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Abstract: Automatic and accurate recognition of hate speech is a difficult 
job. In addition to the inherent ambiguity of the natural language, deep 
understanding of the linguistic structure is imperative. Usually, discriminatory 
discourse does not make use of typical expressions and often abuse of sarcasm. 
Good knowledge of world and assessment of context are thus highly 
demanded. Several approaches have been proposed for automating hate speech 
recognition task. Many of them consider a combination of strategies in order to 
achieve better results: character-based or word-based N-grams, lexical features 
such as the presence or absence of negative words, classes or expressions 
indicative of insult, punctuation marks, repetition of letters, the presence of 
emoji, etc. The solitary use of linguistic features such as POS tagging have 
shown itself inefficient. The recent usage of neural networks to create a 
distributed representation of the sentences within a hate speech corpus is a 
promising path. Unfortunately, providing such a corpus is hard. Except for the 
English language, hate speech corpora are rarely found. This work proposes a 
cross-lingual approach to automatically recognize hate speech in Portuguese 
language, leveraging the knowledge of English corpora. A deep Long Short-
Term Memory (LSTM) model has been trained and many different 
experimentation scenarios were set to deal with embeddings, TFIDF, N-
grams, GloVe vocabulary and so on. At the end, a Gradient Boosting 
Decision Tree (GBDT) was used to improve classification results. We 
achieved accuracy of up to 70% in the better scenarios. Two important 
contributions of this work are: (i) An effective approach to deal with the lack 
of hate speech corpora in the desired language and (ii) a hate speech database 
in Portuguese to contribute to research community. 
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Introduction 

Internet is increasingly seeing as the main source 

of information and communication channel leader in 

the world. Although its undoubted relevance to world 

progress, it is also responsible for the spread of cyber 

hate as an extension of hatred and intolerance of 

human beings. Facebook and Twitter are recently 

taking action to combat such spread1,2. Other 

initiatives also exist. Nobata et al. (2016), for 

                                                           
1https://blog.twitter.com/official/en_us/topics/company/2017/sa

fetycalendar.html 
22https://newsroom.fb.com/news/2017/06/ hard-questions-hate-

speech/ 

instance, provided a model which has been adopted by 

Yahoo! as a mechanism for detecting abusive 

comments. Although the number of works and 

approaches that deal with the problem of classifying 

hate speech in English is well-known (Schmidt and 

Wiegand, 2017), most do not make their publicly 

labeled data available. For Portuguese language, the 

scenario is even worse: until recently, only the work 

of Fortuna (2017) seems to effectively contribute. 

Since Natural Language Processing activities are 

highly dependent of the language of corpora, focusing on 

the creation of databases from scratch and detection of 

abusive speech in Portuguese is central. Moreover, 

Economic reports has shown a huge growth in the 
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amount of people who use Portuguese on the Internet 

and concerned number of victims of such abuse3. 

Detecting hate speech is still a challenge for two main 

reasons. Firstly, it requires an advanced level of 

understanding of the structure and semantics of 

comments, involving detection of user intent and the 

presence of irony/sarcasm, factors that encompass, 

among other things, world knowledge. That is, it 

involves the computer representing common concepts 

that objectively explain and delimit real-world elements. 

Second, the language and artifices used to express or 

mask comments such as hate speech are not static, 

varying considerably even between regions of the same 

country, such as slang and language vices. 

The study of cross-lingual models stands out in such 

scenario for being able to leverage the use of well 

established corpora, available in other languages, 

minimizing the need to perform the costly task of 

database creation and labeling. Da Silva et al. (2018) 

has shown that this approach is a promising path towards 

the solution to the problem. 

A research hypothesis we raise is that LSTM models 

can be trained as cross-lingual models from automatically 

translated datasets and produce good test results from 

Portuguese datasets. This can lead to a minimization of the 

impact on the task of detecting hate speech. 

The main goal of this work is to train a cross-lingual 

LSTM model of hate speech classification in Portuguese 

using a training set written in English. Specific goals are: 

 

1. Construct and label a hate speech dataset in 

Portuguese and make it publicly available to the 

concerned scientific community 

2. Validate the trained template with the dataset created 

in this work 

3. Define promising preprocessing and vectoring 

techniques within the context of hate speech 

detection with a cross-lingual LSTM model using 

dataset in English as a training basis 

 

At first, due to the scarcity of datasets in the target 

language (Fortuna, 2017), we focused on the creation of 

a dataset of speeches and labeled them with the help of 

volunteers at Internet. Next, we’ve used an Automatic 

Translation System (STA) to translate the dataset 

(Waseem and Hovy, 2016), containing more than 16,000 

tweets labeled as sexist, racist or neither. Then, using 

the Long Short-Term Memory (LSTM) model 

(Goodfellow et al., 2016) and based on the work of 

Badjatiya et al. (2017), we have tried different 

approaches organized in 24 scenarios that demonstrated 

                                                           
33https://epoca.globo.com/tecnologia/experienciasdigitais/notic

ia/2017/02/ha-um-aumento-sistematico-de-discursode-odio-na-

rede-diz-diretor-do-safernet.html 

the performance of the model when configured and trained 

with distinct datasets for binary classification: presence or 

absence of hate speech. Finally, we investigate the model’s 

cross-lingual ability in the task of detecting hate speech 

using, in some of the created scenarios, the dataset 

constructed as a basis for validation. 

Two important contributions of this work are: (i) 

proposal of an alternative research approach to attack 

the problem based on the translation of corpora and 

(ii) provision of a dataset of hate speech in Portuguese 

to the community. 

The rest of the paper is organized as follows. Section 

2 presents the main concepts and techniques related to 

the experiments in this work. In section 3, we delve 

deeper into the definition and concepts related to hate 

speech. We also do a survey of works related to the 

detection of hate speech. Section 4 describes step-by-

step the construction of the created dataset. In section 5, 

we describe the experiments used to evaluate the model 

and discuss the results. Section 7 concludes the work. 

Theoretical Background 

In this section we introduce some building blocks of 

our approach: Recurrent Neural Networks, including the 

LSTM model, the Word Embeddings concept and the 

Gradient Boosting Decision Tree. 

