004) 

discovered an algorithm that assumed that tasks had a 

starting and a completion event. Schimm’s approach 

did not exactly tackle duplicates and non-free-choice 

during mining. Greco et al. (2004; 2005; 2006) 

discovered an algorithm based on a hierarchical tree of 

process models. Greco’s algorithm described the event 

log at different levels of abstraction. It could tackle non-

free-choice and invisible tasks, but it had problems with 

loops and duplicate tasks.  

van der Aalst and Song (2004) compared extracting 

process models from data with the process of distillation. 

They developed an α-algorithm. However, it was unable 

to tackle non-free-choice. Additionally, since the α-

algorithm operated based on sets, it was unable to mine 

models with duplicate tasks. van der Aalst et al. (2003) 

described two types of workflow: Meta-models that 

are graphs and block-oriented models. Each of the 

models had its language and graphical representation. 

Weijters et al. (2003; 2005; 2007) introduced an 

extension of the α-algorithm. Their approach was similar 

to the approach of Cook and Wolf (1998) because their 

algorithm was based on binary relationships and could 

not tackle non-free-choice constructs as well. Currently, 

this algorithm is implemented as the Heuristics miner 

plug-in in the ProM framework tool.  

Alves et al. (2007) proposed a genetic algorithm to 

tackle some of the control flow problems, that is, the 

duplicates and non-free-choice loops. Goedertier et al. 

(2009) described a generation of artificial negative 

events. In this area, Cattafi et al. (2010) proposed an 

incremental declarative approach in which processes 

could change over time and the approach was able to 

revise the mined model by considering newer process 

traces and the possible deviations they might bring. 

From their method, Cattafi et al. (2010) obtained a new 

process discovery algorithm. This algorithm could 

address loops, duplicate activities and non-free-choice 

constructs. Wen et al. (2004; 2006; 2009) implemented 

two extensions for the α-algorithm and the α++ 

algorithm. Their approach could overcome problems 

like loops, concurrency, non-free-choice and noise. 

Burratin and Sperduti (2010a) presented Heuristics++ 

miner, an approach similar to the approach of  

Weijters et al. (2003; 2005; 2007) and van der Aalst et al. 

(2003) to allow the duration of process activities to 

become part of the process mining parameter set. 

Burratin and Sperduti (2010b) also explored the area of 

parameter setting with their Heuristics++ miner and 

formulated an approach potentially applicable to a wide 

range of process mining approaches. 

van der Aalst et al. (2010) proposed a two-step 

approach for transition systems and regions to discover 

process models from event logs. This proposed method 

could offer a balance between under-fitting and over-

fitting problems and address duplicate tasks and non-

free-choice. They claimed that none of the existing 

techniques allowed a balance between over-fitting and 

under-fitting. The first of the two-step approach, used a 

configurable approach and constructed a transition 

system. The second step used the “theory of regions” and 

the model was synthesized. The model has been 

implemented in the ProM framework and could 

overcome many of the limitations of the traditional 

approach. Weidlich et al. (2011) proposed a technique 

called “behavioral profile”. The problem with this 

approach is that it could not handle loops properly. The 

key idea is that a footprint can be based on observed and 

modeled behaviors.  

Petri nets are most suitable for the machine learning 

approach because of their concurrent, asynchronous, 

distributed, parallel non-deterministic and stochastic 

properties. Leoni and van der Aalst (2013) presented a 

novel technique for data-aware process mining that was 

able to address process models with invisible transitions. 

Rozinat and van der Aalst (2006) proposed an 

incremental approach for checking process model 

conformance and event log. Their method checked the fit 

between the log and the model first and then the suitability 

of the model with the log. Adriansyah et al. (2011) 

provided a robust method for calculating conformance 

between a log and a process model. van der Aalst (2012) 

established a precise relationship between events and 

model elements. This relationship could be used to check 

conformance and analyze performance. 

Control Flow Perspectives 

Depending on the type of data from an event, process 

mining has three types of perspectives, which are: 

Process perspective, organizational perspective and case 

perspective (van der Aalst et al., 2003). This paper 

focuses on the process perspective that centered on the 

control flow. The control flow characterizes all possible 

paths between tasks and shows given behaviors in the 

log via a diagram.  

The control-flow perspective describes a process 

model by using a diagram. This diagram shows the flow 

from tasks in an event log. From this diagram, information 

about tasks, relationships between the tasks, which tasks 

are running, and which tasks are related to which case can 

be determined. Control-flow mining techniques must then 

be constructed from correct mining. From the aspect of 

common control flow, correct mining means that 

constructs can appear as a process model with each 

language notation. These are sequences, loops, 

concurrency, non-free-choice, duplicate tasks and 

invisible tasks (van der Aalst and van Dongen, 2002). 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1697 

Example 1. Driving License Process (A case study) 
 

 
 

Fig. 3: Driving license process - petri net (Source: Goedertier et al., 2009) 
 

  
 

Fig. 4: Driving license process – activity preconditions (Source: Goedertier et al., 2009) 

Start 

[OccursLessThan(applyForLicense, 3)] 

applyForLicense applyForLicense 

[OccursLessThan(applyForLicense, 3)] 

attendClassesCars attendClassesMotorBikes 

obtainInsurance doTheoreticalExam 

doPracticalExamCars doPracticalExamMotorBikes 

getResult 

receiveLicense 

end 

end 

Activity Precondition 

a start true 

b applyForLicense NS(a,b) 

b applyForLicense (NS(i,b)  NS(i,j)  NS(i,k)) 

   OccursLessThan(b,3) 

c attendClassesCars NS(b,c)  NS(b,d) 

d attendClassesMotorBikes NS(b,c)  NS(b,d) 

e obtainInsurance NS(c,e)  NS(d,e) 

f doTheoreticalExam NS(c,f)  NS(d,f) 

g doPracticalExamCars (NS(f,g)  NS(f,h))  