Recurrent Neural Networks 

Recurrent Neural Networks (RNN) are types of 

neural networks focused on the recognition of 

information chains, sequential data (Goodfellow et al., 

2016). Sequences are represented as a set of inputs x(1), 

..., x(), in which the input x(t) is the vector in time/step t, 

with t ranging from 1 to τ. RNNs share weight matrices 

over several steps in input chain processing, allowing 

them to learn patterns that arise at different positions in 

the sequences. This was one of the advances in 

traditional feedforward neural networks, where weights 

for each feature of the entry at index t are not shared 

among each other, requiring that possible positions of 

the desired patterns in entry chains were identified, a 

task that is impractical. 

Figure 1 illustrates the general representation of a 

RNN. For a sequence of size τ, each time entry t is 

mapped to the input t +1 by a f function which operates 

on the st state. Operation Unfold is simply the 

dismemberment of the RNN in its recurrent form (left 

side of Figure) to its complete form (right side of 

Figure). The input of the state s in time t is weighted by 

the matrix of weights U; its output is multiplied by the 

matrix V to generate the output o. The state value st is 

used as input for the state st +1 and weighted by the 

matrix W. States st are treated as the network memory 

since it retains information of previous occurrences. 
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Fig. 1: General representation of an RNN 
 

For the Vanilla RNN, one of the simplest RNN 

models, the values of st and o are computed as: 
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Function "f" is often nonlinear, such as the hyperbolic 

tangent (tanh) or ReLu. Arrays U, W and X are shared 

among all states. Not all models require the output to be 

generated for each state, but for the final state. 

Gradient descent calculation in feedforward is 

modified to take into account RNNs’ parameter sharing 

and is known as BackPropagation Through Time 

(BPTT). Let the cross-entropy error function defined by 

the Equation (2): 
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In which yt represents the correct value of the feature in 

time t and ˆ
ty is the value predicted by the network 

according to the Equation (1). Total error is the summation 

over all errors in each state st. Once the matrix V is one of 

the model parameters, the error in function of V is 

calculated as the sum of the partial derivatives of Et with 

respect to V, according to Equation (5): 
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can observe in the Equation (6): 
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On the other hand, the error in function of W and U, 

since both depend on st (which in turn depends on st −1), 

involves the application of the chain rule, since we 

cannot consider st as a constant. For this reason, tE

W




is 

calculated as follows: 
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Otherwise, the gradient for calculating the error E in 

time t is propagated recursively to the time t = 0, resulting 
in the so-called Vanishing Gradient Problem - VGP, 
which consists in the degradation of gradient values to 
zero in a few steps as a consequence of the successive 
matrix multiplications. Since the gradient on each 
recurring unit tends to zero, it will boost the gradient of 
the previous cells to zero as well; and the higher the τ 
value in the input string is, the greater the network’s 
chances of suffering from this problem. 

There are several proposals to avoid the VGP. By far, 
the most prominent and widely used is the LSTM model 
(Hochreiter and Schmidhuber, 1997). One of its main 
characteristics is the inclusion of special units known as 
gates. These units calculate the weights that connect 
them in order to avoid degradation of the gradient 
through manually-chosen or parameterized values 
(Goodfellow et al., 2016). 
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Like all gated RNNs, LSTMs have the ability to both 

remember and forget about the previous state when that 

information is no longer needed. At the time of training, 

the network has the ability to learn exactly what to forget, 

mechanism that is executed through the parameters of 

forget gate. The values of previous state, the current 

memory and the input are, thus, combined to form the 

output of the unit (or cell). This is a mechanism that 

proved quite efficient in learning long dependencies 

among the terms of a sequence. An LSTM cell is 

composed of three gates that control different behaviors: 

input gate, forget gate and output gate (Fig. 2). 

The forget gate (Fig. 3) controls the input of cell Ct in 

order to determine which of the index values of the 

output vector of the previous cell Ct−1 will be maintained, 

through its σ function, which returns values in the range 

of 0 to 1. Wf and bf are the weights and bias values for 

the gateway, respectively. The LSTM cell can also 

calculate what input information will be stored/updated. 

As can be seen in Fig. 4, this task is divided in two 

steps: (1) function  decides which of the information of 

Ct−1 will update (in the forget gate this step is 

responsible for determining what information will be 

forgotten) and (2) a new candidate input value ( )tC is 

calculated by the tanh function to be further multiplied 

to the vector resulting from the first step. Note that 

operations i and C have their own parameters, which 

can also be learned by the network during training. 

After these operations, there is enough information 

to update the cell state Ct = ft ∗ Ct1 + it∗ rC . Two 

further steps are needed to properly provide the output 

ht. At first, the σ function determines what "portions" 

of the vector/state Ct should be part of the output 

(value ot of Fig. 5). Next, the Ct state is submitted to a 

hyperbolic function (tanh) and multiplied by the result 

of the previous operation. 

Word Embeddings 

LSTMs (actually, any RNN) can be applied to any 

problem that requires the recognition of string sequences 

such as Machine Translation (Liu et al., 2014), 

Sentiment Analysis (Singhal and Bhattacharyya, 2016) 

and Hate Speech (Badjatiya et al., 2017). In fact, any 

problem involving  dealing  with sequences can 

benefit with RNNs, as Human Action Recognition 

(Jaouedi et al., 2019) and Speech Emotion Recognition 

(Praseetha and Vadivel, 2018). The first one is based on 

video processing (image sequence) and the second one 

treat speech (sequence of sounds). 

In NLP problems, we need to provide good 

representation of the sentences as input to the LSTM 

network. The simplest representation is the one-hot 

coding. However, enriched representations are required 

when dealing with domains that highly suffers from 

ambiguity and context dependence, which is the case of 

Hate Speech identification. 

The so-called word embeddings is currently the best 

shot the research community have to deal with such 

challenges. They consist of vector representations capable 

of capturing the relationship semantics between two words 

without losing the ability to encode them in different ways 

(Goodfellow et al., 2016). In the space of embeddings, 

words that often appear in similar contexts are close to each 

other, constructing a neighborhood of similar words. 

Different algorithms were developed for the 

purpose of generating embeddings. They can be 

divided into two families of methods (Hartmann et al., 

2017). The first are those methods that work with the 

co-occurrence matrix of words, such as GloVe 

(Pennington et al., 2014). The other family are those 

that work with predictive models (based on the word’s 

neighborhood), such as Word2Vec (Mikolov et al., 

2013). Hartmann et al. (2017) summarize some of the 

major embeddings generation models: 

 

 The Global Vectors (GloVe) - A non-supervised 

learning algorithm that computes the vectors by 

analyzing the M matrix of word co-occurrence 

constructed through the contextual information of 

the words of the corpus 

 Word2vec - It has two different training strategies: (i) 

Continuous Bag-of-Words (CBOW), in which the 

model attempts to predict the deleted middle word 

within a word sequence and (ii) Skip-Gram, in which 

the model predicts the vicinity of one of the word 

 Wang2Vec: Modification of Word2vec whose 

purpose is to take into account the sequence order 

of words in the sentence 

 FastText: In this architecture, embeddings are 

associated with character N-grams with the words 

coded as the combination of these representations. 

As a consequence, this method attempts to 

capture morphological information to construct its 

word embeddings 

 
The Word Embeddings Repository of the Inter-

Institutional Nucleus of Computational Linguistics 
(NILC)4 contains several publicly available word vectors 
for free download. They were generated by means of a 
corpus in Brazilian Portuguese and European Portuguese, 
using all the models mentioned above and for different 
dimensions. In this work, for the generation of 
embeddings using corpora in Portuguese, we adopted the 
NILC vectors constructed through the 100-dimensional 
GloVe model, hereafter referred to as GloVe100. 

                                                           
4http://www.nilc.icmc.usp.br/embeddings 



Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571 

DOI: 10.3844/jcssp.2019.1546.1571 

 

1550 

 
 

Fig. 2: Structure of an LSTM cell; Source: Christopher Olah blog 
 

 
 

Fig. 3: LSTM: Forget gate; Source: Christopher Olah blog 
 

 
 

Fig. 4: LSTM: Input gate; Source:  Christopher Olah blog 
 

 
 

Fig. 5: LSTM: Output Gate 
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Gradient Boosting Decision Tree (GBDT) 

Tree-based sorting or regression methods divide the 

feature space into recursively sub-areas in which each step 

selects the most representative characteristic of the input 

data in the training process (Marsland, 2014). They are 

called "decision trees" because each sub-area within the 

feature space is represented by a root node (which 

contains its most relevant feature) and its leaf nodes, each 

containing the next relevant characteristics resulting 

induction process on the tree. One of the most critical 

decisions in the construction and partitioning of decision 

trees is the choice of which feature best represents the data 

on the node being partitioned. One of the most common 

ways to evaluate the quality of partitioning is to use the 

concepts of Cross-Entropy and Information Gain. 

Popular error functions used for GBDT training are 

AdaBoost and logistic regression (Friedman, 2002). 

The latter consists of the cross-entropy function adapted 

for essemble models. AdaBoost in turn proposes the 

creation of weights to be applied to each weak learners. 

Its effect is to allow greater influence to the classifiers 

with greater accuracy, weakening the relevance of the 

outputs of those that contribute to decrease the overall 

performance of the model. Once the global error is 

calculated, it is propagated to each classifier by adjusting 

its respective weights. 

According to Sutton (2005), "boosting" technique 

usually benefits classifiers whose method of classification is 

unstable, drastically reducing the error rate resulting from 

the classification method: unstable classifiers have a high 

variance and the boosting decreases its value without 

increasing the bias. In addition, there is strong evidence that 

GBDTs are resistant against over-fitting, possibly due to 

their ability in producing reasonably strong and 

uncorrelated classifiers. 

Detection of hate Speech in Texts 

Definition of hate speech is often misinterpreted. To 

assure detection accuracy, such misinterpretation must 

be solved. Table 1 presents some currently used 

definitions for hate speech and their respective sources. 

We are concerned with the searching for definitions 

from both the Internet and authors who have studied 

hate speech in other ways such as Moura (2016). Both 

emphasize that any kind of comment that has or is 

capable of instigating discrimination against a certain 

group of people should be considered hatespeech. Note 

that this definition is more comprehensive than that of 

Facebook (Table 1), which allows the use of humorous 

and offensive content, making the border of what 

would be reprehensible more difficult to establish. We 

believe that this definition is permissive and 

encourages the dissemination of subtle comments and 

implicit violence that are equally damaging to victims, 

as usually the jokes that reinforce stereotypes (such as 

blondes, gay, fat and certain physical aspects) are. 

Repetition of jokes of this kind, even without 

discriminatory intent, shapes the relationship between 

the group of those who utter them and the target group 

of victims. In other words, repeating jokes is a way of 

reinforcing bad attitudes or thoughts. In the scope of 

this work, thus, we adopt the definition provided by 

Fortuna (2017), as it includes delicate situations, 

including humorous situations in general, like jokes. 

There are a plenty of concepts related to hate speech: 

hate, cyberbullying, abusive language, discrimination, 

profanity, toxicity and so on, that are often improperly 

used. In Table 2, we briefly reproduce proper distinctions 

made by Fortuna (2017). 

Decision trees can be combined to improve its 

individual predictive power. This method is known as 

Tree Essemble and there are several models based on it. 

One of the best known is Random Forest (Breiman, 

2001). In this work we use another model called 

Gradient Boosting Decision Tree (GBDT) (Friedman, 

2002). Like Random Forest (RF), GBDT uses the 

partitioning of the prediction process through the 

essemble for the tasks of classification or linear 

regression. However, while RF generates several trees in 

parallel and applies majority voting to provide finall 

prediction, in GBDT, decision trees are sequentially 

constructed and each of them is focused in correcting the 

mistakes of the previous one; the trees created in such 

process are weak learners with a training technique 

known as boosting (Friedman et al., 2001). 

As we can see from the definitions provided, abusive 

language does not necessarily contain the kind of 

discrimination that characterizes a discourse of hate 

speech. However, within the scope of this paper, for the 

sake of simplicity, we adopt the definition that a 

comment is abusive if it contains some kind of hate 

speech and otherwise clean. 

Table 3 displays the main types of hatespeech and 

some example of its main targets. 

Additionally, Cavalcante Segundo (2016) talks 

about a type of discourse that contains political 

intolerance and how much it is present in the world. In 

this scenario, the hate speech is usually manifested in 

comments with explicit intent or not to downgrade or 

offend the opponent. In Brazil, political intolerance is 

evident in the "petistas" (person who is a member or 

sympathizer of the PT political party) and 

"antipetitas" (on the contrary). 
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Table 1: Examples of definitions of hate speech 

Source  Definition 

Facebook5 "Contents that attack people based on their race, ethnicity, nationality, religion, gender, gender or 

 gender identity, sexual orientation, disability or illness, whether actual or presumed, are not allowed. 