  (NS(e,g)  NS(e,h))  NS(c,g) 

h doPracticalExamMtrBikes (NS(f,g)  NS(f,h))  

  (NS(e,g)  NS(e,h))  NS(d,h) 

i getResult NS(g,i)  NS(h,i) 

j receiveLicense NS(i,b)  NS(i,j)  NS(i,k) 

k end NS(j,k) 

k end NS(i,b)  NS(i,j)  NS(i,k) 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1698 

 
 
Fig. 5: Sequence connection 

 
 
Fig. 6: The construct of a loop 

 

 
 

Fig. 7: The construct of a duplicate task 

 
Table 1: Common mining challenges and techniques used 

Challenge approaches Overcome duplicate tasks Overcome mining loops 

Data mining based ● Herbst (2004) ● Herbst (2004) 

 ● Agrawal et al. (1998) ● Agrawal et al. (1998) 

Heuristic approach  ● Weijters and van der Aalst (2003) 

  ● Burratin and Sperduti (2010a) 

Soft computing algorithms ● Alves de Medeiros et al. (2007) ● Alves de Medeiros et al. (2007) 

  ● Günther and van der Aalst (2009) 

Markova approach  ● Kumaraguru (2013) 

Other approaches ● Rozinat and van der Aalst (2006) ● Greco et al. (2006) 

 ● Alves de Medeiros et al. (2007) ● Alves de Medeiros et al. (2007) 

 ● van der Aalst et al. (2010) ● Cattafi et al. (2010) 

 ● Goedertier et al. (2009) ● Wen et al. (2009) 

 ● Leoni and van der Aalst (2013) ● Goedertier et al. (2009) 

  ● Leoni and van der Aalst (2013) 

 

A case study about Driving License process which is 

taken from Goedertier et al. (2009) will be used in this 

section. Fig. 3 shows the petri net diagrammatic model 

of the process, whereas Fig. 4 shows the model in the 

form activity and its precondition. 

Sequences express which tasks are consecutive. 

Figure 5 shows the sequence control-flow of discovery. 

Loops show a node or sequence path that may be 

executed several times as shown in Fig. 6. 

Duplicate Tasks: There are two nodes with the same 

label in the process model in parallel or sequence models 

as shown in Fig. 7. 

A duplicate task is accrued if the same activity is 

carried out according to different conditions. Algorithms 

for control flow process mining should be able to 

produce a correct structure. 

Comparison between Existing Mining Models  

Even though a lot of effort has been made to discover 

process mining algorithms, there remain several 

challenges that are not addressed. The structural pattern 

challenges that are not effectively addressed are loops 

and duplicates. In this aspect, most process mining 

algorithms are still unable to mine duplicate tasks and 

loops. Table 1 shows techniques that have been used by 

the researchers to address these two main problems. 

Learning Automata 

Tsypkin (1971) introduced learning automatics (LA) 

to solve the problems of determining the optimal 

parameter and applied the LA to the techniques of hill 

climbing. At the same time, Tsetlin (1973) began 

obtainInsurance 

doPracticalExamCars 

B 

A or or 

A 

D 

 
E 

 
H 

A 

 
B 

 
C 

A 

F 

G 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1699 

working on LA. Other researchers introduced the 

problems and found optimal action in stochastic 

automatons between permitted actions (Narendra and 

Viswanathan, 1972). However, most attempts in LA were 

due to Tsetlin (1973). Thereafter, Varshavski and 

Vorontsova (1963) presented LA with variable structures 

that updated its probability of actions and led to a decrease 

in the number of states in the comparison of deterministic 

automata. In this case, Fu and McMurtry (1966) made the 

first attempt for pattern recognition, parameter estimation 

and game theory. Najim and Poznyak (1994) have also 

presented several examples and applications of LA. 

Other LA applications include pattern recognition, graph 

partitioning and route planning. LA can be portrayed as 

an object with limited action sets. It randomly chooses 

one of the actions and sends it to an environment. The 

automaton can update its action probability based on an 

environment response and repeated procedures. 

A learning automaton (LA) consists of two parts: (1) A 

stochastic automaton with a limited number of actions and 

a stochastic environment associated with the automaton. 

(2) A learning algorithm in which the automaton learns 

the best possible action with this action. 

In practice, every action is transmitted to and 

evaluated by a potential environment before a stochastic 

automaton reacts. The stochastic automaton then uses 

this response as a response and selects its action for the 

next step. Figure 8 shows the relationship between 

stochastic and environmental automatons (Meybodi et al., 

2004; Hadavi et al., 2014). 

P-Model of Learning Algorithm 

All probability of past actions in any automatic form 

would be the same. For r-action automatons, the 

probability of action n is given by Pi(n) = 1/r, which is 

updated based on the reward or penalty in each 

repetition i. If αi is selected between the other actions in 

these types of automatons, Pi(αi) receives the desirable 

response, in which its probability increases and the 

opposite probabilities decrease. However, if the 

probabilities of Pi(n) decrease, the remaining 

probabilities increase for unwanted answers. In any 

event, changes are made to the extent that the sum of 

Pi(n) is equal to one. The following formula shows the 

desirable and undesirable answers. 

Desirable answer:  

 

     1 1i i iP n P n a P n        (1a) 

 

     1 1               , j jP n a P n j j i       (1b) 

 

Undesirable answer: 

     1 1i iP n b P n     (2a) 

 

       1 / 1 1   ,  .j jP n b r b P n j j I         (2b) 

 

In Equations 1 and 2, a is a reward parameter, b is the 

penalty parameter and r is the number of actions that a, 

b[0,1]. Three states can be considered regarding the 

values of a and b: 

 

 LRP (Linear Reward Penalty) when a = b, penalty 

and reward are both important 

 LReP (Linear Reward Epsilon Penalty) when b is 

lower than a (a>>b), reward is much more 

important than penalty. However, penalty still needs 

to be given 

 LRI (Linear Reward Inaction) when b equals zero (b 

= 0), penalty is not taken into consideration 

 

Distributed Learning Automata 

A distributed learning automaton (DLA) is a network 

of LAs working together to solve problems. Only one 

LA is active in colleagues ' LAs at any time. The number 

of LAs in a single DLA is equal to the number of actions 

that any of the other LAs connected to it can carry out. 