 However, we allow clear attempts at jokes or satire that do not have the character of threats or attacks. 

 This includes content that many people may find distasteful (e.g., jokes, stand-up comedy, certain  

 lyrics of popular songs, etc.)." 

Twitter6" Hateful conduct: You may not promote violence against or directly attack or threaten other people on 

 the basis of race, ethnicity, national origin, sexual orientation, gender, gender identity, religious 

 affiliation, age, disability, or serious disease. We also do not allow accounts whose primary purpose is 

 inciting harm towards others on the basis of these categories." 

(Moura, 2016)  "The speech of hatred refers to words that tend to insult, intimidate or harass people because of their 

 race, color, ethnicity, nationality, sex or religion, or who have the ability to instigate violence, hate or 

 discrimination against such persons." 

(Cavalcante Segundo, "Hate speech is one that aims to disseminate and promote hate on the basis of race, religion, 

2016) ethnicity or nationality [...], even though it is not limited to such vectors and can also be example, 

 according to gender, sexual orientation, etc."  

(Fortuna, 2017)  "Hate speech is language that attacks or diminishes, that incites violence or hate against groups, based 

 on specific characteristics such as physical appearance, religion, descent, national or ethnic origin, 

 sexual orientation, gender identity or other and it can occur with different linguistic styles, even in 

 subtle forms or when humour is used." 
 
Table 2: Hate speech and related concepts 

Concept  Definition  Difference to hate speech  

Hate Expression of hostility without any stated  Hate speeches contain hatred directed against 

 justification. specific groups. 

Cyberbullying  Name given to aggression and offenses Hate speech is more general and not necessarily 

 practiced electronically among children and aimed at a specific person. 

 adolescents repeatedly and over time with the 

 intention of humiliating and undermining the other. 

Discrimination Process through which a difference is identified Hate speech is a form of discrimination that 

  is identified and used as the basis for unfair manifests verbally or in writing. 

 treatment. 

Abusive language  Refers to harmful languages and includes Hate speeches are a form of abusive language. 

 discourses of hatred, profanity and derogatory  

 messages. Hate speeches may use profane language, but 

Profanity  Offensive or obscene language. not necessarily. 

Toxic language  Rude, disrespectful and irrational comments Not all toxic comments contain hate speech. 

 aimed at causing the person to quit.        

Source: Adapted of Fortuna (2017) 
 
Table 3: Types of hate speech and their targets 

Category  Hate Targets  

Race  people with light skin, afro-descendants  

Behavior  insecure people, sensitive people  

Physical appearance  obese people, beautiful people  

Sexual orientation  gay, straight  

Social class  poor people, marginalized people, rich people  

Genre  pregnant, feminist  

Xenophobia  Chinese, Indian, Northeastern  

Deficiency  bipolar, autistic, people with specific needs  

Religion  religious people, islamic  

Other  drunks, people with little education  

Source: Adapted of Silva et al. (2016) 
 

Why is Automatic Detection of Hate Speech a 

Difficult Task? 

Identifying hate speech in comments is difficult for 

different reasons. The language used in the text, for 

example, can be very noisy and contain misspellings, 

expressions or informal linguistic constructions. In 

addition, discrimination can occur veiled, requiring 

knowledge of user intent and context analysis to infer the 

existence of some hate speech. 
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For example, the comment "essi accent and very 

funny" (sic), posted on Facebook, was made in response 

to Northeastern rap singers, who were shriveled by their 

peers from other regions. Without this context, it is 

difficult for both the computer and a human judge to 

discern whether or not a comment contains abusive 

content. In the possession of this information, it is clear 

that the intention of the comment is to ridicule the singer 

specifically for the Northeastern accent, using it as a 

criterion for discrimination. The posting, therefore, is 

xenophobic. The commentary "rubbish accent, 

northeastern junk, has only sugarcane there kk" (sic) 

(made in the same context as the previous paragraph), on 

the other hand, contains explicit discrimination, making it 

easier to classify it as abusive and, specifically, 

xenophobic, since it attacks all north-easterners, even 

using stereotypes (the fact that the term "rapadura" is very 

common in the northeast) for this purpose. 

Recently, in 2018, some racist declarations have 

gained prominence in the media, among which we 

highlight the following phrase: "always wanted to play a 

black hair" (sic). We identify in it a subtle 

discrimination, which is not determined by the presence 

of the word "negro", but by the way the author speaks of 

the Negro, putting him as someone differentiated, 

precisely by the color of his skin and the type of his hair, 

discriminating against him and thus practicing racism. 

This comment illustrates another situation in which it is 

difficult to classify hate speech by considering only the 

words of the sentence, without acknowledging the 

user’s intention or the implicit meaning of his words. 

In the work of Nobata et al. (2016), the authors list what 

they consider to be the basis for automatic classification of 

hate speech, which we summarize below: 

 

 Do not search for keywords only: Use of regular 

expressions in the recognition of hate speech may 

result in false positives, since comments with 

typical discriminating expressions are not always 

discriminatory. In addition, the list of keywords 

based on blacklists often varies over time and can 

be overshadowed in different ways by users, 

making their use insufficient for sorting tasks 

 Abusive comments can be well constructed: Not 

all hateful comments are written in informal words. 

Some may be very fluent and grammatically clean. 

Therefore, considering the presence of noise as 

grammatical errors is not sufficient for the 

automatic detection of hate speech 

 Hate speeches can cross sentences: We often need 

to consider more than one sentence to determine 

whether a comment is abusive or not. 

Discriminatory ideas may be manifested in different 

sentences and world knowledge is often required to 

properly characterize them 

 Irony/Sarcasm: It is not difficult for users to 

grasp ironic phrases to discriminate their targets, 

making recognition of their meaning even more 

difficult for humans 

 

Related Works 

In Nobata et al. (2016), the authors used three 

different datasets to analyze the impact of the model 

developed for identifying abusive content messages 

(which include hate speech). The first is the "Primary 

Data Set" which consists of comments provided and 

moderated by Yahoo! Finance and News in the period of 

October 2012 to January 2014. The second, called 

"Temporal Data Set", is used to analyze the influence 

of language change on the classification of comments as 

abusive or clean; the dataset was also provided by 

Yahoo! Finance and News and collected between April 

2014 to April 2015. Finally, the third dataset, named 

"WWW2015 Data Set", was created by Djuric et al. 