The choice of an action by the LAs in this network 

results in the isomorphic activation of other LAs 

connected to the network. Figure 9 shows the concept of 

a DLA. The DLA network is modeled by a graph, each 

vertex being an LA. The arrows between LAi and LAj in 

this graph show that the selection of actions i

j  by LAi 

results in LAj being activated. 

 

 
 
Fig. 8: Stochastic learning automata 

 

 
 
Fig. 9: Distributed learning automaton 

Set of responses Set of inputs 

Set of actions {} Set of inputs {} 

Stochastic 

environment 

Stochastic automata 

Aj Al 

Ak Ai 

ji 

jl 

jk 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1700 

Research Framework 

The outcome of the process mining shows all 

behaviors seen in the system. An outline of the 

research framework is given by the following basic 

steps and Fig. 10: 

 

1. Information extraction from event logs. Several 

standard event logs act as important factors for 

process mining. For discovering rules in an 

organization, the event log is used. These rules 

are a connection factor between individuals and 

activities 

2. Model discovering based on the event logs. Model 

discovering determines which perspectives of the 

process can be discovered. If the model is based on 

the event log, then the control-flow perspective can 

be mined 

3. The learning method is to improve an existing 

process mining model based on the event logs by 

using reinforcement learning and its family 

4. Performance analysis will be performed after 

discovering the control flow using the existing 

process mining model. The proposed model can be 

used to analyse the performance of process mining 

in terms of fitness, total node and total path 

Proposed Method 

Distributed learning automata as a learning automata 
family are used in the proposed method as the 
environment. Each row of the event log is divided into 
pair-wise. Each pair-wise that is called a drop will be 
spread in the environment. Each node of the DLA is one 
learning automaton. A condensate drop is a sequence 
with the same elements, such as (a, c) (c, d) where c is 
the same between those two drops. In the first stage, the 
first and endpoints of each pair-wise in a row of the 
event log are determined by the sign. All drops are 
distributed in the environment; the environment is the 
DLA. Drops are moving on the DLA. Each drop has its 
condensate and can be combined with other condensate 
drops. After combination, they create large drops. The 
reinforcement value for each pair-wise in a row of the 
event log can be calculated as DLA conceptual. Table 2 
is a result of running DLA on an event log. This paper 
sets the reward and penalty rate equal to 0.5. The 
following explains the step-by-step of how DLA works 
based on each pair-wise in a row of Table 4. 

 

 
 

Fig. 10: Basic steps of the research methodology and the proposed method 

Information extraction assumes that it is possible to record 
events so that: 
 Each event refers to an activity (i.e., a well-defined step in 

the process) 
 Each event refers to a case (i.e., a process instance) 
 Each event can have a performer, also referred to as an 

originator (the actor executing or initiating the activity). 
 Events have a timestamp and are totally ordered. 

Data source 

ERP 

Data source 

BPM 

Data source 

ECM 

Data source 
Data 

warehouse 

Information extraction 

Model discovering based on the 

distributed learning automate 

Mined process 

model 

Performance analysis 

Fitness, 

total node and 

total path of mined process 

model 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1701 

 
 
Fig. 11: The condensate drop in the DLA model such as "abde" and "adceg", in which "dc" has been reinforced from "ad" and has 

been weakened from "abd" 
 
Table 2: The DLA process on each pair-wise in a row of the event log 

Stage number Drop or LA Is there a start point? Condensate Drop i(i) a and b Probability actions i 

0 (a, b) Yes - - a = b = 0.5 All 1/8 = 0.125* 
1 (b, d) No Reinforcement abd(1) = 1 a = b = 0.5 0.563** 
2 (d, e) No Reinforcement abde(2) = 1 a = b = 0.5 0.782 
3 (a, d) Yes - - a = b = 0.5 All 1/8 = 0.125* 
4 (d, c) No Reinforcement adc(4) = 1 a = b = 0.5 0. 563 
5 (c, e) No Reinforcement adce(5) = 1 a = b = 0.5 0.782 
6 (e, g) No Reinforcement adceg(6) = 1 a = b = 0.5 0.891 
7 (d, e) No Weakened abde(7) = 0 a = b = 0.5 0.391 
8 (d, c) No Weakened abde(8) = 0 a = b = 0.5 0.391 

After stage 8, there are two condensate drops such as "abde" and "abdceg"  

* There are 8 drops in this example. 

** Reward is obtained according to Equation 2a. 
 
Table 3: A fragment (Case id #6) of some event logs (each line corresponds to an event) 

 Properties 
 ------------------------------------------------------------------------------------------------------------------------------------ 
Event id Timestamp Activity Resource Cost … 

35654871 06-01-2011:15.02 Register request Mike 50 … 
35654873 06-01-2011:16.06 Examine casually Ellen 400 … 
35654874 07-01-2011:16.22 Check ticket Mike 100 … 
35654875 07-01-2011:16.52 Decide Sara 200 … 
35654877 16-01-2011:11.47 Pay compensation Mike 200 … 
… … … … … … 

 

Example 1 

By reading the first row of the event log (Table 4), 

some drops such as (a, b) (b, d) (d, e) (e, h) will be 

created for the first time in the DLA. Each drop is a 

learning automaton (LA). For the second row of the 

event log (stage numbers 3 to 6), there are (a, d) (d, c) 