(2015) and used by Nobata et al. (2016) for the purpose 

of comparison to the state-of-the-art in the field at the time 

of work completion. Authors trained a model using the 

machine learning program called Vowpal Wabbit with 4 

different types of features: Linguistic, Syntactic and 

Semantic. Semantic features include pre-trained word 

embedding templates and an embedding template created 

with word2vec through a text corpus of Finance and News. 

The work outperformed the state-of-the-art at 10 AUC 

(0.9055 versus 0.8007). One of the most important 

contributions of this work was to prove that character-based 

n-grams are robust against datasets with a lot of noise, as is 

the case with those coming from social networks. 

Badjatiya et al. (2017) performed several 

experiments using distinct deep learning architectures to 

classify the tweets collected and classified in the work 

of Waseem and Hovy (2016), used as benchmark: in all 

of them, there were more 16k tweets labeled as racist, 

sexist, or neither. The work explored deep techniques 

and used various aproache combinations like 

embeddings trained with LSTM, character N-Grams, 

TF-IDF, Bag of Words Vectors (BoWV) and (GloVe). 

They used both a CNN architecture and an LSTM, since 

their individual characteristics could make a difference 

in speech detection. In fact, the combination of an 

LSTM network, randomly generated embeddings plus a 

Gradient Boosted Decision Trees (GBDT) proved to be 

the best method, surpassing the State-of-the-Art in 

classifying hate speech with a F-Measure of 0.93. The 

embeddings were trained by LSTM and then submitted 

to GBDT. The LSTM architecture of Badjatiya et al. 

(2017) is represented in Fig. 8. It is worth mentioning 

that our work leverages this architecture (see Section 6). 

Surprisingly, the randomly generated template 

performed better than the one initialized with GloVe, a 

fact that may indicate that the inherent power of LSTMs 
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to capture long series of word dependencies in tweets 

is maximized when the vector representation of the input 

data is randomly initialized. Another hypothesis is that 

GloVe does not have enough semantic representation 

power to improve the performance of a hate speech 

classification model as expected. A further hypothesis, 

which is most likely, is that the method of combining the 

embeddings of words to represent the embedding of 

texting tweets by word2vec is not robust enough. A 

paragraph embedding approach is probably more 

appropriate (Schmidt and Wiegand, 2017). 

Schmidt and Wiegand (2017) studied a wide range of 

works on hate speech detection with natural language 

processing, highlighting the relevance of using features in 

various models discussed so far. Some of the most 

relevant features suggested by the authors were: character-

based N-Grams, use of paragraph embeddings, comment 

analysis, lexical features such as presence of negative 

words, linguistic resources such as the class of words 

(POST-tag) and knowledge bases with expert knowledge 

of writing patterns in hate speech, to cite some. 

Park and Fung (2017) used word-based convolutional 

(CNN) neural networks (represented as embedgings by 

means of word2vec), characters (converted to the one-hot 

coding) and a hybrid approach (words + characters) for the 

detection of abusive language. The dataset used was that of 

Waseem and Hovy (2016). Firstly, classification of the 

speeches as abusive or not was provided and, then, this 

information was used to classify its subtype (racist or 

sexist). Best result was obtained by the combination of 

Hybrid CNN with the logistic regression algorithm, 

achieving 0.828, 0.831 and 0.824 for accuracy, coverage 

and F-measure, respectively. 

Gao and Huang (2017) demonstrated the importance of 

using the context of comments to be sorted. With a 

handcrafted dataset, they combined the logistic regression 

model with an LSMT architecture and extracted character- 

based N-Grams using semantic and lexical information for 

each word of the vocabulary. The best results in terms of 

accuracy, precision, coverage, Measurement-F, AUC were, 

respectively: 0.779, 0.650, 0.678, 0.600, 0.804. 

The work of Fortuna (2017) is almost the only one 

dealing with corpora in Portuguese. The author has carried 

out an extensive study on several definitions that seek to 

delimit what are hate speech and related concepts, such as 

cyberbyllying. A manually typed dataset of tweets was 

constructed, totaling 5,668 messages of which 22% were 

declared as one of the 85 types and subtypes of hate speech 

considered in the paper. For the labeling task, the 

hierarchical classification approach was used: a technique 

that decomposes the classification task into a set of smaller 

problems, which can be efficiently solved and combined to 

classify documents composed of those (Hao et al., 2007). 

Fortuna (2017) also conducted experiments with binary 

classification (named as "unimodel") of speeches and multi-

class classification (named "multimodel"). In terms of 

precision, the best unimodel and multimodel algorithm was 

Rpart (Kuhn, 2008) with 0.778 and 0.883, respectively. The 

best coverage value was achieved with the SVM Linear for 

both models, with 0.720 and 0.765, respectively. 

Table 4 summarizes main works cited so far together 

with the achieved results, features and algorithms used. 

PtBR Initiative 

Despite the already mentioned shortage of scientific 

work to deal with the detection of hate speech in Portuguese 

languages, there are important initiatives that could help. 

One of them is the blog "Comunica que Muda" (CQM), 

which built a dossier called "Dossiê da Intolerância" (in 

English, Intolerance Dossier)5,6 in regards to the digital 

world in Brazil. The dossier catalogs the most obvious types 

and the most common expressions and phrases used in 

social networks in Brazil. Ten different types of intolerance 

were monitored for three months - from April to June 2016. 

The types of hatred highlighted were those regarding the 

appearance of people, their social classes, the numerous 

disabilities, homophobia, misogyny, politics, 

age/generation, racism, religion, appearance and 

xenophobia. Whenever a word or phrase referring to one of 

these subjects was identified in a Facebook post, Twitter 

post, Instagram, some blog or comment on websites, it was 

collected and analyzed by the project team. In total, 542,781 

mentions were analyzed. The method of classifying CQM 

comments was therefore based on blacklists. This is a 

known fragility from both capture and selection methods 

because many hate speech does not necessarily contain 

expressions present in such lists. Moreover, intolerant 

comments can be structured into several sentences in order 

to take into account previous sentences to determine 

whether the other is abusive (Nobata et al., 2016). So, it is 

very likely that the filter used in the project has left out a 

representative amount of abusive comments. The Table 5 

displays some expressions/mentions used by the CQM blog 

to capture the desired content. 

Expressions of Table 5 and details of the capture 

method were provided promptly via email contact by the 

project organizers. The list of classified comments, 

however, has not been released by the CQM group. 
Although the capture method is based on 

blacklists, the extracted and classified comments were 
relevant insofar as they made clear the types of 
speeches that are given in social networks, as can be 
evidenced in the publicly available document of the 

Dossier. Clearly offensive or discreetly intolerant 
phrases were highlighted and showed the perceived 
and proven preconception scenario of the group. 

                                                           
5http://www.comunicaquemuda.com.br/dossie/quando-

intolerancia-chega-as-redes/ 
6http://s18628.pcdn.co/wp-

content/themes/comunica/dist/dossie/dossie_intolerancia.pdf 

http://www.comunicaquemuda.com.br/dossie/quando-intolerancia-chega-as-redes/
http://www.comunicaquemuda.com.br/dossie/quando-intolerancia-chega-as-redes/
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Table 4: Main approaches and results in terms of Accuracy (Acc), Precision (P), Coverage (C) and Measure-F (F), its features and 

algorithms used 

Ano Acc P C F AUC Features Algorithms  Paper 

2017 – 0.93 0.93 0.93 – Word embeddings, Logistic Regression, Badjatiya et al. (2017) 
      BoWV Random Forest,  
       GBDT, SVM, 
       DNN, CNN 
2017 0.78 0.78 0.72 0.764 – word N-Grams Logistic Regression, Fortuna (2017) 
       MLP, SVM  
2017 – 0.828 0.831 0.824 – Caracteres,Word Logistic Regression, Park and Fung (2017) 
      embeddings, SVM, CNN   
2017 0.78 0.65 0.68 0.60 0.80 N-Grams, Word Logistic Regression, Gao and Huang (2017) 
      embeddings, Features LSTM, BiLSTM 
      semantics and lexical, 
2016 – 0.82 0.82 0.82 – Tokens size, N-Grams, skip-bigram Nobata et al. (2016) 
      punctuations, POS-tag 

 
Table 5: Examples of expressions used by CQM to capture comments 

# Discoursetype Expressions 

1 Intolerance against appearance “Narigudo”/ “seu” “gordo” / “gordo fazendo gordice” / “cabelo ruim”/ “cabelo de 

   bombril”  

2 Intolerance against social class “Bolsa esmola” / “pobraiada” / “parece favelado” / “favelado é foda” / “coisa de 

  favelado”  

3 Intolerance against the disabled “retardadomental”/“temdown”/“alejado” / “demente” / “leproso” / “aidético” 

4 Homophobia  “boiola” / “baitola” / “gay” “desperdicio” /“cara de traveco” / “voz de traveco” 

5 Misogyny “feminazi” / feminista mal comida / odeio vagabunda/ vadia vagabunda / tudo 

  vagabunda / “vai lavar louça” / “mal comida”  

6 Political Intolerance / “comunista safado" / “coxinha fascista” / “comunista” "ladrão" / “bolsa esmola” / “ 

  bolsa” “compra votos” /“petista vagabundo” 

7 Prejudice against ag /generation / "velho asilo" / “não tenho idade” /"adolescente preguiçoso"/ "adolescente chato / 

  “adolescente  

8 Racism “Cabelo ruim”/ “cabelo de bombril” / “não sou tuas nega” / “preto é foda” 

  / “nego é foda”  

9 Religious intolerance  “crente do rabo quente” / “crente do cu quente” /. “odeio crente” / “sem Deus no 

  coração” / “muçulmano bomba”  

10 Xenophobia / “arabe” “bomba” / “muçulmano” “bomba” / “japones é tudo igual” "voltapra sua 

  terra” / "caiçara folgado"  

Source: CQM Project 
 

For this reason, we use these expressions as a 
starting point for capturing tweets and pre-selecting 
comments to be voted on in the construction and 
labeling process of the dataset we present in this paper. 
Details are discussed in Section 4. 

Dataset Tagged with Hate Speech in PtBR 

In this section, we depict the construction and 
labeling of the hate speech dataset for Portuguese 
language we have built and used in the experiments and 
which is publicly available. Manual labeling of a 
dataset is a laborious and error prone task, but it is 
highly required for supervised learning methods. We 
used the hatespeech comment database which Fortuna 
(2017) had made public to improve our dataset and 
help the validation of our models. 

Selection of Data Sources 

In the process of collecting comments, we need to 

carefully select the sources to maximize the likelihood 

that extracted texts contain some sort of hate speech, so 

that the proportion of true positive texts (those that 

actually contain hate speech) be representative 

(Schmidt and Wiegand, 2017). This strategy also makes 

it possible to direct the search process to specific sub-

topics and sub-types of desired hate speech. 

In the scope of this work, we do not intend to 

classify comments within specific types of 

hatespeech, but to determine the presence or absence 

of abusive content. That said, we carefully selected 

some websites that were highly likely to contain 

controversial issues and comments from haters and 

other discriminatory opinions or ideas. In total, 35 

URLs have been listed, including news sites, 

Facebook communities, YouTube pages and forums. 
The topics of news sites aggregate the list of articles 

whose theme is related to it. For instance, in the topic (listed 

by employees) http://g1.globo.com/politica/, we find all the 

G1 news relevant to the topic "politics". In the topic 

https://veja.abril.com.br/noticias-sobre/homofobia/, there 

http://g1.globo.com/politica/
https://veja.abril.com.br/noticias-sobre/homofobia/
https://veja.abril.com.br/noticias-sobre/homofobia/
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are articles categorized as "homophobia". The comments in 

the articles of these topics, as a consequence, has a high 

probability of containing content on the subject 

homophobia or politics, be they positive or negative. 

Selection of Facebook Communities 

Facebook communities were mostly selected by 

means of the hate map7 created by the Laboratory of 

Image and Cyberculture Studies (Labic)8, which is a 

map of admirers (extremists) of the Military Police on 

Facebook. The following quotation of CartaCapital 

magazine about the map9 (translated for the purpose 

of the paper) summarizes it content: 

 
"They are pages dedicated to defending the use 
of violence against what they call "bandits", 
"vagabonds" and "robbers", apologizing to 
lynchings and murder, defending police officers, 
publishing photos of "violated" or violently 
killed people, selling war equipment and 
combating human rights." 