(c, e) (e, g) drops or LAs. The creation of the first 

condensate drop is called the first reinforcement of the 

neighbor if the reward is obtained by another drop; 

otherwise, the penalty is obtained. This process will 

be conducted for each drop that has the same element 

0 (a, b) Yes - - a = b = 0.5 All 1/8 = 0.125* 
 

1 (b, d) No Reinforcement abd(1) = 1 a = b = 0.5 0.563** 
 

2 (d, e) No Reinforcement abde(2) = 1 a = b = 0.5 0.782 
 

3 (a, d) Yes - - a = b = 0.5 All 1/8 = 0.125* 
 

4 (d, c) No Reinforcement adc(4) = 1 a = b = 0.5 0. 563 
 

5 (c, e) No Reinforcement adce(5) = 1 a = b = 0.5 0.782 
 

6 (e, g) No Reinforcement adceg(6) = 1 a = b = 0.5 0.891 

 
7 (d, e) No Weakened abde(7) = 0 a = b = 0.5 0.391 

 
8 (d, c) No Weakened abde(8) = 0 a = b = 0.5 0.391 

Stage 

number 

Drop 

or 

LA 

Is there a start 

point? 

Condensate 

drop Probability actions i i(i) a and b 

After stage 8, there are two condensate drops such as “abde” and “abdceg” 

 

a b d 

c e g 

e 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1702 

between two drops. Figure 11 shows the condensate 

drop in the DLA model. 

The distributed learning automata lead to reaching 

better results to obtain the process model using 

reinforced and weakened drops of the event logs, as 

shown in Fig. 11. 

The second step is investigated to determine 

whether there are large drops created in the event log. 

If yes, then all drops will obtain rewards and become 

the biggest drop concerning the combination rules; 

otherwise, all connections will be cut off and changed 

to the same initial drops in an environment. This 

combination will be continued until all condensate 

drops are combined and obtain the rewards. In the 

end, several large drops cannot be combined. These 

drops are the process models and event logs can be 

mined by them. Table 3 shows the raw event logs and 

Table 4 shows the sequence of the event log that will 

be used in this paper. 

Table 3 will be converted to Table 4 by inserting the 

activity in a sequence of letters as below: 
 

a = register request, b = examine thoroughly,  

c = examine casually, d = check ticket, e = decide,  

f = reinitiate request, g = pay compensation and  

h = reject request.  
 

Figure 12 shows a sample of the sequences of event log. 

 

Table 4: A more compact display of the event log 

Case id Trace 

1 (a,b,d,e,h) 

2 (a,d,c,e,g) 

3 (a,c,d,e,f,b,d,e,g) 

4 (a,d,b,e,h) 

5 (a,c,d,e,f,d,c,e,f,c,d,e,h) 

6 (a,c,d,e,g) 

… … 

 

 

 

Fig. 12: Sequences of the event log where each one is a drop 

 

 
Fig. 13: The condensate drops that are distributed in the environment 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1703 

 
 

Fig. 14: The connections in a process model 

 

The proposed method is based on the pair-wise 

fashion that will be studied step by step, as outlined 

below: 

 

1. Each trace or sequence in the event log (Table 5) is 

divided into a pair-wise. Each pair is called a drop 

or a learning automaton that has its density, as 

shown in Fig. 12. All of the drops are distributed 

randomly on the DLA as an environment, as shown 

in Fig. 13 for the following event log 

2. The first element of each sequence, as well as the 

last element, are indicated by a minus (-) and a plus 

(+) signs, respectively 

3. Two pair-wise - or two LAs - will be merged into 

each other, if the other element is not similar. For 

example, (c, d), (d, c) cannot merge into each other 

because the c element is the same (although the d 

element is the same and those two drops are a 

condensate) 

4. Based on the condensate drop rules, the same 

elements between condensate drops will be merged 

into each other 

5. The sequence generated is investigated from the 

end state to the beginning state. If it is available 

in an event log, then all connections will become 

strange connections (Esmaeilpour et al., 2012; 

2014) and all connections will obtain the reward. 

Finally, all drops in this connection will be seen 

as a drop as shown in Fig. 14 

6. At the end, if there is a sequence that does not exist 

in the event log, then all of its connections will be 

cut off and the amount of the reward will reset 

(evaporating droplet). 

 

The validity of the proposed model will be assessed 

in terms of fitness, total node and total path of the mined 

process model in the next section. 

Control-Flow Construct Study 

The control-flow construct must be constructed from 

correct mining. These constructs are loops and duplicates 

that will be studied below. 

Loop 

Variables are assigned to each pair-wise of the 

sequence in the event log that can be the number of 

the event log. After connecting two drops and if the 

numbers of the rows are similar, then there will be a 

cycle. Figure 15 shows the loop in the process model, 

while Fig. 16 shows the process model that has 

deleted the loop according to the proposed model. 

Duplicate Tasks 

Regarding the assignment of variables to each row 

of the event log, when there is an event that is 

duplicated with another event in the appropriate event 

log, then that variable will be investigated and 

checked to which one it belongs. This variable can 

delete the duplicate event in the discovered process 

model as shown in Fig. 17. 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1704 

 
 

Fig. 15: The loop in the process model based on the event log of Fig. 12 and fitness equal to 0.943 

 

 
 
Fig. 16: The process model that has deleted the loop according to the proposed model, based on the event log of Fig. 12 and fitness 

equal to 0.943 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1705 

 
 

Fig. 17: The duplicate task before reconstruction based on the event log of Fig. 12 and fitness equal to 0.953 

 

Results and Discussion 

An existing process model is compared to an event 

log of the same process after the control flow discovery. 

Conformity checks relate events in the event log to the 

process model activities and compare them. The aim is 

to find commonalities and differences between the 

behavior model and the behavior observed. 