 

Criterion for Capturing Tweets 

Tweets were collected in regards to the keywords 

listed in Table 5. We also considered some keywords 

specially selected or copied from blacklist Hatebase10. 

Below, in Table 6, we quote the expressions added 

and separated by category. 

It is worth emphasizing that the existence of one of 

these expressions in the text does not mean that it 

conveys hate speech Schmidt and Wiegand (2017). 

Conversely, the complete absence does not guarantee 

that it is clean. We use only a hint of probable 

relevance, considering its existence as a pre-selection 

criterion of tweets, since capturing all of them without 

criterion would be inefficient and not qualitative. 

All the tweets that was captured by the above method 

were considered regardless of their size. Even the 1-

word sized comments could be voted on. 

Collection Method 

We used facebook-sdk11 to extract content from 

Facebook; for each community, we accessed all comments 

of the posts by its users, as well as the metadata provided by 

the API. In regards to Tweeter, we used the Tweetpy12 

library and connected to the tweets online streaming web 

                                                           
79https://www.cartacapital.com.br/blogs/outras-

palavras/facebook-um-mapa-das-redes-de-odio-327.html/ 
8http://www.labic.net/ 
9https://www.cartacapital.com.br/blogs/outras-

palavras/facebook-um-mapa-das-redes-de-odio-327.html 
10https://www.hatebase.org/ 
11http://facebook-sdk.readthedocs.io/en/ latest/api.html 
12http://www.tweepy.org/ 

site that the Twitter API provides, detecting those that 

contained one of the expressions present in the Tables 5 and 

6. Forums and news websites do not provide API for 

extracting your content. For this reason, we used web 

scraping techniques to recognize users’ comments and their 

available metadata. Some news websites like Estadão and 

Veja have an HTML structure that is difficult to predict, so 

we were not able to collect their information. The extraction 

process and parsing were executed by the Selenium 

wrapper for Python13. This was necessary because some 

page contents are only displayed by means of some sort of 

user-centred interaction like clicks, for example. The total 

number of pages and comments extracted for each 

collection source is listed in Table 7. 

Following is a detailed list of the steps we have taken 

to collect the comments: 

 
1. For sources without available API (Like news 

webpages): 

 We manually analyzed the HTML page of each 
collection source to determine the tags concerned 
to user comments 

 Using a web scraping tool, we extracted and saved 
each comment in the database 

 In addition to the comments, we saved the 
creation/editing data of the comment as well as the 
hyperlink of the webpage 

2. Twitter: 

 We selected the catch expressions defined in 

the Tables 5 and 6 and introduced some 

linguistic variations to better fit the users’ 

informal style of writing. As an example of 

that, we added the variation "vc" for the word 

"você" ("you"), "n" for "não" ("not") and so on 

 We used the Twitter API to capture all the 

tweets containing at least one of the previously 

defined expressions 
 We saved the serialized representation of each 

tweet for any needs 

3. Facebook: 

 After selecting communities, we used the 
Facebook API to access all comments on posts 
on each of the pages 

 Additionally, we saved all the author’s as well 
as the post data 

 

Labelling 

To facilitate the help of volunteers in the labelling 

process, a dedicated web application was developed for the 

task; user-friendly interface and responsiveness were central 

requirements. 

                                                           
13http://selenium-python.readthedocs.io/ 
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Table 6: Expressions added to the table list 5 for capturing tweets 

# Discoursetype Expressions 

1 Xenofobia “nordestino burro”/ "sotaque ridículo" / "sotaque lixo" / "nordeste lixo" /  

  "nada contra o nordeste" / “nada contra nordestino”/ “nordeste não tem água” / 

  "sotaque de viado" / "nordestino viado" / "volta pra sua terra" 

2 Racismo “caboclo” / "mestiço" / "volta para a senzala" / "carcamano" 

 

Table 7:  Total number of pages and comments extracted from different sources 

Source Pages Comments 

G1 11,774 724,997 

Facebook 11 658 

Youtube 81 74,013 

Twitter – 136,118 

Stormfront 129 1,249 

TOTAL 11,995 937,035 

 

The system 

The labelling Web application was developed in 

Python/Django and it is available at14. Figure 6 shows 

the welcome page, whose main function is to encourage 

the user to collaborate with the project. 
The menu item "COMO CLASSIFICAR?" ("How to 

classify?") assist the volunteers to properly identify and 
distinguish between comments with hate speeches and 
clean comments and distinguish other types of offenses 
that are not hate speech, increasing their likelihood of 
making the best possible decision at the moment of the 
vote. After clicking the "OK, VAMOS CLASSIFICAR" 
("Ok, let’s classify") button, the system is redirected to 
the classification page, shown in Fig. 7. The user is 
thus asked whether the shown comment conveys a hate 
speech. In the event of any doubt, it is possible to skip or 
check the "Não tenho certeza" ("I’m not sure") option, 
then press the "Salvar" ("Save") button. 

In short, the system provides the volunteer with the 
opportunity to vote each comment in three different 
ways: (1) "Contém discurso de ódio" ("Conveys hate 
speech"), "Não contém discurso de ódio" ("Doesn’t 
convey") and "Não tenho certeza" ("I’m not sure"). We 
chose to record the vote of doubt for the comment in a 
way that would allow it to be voted on by another 
volunteer and thus increase the chances of the speech 
being recognized as clean or abusive, since if it were 
submitted to the same users who had doubts about its 
content the vote would probably be maintained. 

We set up the system so that we do not repeat the 
next 150 comments for the current volunteer, based on 
his/her session data. Thus, in addition to increasing the 
variety of voted speeches, we limit the amount of votes 
that the same users can give for each comment. 

Choosing Comments for Voting 

Because we did not filter the comments from some 

collection sources, the size of the database grew 

                                                           
14http://thiagodiasbispo.pythonanywhere.com/ 

considerably, this leads to being necessary to find out an 

efficient criterion for elicitation of comments at the time 

of voting and thus increase the amount of Positive 

Labeling by volunteers, as well as the number of 

speeches of different types and characteristics. 

The comments were randomly selected according to 

the priority order set out below. When there is no 

comment that fits into a given selection criterion, the 

next criterion in the sequence is evaluated. 