Conformance checking is closely linked to measuring 

the fitness of a model that has been discovered and can 

also be used to evaluate and compare process discovery 

algorithms. The method proposed focuses on the 

problem of process discovery, in which business process 

models are discovered using event-based data generated 

by information systems. The motivation for representing 

process discovery as reinforcement learning is that it 

allows for the use of well-known learning methods and 

assessment techniques in the machine learning 

community. Hence, this paper has introduced the 

practical evaluation of the process discovery technique 

using several learning methods. In this work, 

distributed learning automatons are used with the P 

learning model and the LRP learning algorithm and pi is 

initialized at each stage equal to 1/r, where r is the 

number of pairwise sequences. 

Based on the event log, strong condensate drops are 

extracted. To carry out this task, DLA is used. DLA can 

combine two condensate drops (two LAs) and have an 

impact on them. An LA of DLA is one drop. 

Neighborhoods are a group of drops with a condensate 

of their own. Each LA records each neighbor's 

probability actions. In each LA, i is a set of 

condensate drops and a reward will be given (i(n) = 1) 

if “a condensate drop attracts another drop and 

becomes a new condensate drop”. The neighbor rate is 

equal to the occurrence of a similar neighbor in any 

drop. A neighbor of DLA will be created if the drop is 

similar in terms of density. 

The proposed reward will increase probability 

actions. If (i(n) = 1), then one drop gets the reward and 

uses Equation 1a. In this section, the reward and penalty 

rate are equal to a = 0.5. Reinforcement is as important 

as weakness and the LRP learning model is used. Initially, 

all drops have the following probability action value: 

 

, 1 /ii i n n    

 

where, n is the number of pair-wise sequences. 

The system features CPU 2.0 GHz Core2Duo with 

RAM 2 GB, Windows XP/SP2 and Visual Basic. Net 

Express Edition 2008 programming language are used 

to do the simulation (for the proposed model), the 

ProM5.2 framework tool (ProM, 2010) and 

Log_L1.xml, Log_L2.xml and Log_L3.xml event logs 

that have been used for comparison of the proposed 

method and other models. Table 6 to 8 show the 

experimental result of the proposed model on three 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1706 

well-known models: Genetic Miner, Heuristic Miner 

and α++ algorithm.  

The evaluation criterion, as noted above, is fitness. 

The measured fitness is determined by replaying the 

model log. To replay the log in the model, the replay of 

each event trace begins with the marking of the initial 

place in the model and the transitions belonging to the 

events recorded in the trace are fired one after the 

other. During this process, the number of tokens that 

had to be produced artificially and the number of 

tokens left in the model are counted. Only if no token 

was left or missing would the fitness measure be 

evaluated as 1.0, which indicates 100% fitness. Fitness 

reflects the extent to which the traces of the event can 

be linked to the process model's execution paths. Thus, 

if f = 1, the log can be parsed without any error by the 

model. The fitness metric f based on the token is 

formalized as follows: 

 

1 1

1 1

1 1
1 1

2 2

k k

i i i ii i

k k

i i i ii i

n m n r
f

n c n p

 

 

   
      
   
   

 

 
 (3) 

 

where, k is the number of different traces of events 

from an aggregate log L, which is a multi-set of all 

distinguished traces. ni, the number of events traces Ti 

(1≤i≤k) appearing in the given log L, mi is the number 

of missing tokens, ri is the number of remaining tokens, 

ci is the number of consumed tokens and pi is the 

number of tokens produced during the log replay of the 

current trace. For all i, mi≤ci and ri≤pi and therefore, 

0≤f≤1. The maximum fitness measurement value is 

used as an assessment criterion, i.e., f = 1. The 

following event logs have been used for evaluation 

(ProM, 2010) (Sahlabadi et al., 2014; 2017).  

Other evaluation criteria are the total node and the 

total path of the mined process model after modifying. 

Total node shows the total stage to reach the sequences 

of an event log. Less total node with more fitness shows 

the simplicity of the model. On the other hand, the total 

path shows the total way to reach the end of an event log 

from the start point. Less total path with more fitness 

shows the simplicity of the model too. 

Process discovery aims to give an idea of how the event 

log processes took place. This objective discovers processes 

an inherently descriptive learning problem. To assess the 

simplicity of the discovered process model, it is therefore 

justified to compare the learned process models in the same 

sequence from which the process models are learned in 

terms of a lower total node and a lower total fitness: 

 

 Log_L1.xml consists of 4,371 process instances and 

22,457 audit trail entries 

 Log_L2.xml consists of 1,459 process instance and 

7,748 audit trail entries 

 Log_L3.xml consists of 61 process instances and 

224 audit trail entries 

 

From Table 5 to 8, for the Log_L1.xml event log, the 
proposed model was, on average, 7.4%, 7.5% and 7.5% 
better than the genetic algorithm, region miner and α++ 
algorithm from the aspect of without loop tasks, 

respectively. Moreover, the proposed model for the 
Log_L2.xml event log was, on average 12.5%, 11.7% 
and 10.5% better than other methods. For the 
Log_L3.xml event log, the proposed model was on 
average, 5.7%, 6.2% and 6.2% better than others in 
terms of fitness. The total node and total path were better 

than other methods as the results demonstrated that the 
proposed model had more fitness and less total node and 
total path as compared to other methods.  

 
Table 5: The experimental result in terms of fitness with loop and without loop tasks 

   Fitness 
   ------------------------------------------------------------------------------------------------------------------------------- 

   Genetic Algorithm Region Miner α++ Algorithm Proposed method 

 Process Audit trail ---------------------------- ----------------------------- ---------------------------- --------------------------- 
Event log Instance entries Loop Without loop Loop Without loop Loop Without loop Loop Without loop 

Log_L1.xml 4371 22457 0.762 0.765 0.862 0.896 0.792 0.807 0.892 0.897 
Log_L2.xml 1459 7748 0.782 0.820 0.838 0.851 0.791 0.811 0.943 0.953 

Log_L3.xml 61 224 0.902 0.921 0.921 0.933 0.811 0.832 0.953 0.953 

 
Table 6: The experimental result in terms of total node and total path of the mined process model with loop and without loop tasks 

 Total node       Total path 

 --------------------------------------------------------------------- ------------------------------------------------------------------------- 

 aGenetic Region  α++  Proposed Genetic Region  α++  Proposed 

 algorithm miner  Algorithm method al gorithm Miner  algorithm method 

 -------------- -------------- -------------- -------------- -------------- --------------- --------------- ------------- 

Event Log L WL L WL L WL L WL L WL L WL L WL L WL 

Log_L1.xml 11 8 11 8 11 8 11 8 9 7 9 8 9 7 9 7 

Log_L2.xml 11 7 11 8 11 8 11 8 25 8 32 10 26 8 23 10 

Log_L3.xml 13 8 11 9 13 8 13 8 18 11 45 13 21 11 18 11 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1707 

Table 7: The experimental result in terms of fitness with duplicate and without duplicate tasks 

   Fitness 
   ------------------------------------------------------------------------------------------------------------------------------- 

   Genetic algorithm Region miner α++ Algorithm Proposed method 

  Audit trail ------------------------- -------------------------- ------------------------- ------------------------ 
Event log PI entries Dplct W/o Dplct Dplct W/o Dplct Dplct W/o Dplct Dplct W/o Dplct 

Log_L1.xml 4371 22457 0.762 0.768 0.862 0.898 0.792 0.813 0.892 0.902 
Log_L2.xml 1459 7748 0.782 0.825 0.838 0.859 0.791 0.824 0.943 0.953 

Log_L3.xml 61 224 0.902 0.921 0.921 0.933 0.811 0.832 0.953 0.958 

Dplct: Duplicate. W/o Dplct: Without duplicate PI: Process Instance 

 
Table 8: The experimental result in terms of total node and total path of the mined process model with duplicate and without duplicate tasks 

 Total node Total path 

 --------------------------------------------------------------------- ------------------------------------------------------------------------- 

 Genetic Region α++  Proposed Genetic Region  α++  Proposed 

 algorithm miner  Algorithm method  algorithm miner  Algorithm method 

 -------------- -------------- --------------- -------------- -------------- --------------- --------------- ------------- 

Event log D WD D WD D WD D WD D WD D WD D WD D WD 

Log_L1.xml 11 7 11 8 11 7 11 7 9 7 9 8 9 7 9 7 

Log_L2.xml 11 8 11 8 11 8 11 8 24 10 30 10 25 10 23 10 

Log_L3.xml 13 8 11 8 13 8 13 8 18 11 31 12 21 11 18 11 

D: Duplicate WD: Without Duplicate 

 

Conclusion and Future Works 

In this method, each row of the event log is a drop. Each 

drop is distributed in the distributed learning automata as an 

environment and can move in the environment. These drops 

have their density and can merge with other condensate 

drops. This method combined all the condensate drops to 

become larger drops. The proposed method has been 

implemented and compared with the genetic algorithm, 

region miner and α++ algorithm on the Log_L1.xml, 

Log_L2.xml and Log_L3.xml event logs and the results 

demonstrated that the proposed method had less total node 

and total path in terms of better fitness. Fitness of the 

proposed method was, on average, more than 7% better 

than that of other compared methods.  

For future works, we hope to examine the ability of 
this method in terms of other quality attributes such as 
performance, accuracy and resource utilization. Besides 

that, it is also interesting to investigate the application of 
this method in other models, as well as to see its 
performance in real cases.  

Acknowledgment 

This research was funded by the Malaysian Ministry 

of Higher Education with a research grant code of 

FRGS/1/2016/ICT01/UKM/01/1. 

Author’s Contributions  

Vahideh Naderifar: Contributes in the design, 

development and evaluation of the algorithm. 

Zarina Shukur: Contributes in the design of the 

algorithm. 

Shahnorbanun Sahran: Contributes in the 

evaluation of the algorithm. 

Ethics 

The authors declare that there are no ethical issues 

associated with this research. 

References 

Agrawal, R., D. Gunopulos and F. Leymann, 1998. 

Mining process models from work flow logs. 

Proceedings of the 6th International Conference on 

Extending Database Technology, Mar. 23-27, 

Springer, Berlin, pp: 469-483. 

 DOI: 10.1007/BFb0101003 

Adriansyah, A., B. van Dongen and W. van der Aalst, 2011. 

Conformance checking using cost-based fitness 

analysis. Proceedings of the 15th International 

Enterprise Distributed Object Computing Conference, 

Aug. 29-Sept. 2, IEEE Xplore Press, Helsinki, Finland, 

pp: 55-64. DOI: 10.1109/EDOC.2011.12 
Alves de Medeiros, A.K., A. Guzzo, G. Greco, W.M.P. 

van der Aalst and A.J.M.M. Weijters 2007. Process 
mining based on clustering: A quest for precision. 
Proceedings of the International Conference on 
Business Process Management, Sept. 25-28, 
Springer, Brisbane, Australia, pp: 17-29. 

 DOI: 10.1007/978-3-540-78238-4_4 
Burratin, A. and A. Sperduti, 2010a. Heuristics miner for 

time intervals. Proceedings of the European 
Symposium on Artificial Neural Networks, 
Computational Intelligence and Machine Learning, 
Apr. 28-30, Bruges, Belgium, pp: 41-46.  

Burratin, A. and A. Sperduti, 2010b. Automatic 

determination of parameters' values for Heuristics 

Miner++. Proceedings of the IEEE Congress on 

Evolutionary Computation, Jul. 18-23, Barcelona, 

Spain. DOI: 10.1109/CEC.2010.5586208 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1708 

Cattafi, M., E. Lamma, F. Riguzzi and S. Storari, 2010. 

Incremental Declarative Process Mining. In: Smart 

Information and Knowledge Management, 

Szczerbicki, E. and N.T. Nguyen (Eds.), Springer, 

Berlin, pp: 103-127. 

Cook, J.E. and A.L. Wolf, 1998. Discovering models of 

software processes from event-based data. ACM 

Trans. Software Eng. Methodol., 7: 215-249. 

 DOI: 10.1145/287000.287001 

Esmaeilpour, M., V. Naderifar and Z. Shukur, 2012. 

Cellular learning automata for mining customer 

behaviour in shopping activity. Int. J. Innovative 

Comput. Inform. Control, 8: 2491-2511. 

Esmaeilpour, M., V. Naderifar and Z. Shukur, 2014. 

Design pattern mining using distributed learning 

automata and DNA sequence alignment. Plos One 

J., 9: 1-12. DOI: 10.1371/journal.pone.0106313 

Fu, K.S. and G.J. McMurtry, 1966. A study of stochastic 

automata as models of adaptive and learning 

controllers. IEEE Trans. Automatic Control, 11: 

379-387. DOI: 10.1109/TAC.1966.1098374 
Goedertier, S., D. Martens, J. Vanthienen and B. 

Baesens, 2009. Robust process discovery with 
artificial negative events. J. Machine Learn. Res., 
10: 1305-1340. 

Greco, G., A. Guzzo, L. Pontieri and D. Saccfia, 2004. 

Mining Expressive Process Models by Clustering 

Workflow Traces. Proceedings of the 8th Pacific-

Asia Conference on Advances in Knowledge 

Discovery and Data Mining, May 26-28, Springer, 
Sydney, Australia, pp: 2-62. 

 DOI: 10.1007/978-3-540-24775-3_8 
Greco, G., A. Guzzo and L. Pontieri, 2005. Mining 

hierarchies of models: From abstract views to 
concrete specifications. Proceedings of the 3rd 
International Conference on Business Process 
Management, (BPM’ 05), Springer, Berlin, pp: 32-
47. DOI: 10.1007/11538394_3 

Greco, G, A. Guzzo and L. Pontieri, 2006. Discovering 

expressive process models by clustering log traces. 

IEEE Trans. Knowl. Data Eng., 18: 1010-1027. 

DOI: 10.1109/TKDE.2006.123  
Günther, C.W. and W.M.P. van der Aalst, 2009. Fuzzy 

mining: Adaptive process simplification based on 
multi-perspective metrics. Proceedings of the 5th 
International Conference on Business Process 
Management, Sept. 24-28, Springer, Brisbane, 
Australia, pp: 328-343. 

 DOI: 10.1007/978-3-540-75183-0_24 
Hadavi, N., M.J. Nordin and A. Shojaeipour, 2014. Lung 

cancer diagnosis using CT-scan images based on 
cellular learning automata. Proceedings of the 
International Conference on Computer and 
Information Sciences, Jun. 3-5, IEEE Xplore Press, 
Ipoh, Malaysia. 

 DOI: 10.1109/ICCOINS.2014.6868370 

Herbst, J., 2000. A machine learning approach to 

workflow management. Proceedings of the 11th 

European Conference on Machine Learning, May 

31-Jun. 02, Springer, London, pp: 183-194. 

 DOI: 10.1007/3-540-45164-1_19 

Herbst, J., 2004. Workflow mining with InWoLvE. 

Comput. Industry, 53: 245-264. 

 DOI: 10.1016/j.compind.2003.10.002 

Kumaraguru, P.V., 2013. Machine learning approach 

for model discovery and process enhancement 

using process mining techniques. PhD Thesis, Dr. 

M.G.R. Educational and Research Institute, India. 

Leoni, M. and W.M.P. van der Aalst, 2013. Data-

aware process mining: Discovering decisions in 

processes using alignments. Proceedings of the 

28th Annual ACM Symposium on Applied 

Computing, Mar. 18-22, ACM, Coimbra, 

Portugal, pp: 1454-1461. 

 DOI: 10.1145/2480362.2480633 

Meybodi, M.R., H. Beigy and M. Taherkhani, 2004. 

Cellular learning automata and its applications. J. 

Sci. Technol., 25: 54-77. 

Najim, K. and A.S. Poznyak, 1994. Learning Automata: 

Theory Applications. 1st Edn., Pergamon Press, 

Oxford Pergamon, ISBN-10: 0080420249, pp: 225. 

Narendra, K.S. and R. Viswanathan, 1972. Learning 

models using stochastic automata. Proceedings of 

the International Conference of Cybernetics and 

Society, (CCS’ 72), Washington DC. 

ProM, 2010. ProM process mining framework.  

Rozinat, A. and W.M.P. van der Aalst, 2006. Decision 

mining in ProM. Proceedings of the 4th 

International Conference on Business Process 

Management, Sept. 05-07, Springer, Vienna, 

Austria, pp: 420-425. DOI: 10.1007/11841760_33  

Sahlabadi, M., R.C. Muniyandi and Z. Shukur, 2014. 

Detecting abnormal behavior in social network 

websites by using a process mining technique. J. 

Comput. Sci., 10: 393-402. 

 DOI: 10.3844/jcssp.2014.393.402 

Sahlabadi, M., A. Sahlabadi, R.C. Muniyandi and Z. 

Shukur, 2017. Evaluation and extraction factual 

software architecture of distributed system by 

process mining techniques. Asia-Pacific J. Inform. 

Technol. Multimedia, 6: 77-90.  

Schimm, G., 2003. Mining most specific workflow 

models from event-based data. Proceedings of the 

International Conference on Business Process 

Management, Jun. 26-27, Springer, Eindhoven, 

The Netherlands, pp: 25-40. 

 DOI: 10.1007/3-540-44895-0_3 

Schimm, G., 2004. Mining exact models of concurrent 

workflows. Comput. Industry, 53: 286-293. 

 DOI: 10.1016/j.compind.2003.10.003 



Vahideh Naderifar et al. / Journal of Computer Science 2019, 15 (11): 1694.1709 

DOI: 10.3844/jcssp.2019.1694.1709 

 

1709 

Schimm, G., 2000. Generic linear business process 

modeling. Proceedings of the Workshops on 

Conceptual Modeling Approaches for E-Business 

and the World Wide Web and Conceptual 

Modeling: Conceptual Modeling for E-Business and 

the Web, Oct. 09-12, Springer, Utah, USA, pp: 31-39. 

DOI: 10.1007/3-540-45394-6_4 

Schimm, G., 2002. Process miner - a tool for mining 

process schemes from event-based data. Proceedings 

of the European Conference on Logics in Artificial 

Intelligence, Sept. 23-26, Springer, Cosenza, Italy, 

pp: 525-528.  

Tsetlin, M.L., 1973. Automata Theory and Modeling of 

Biological Systems. 1st Edn., Academic Press, New 

York, ISBN-10: 0127016503, pp: 288. 

Tsypkin, Y.Z., 1971. Adaptation and Learning in 

Automatic Systems. 1st Edn., Academic Press, New 

York, ISBN-10: 0080955827, pp: 290. 

van der Aalst, W.M.P. and M. Song, 2004. Mining social 

networks: Uncovering interaction patterns in 

business processes. Proceedings of the 2nd 

International Conference on Business Process 

Management, Jun. 17-18, Potsdam, Germany, pp: 

244-260. DOI: 10.1007/978-3-540-25970-1_16 

van der Aalst, W.M.P., V. Rubin, H.M.W. Verbeek, B.F. 

van Dongen and E. Kindler et al., 2010. Process 

mining: A two step approach to balance between 

under-fitting and over-fitting. Software Syst. 

Modell., 9: 87-111. 

 DOI: 10.1007/s10270-008-0106-z 

van der Aalst, W.M.P., B.F. van Dongen, J. Herbst, L. 

Maruster and G. Schimm et al., 2003. Workflow 

mining: A survey of issues and approaches. Data 

Knowl. Eng., 47: 237-267. 

van der Aalst, W.M.P. and B.F. van Dongen, 2002. 

Discovering work of performance models from 

timed logs. Proceedings of the International 

Conference on Engineering and Deployment of 

Cooperative Information Systems, (CIS’ 02), 

Springer, Berlin, pp: 45-63. 

 DOI: 10.1007/3-540-45785-2_4 

van der Aalst, W.M.P., 2012. Decomposing process 

mining problem using passages. Proceedings of the 

33rd International Conference on Application and 

Theory of Petri Nets, Jun. 25-29, Springer, 

Hamburg, Germany, pp: 72-91. 

 DOI: 10.1007/978-3-642-31131-4_5 

Varshavski, V.I. and I.P. Vorontsova, 1963. On the 

behavior of stochastic automata with variable 

structure. Automatika Telemechanika, 24: 353-360. 

Weidlich, M., J. Mendling and M. Weske, 2011. Object-

Sensitive action patterns in business process model 

repositories. IEEE Trans. Software Eng., 37: 410-429. 

DOI: 10.1109/TSE.2010.96 

Weijters, A.J.M.M. and W.M.P. van der Aalst, 2003. 

Rediscovering workflow models from event-

based data using little thumb. Integrated 

Computer-Aided Eng., 10: 151-162. 

 DOI: 10.3233/ICA-2003-10205 

Weijters, A.J.M.M., W.M.P. van der Aalst, B. van 

Dongen, C. Günther and R. Mans et al., 2007. 

Process mining with ProM. Proceedings of the 19th 

Belgium-Netherlands Conference on Artificial 

Intelligence, (AIC’ 07). 

Weijters, A.J.M. and W.M.P. van der Aalst, 2005. 

Process Mining. In: Process-Aware Information 

Systems: Bridging People and Software Through 

Process Technology, Dumas, M., W.M.P. van der 

Aalst and A.H. Ter Hofstede (Eds.), John Wiley and 

Sons Inc. 

Wen, L., J. Wang, W.M.P. van der Aalst, Z. Wang and J. 

Sun, 2004. A novel approach for process mining 

based on event types. BETA Working Paper Series 

(WP 118), Eindhoven University of Technology, 

Eindhoven.  

Wen, L., J. Wang and J. Sun, 2006. Detecting implicit 

dependencies between tasks from event logs. 

Proceedings of the 8th Asia-Pacific Web Conference 

on Frontiers of WWW Research and Development, 

Jan. 16-18, Springer, Harbin, China, pp: 591-603. 

DOI: 10.1007/11610113_52 

Wen, L., J. Wang, W.M.P. van der Aalst, Z. Wang and J. 

Sun, 2009. A novel approach for process mining 

based on event types. J. Intell. Inform. Syst., 32: 

163-190. DOI: 10.1007/s10844-007-0052-1 

Xumin, L., A. Moayad, D. Chen and Y. Qi, 2018. Log 

sequence clustering for workflow mining in multi-

workflow systems. Data Knowl. Eng., 117: 1-17. 

DOI: 10.1016/j.datak.2018.04.002 

Xiao, Y., J. Pallavi, X. Jianwu, J. Guoliang and Z. Hui 

et al., 2016. CloudSeer: Workflow monitoring of 

cloud infrastructures via interleaved logs. 

Proceedings of the 21th International Conference 

on Architectural Support for Programming 

Languages and Operating Systems, Apr. 02-06, 

ACM, Atlanta, Georgia, USA, pp: 489-502. 

 DOI: 10.1145/2872362.2872407 