 

1. Comments with 2 votes exactly. 

2. Comments with 1 vote exactly. 

3. Comments voted undefined more than 1 time if 

there are more than 10 of them. 

4. Comments containing or not one of the filter 

expressions defined for tweets and without any vote. 

5. Any comment already voted. 

 

Criteria 1 and 2 were placed to maximize the number 

of speeches with at least 3 votes, since without them 

most of the comments would not be submitted to a 

sufficient number of volunteers given the total amount of 

comments present in the database (Table 7). 
Criterion 3, in turn, was used as a way to minimize 

the amount of comments with a vote of doubt. As we 
defined earlier, the next 150 comments were not 
repeated for the same volunteer and, in addition, 
Criterion 3 gives him the chance to vote speeches in 
which other volunteers had some uncertainty. 

Using Criterion 4, we aimed to balance the number of 
voted comments that contains any of the expressions 
present in the Tables 5 and 6 and the number of 
comments that did not contain them. In this way, we kept 
the chance of those hate speech with more subtle 
discriminations being selected. 

Criterion 5 ensures that there is always a candidate 

comment for voting, even when everyone has already 

been voted on. In practice, we never need to use this 

criterion since our total database is considerably large 

and the amount of volunteers is insufficient to vote for 

all of its comments. 
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Fig. 6: Welcome screen of the labelling Web application 

 

 
 

Fig. 7: Labelling system: classification screen 

 

Labeling Results 

During the period in which the volunteers contributed 
with the lettering, from 09/27/2017 to 05/15/2018, we got 
exactly 7,673 votes. The comments were randomly selected 

in order to increase the number of speeches with at least 3 
votes and allow to classify those comments already marked 
with the option "NÃO TENHO CERTEZA" (I am not 
sure). Thus, whenever a speech reached at least 3 votes of 
the same type, i.e., 3 votes as "abusive" (abusive) or 3 votes 
as clean, we consider it classified. 

We noticed that many comments were voted on 
several times as "NÃO TENHO CERTEZA" (I am not 
sure). According to some volunteers, they were faced 
with texts that, without the context to which the 
discourses were inserted, it was difficult to gauge the 
presence or not of abusive content. 

The total of 1,191 speeches remained with 2 votes and 

1,797 with 1 vote and for that reason we did not include 

them in our final dataset. Considering only those with at 

least 3 votes, we obtained a total of 1024 labeled comments, 

of which 491 were classified as abusive and 533 as clean. 
In the total of classified speeches, we detected that 

299 of them contained some of the expressions listed in 
the Tables 5 and 6, representing 24.83% of the 1,024 
comments classified and made available in our dataset. 
This result demonstrates that there was a tendency for 
our method to choose more comments without such 
expressions, which is an important behavior for allowing 
exposure to a greater proportion of comments with 
abusive content less common to volunteers. 

In the Table 8 we display the quantitative of 
comments by collection source. We note that all 
sources, from which any comments were saved in our 
database, were represented in our dataset. The data 
summarized therein illustrates that, not coincidentally, 
the amount of voted tweets is close to the amount of 
comment with any of the hate expressions (299). This 
result was expected, since tweets were captured using 
as a criterion the presence of such expressions. 
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Table 8: Quantitative discourse by source of collection 

Source Quantity 

G1 493 

Youtube 132 

Twitter 248 

Stormfront 92 

Facebook 59 

 
Table 9: Statistics of the size of abusive and clean comments 

 Minimum Maximum Median Mean 

Abusive 1 119 12 13.12 

Clean 1 88 15 15.75 

 

Size of Comments 

The comments showed a wide variation in sentence 

size, considering all the words originally present and 

disregarding punctuation marks. There is no significant 

difference between abusive and clean comments (Table 

9). Since we did not have established the minimum 

amount of words in the comment. The minimum size of 

the labeled speech is 1 for both classes. 

Being aware of the number of words present in our 

text is important because we can measure the 

maximum size that the training vectors need to have. 

It avoids to lose information. 

Vocabulary Size 

Vocabulary size was got based on the total amount 

of unique unigrams existing for the entire base, for the 

clean comment set and for the abusive ones. We 

disregard hashtags, links, mentions, punctuation marks 

(including emojis) and retweet ("RT") tags. As result, we 

extracted 3,607 unique unigrans from all 1,024 labeled 

messages. The abusive discourses have vocabulary of 

size 2022 unigrams. Clean discourses, however, have a 

unique 2,342 unigrams, 13.66% more than the 

vocabulary of hate speech. 

Performance of Models Using Labeled 

Dataset 

In this section we will detail the method used to 

evaluate the dataset annotated through different 

scenarios. Each scenario consists of a combination of 

one of the datasets used for training or testing LSTM 

model addressed here using distinct forms of 

preprocessing. We will explain the reasons for the 

construction of each scenario, the performance of the 

models using the metrics adopted (discussed later) and 

analysis of the results obtained. 

Evaluation Metrics Adopted 

Considering that TP is the number of positive 

examples correctly classified, FP is a number of negative 

examples classified as positive and FN represents the 

number of positive examples classified as negative, the 

metrics proposed to evaluate the method presented is as 

follows Alpaydin (2014): 
 

 Precision - Defined as: 
 

TP
Precision

FP TP


  (8) 
 

Intuitively, precision measures the model’s ability to 

classify negative examples as negative. The higher 

the value, the greater the number of examples 

correctly classified as positive. 

 Recall - Defined as: 
 

TP
Recall

TP FN


  (9) 
 

In other words, Recall measures the efficiency of 

the model in "finding" all positive examples present 

in the dataset. 

 F-Measure: Consists of the harmonic mean 

between accuracy and recall. This measure is 

approximately the average of both when their values 

are close. 
 

2
Precision Recall

F Measure
Precision Recall


  

  (10) 
 

A model of high recall and low precision is able to 

classify many examples as positive, but few of them will 

actually be positive (FP). On the other hand, a model with 

low recall and high precision is able to classify few 

examples as positive, but in contrast there is a high 

probability that the positive labels are correct (TP). 

In an ideal classification system, high Precision and 

Recall result in most precise one. When both metrics are 

equally important the balance between them, i.e., F- 

Measure, is quite adequate. 

In this work, we adopt as positive the discourses 

classified as abusive and negative those classified as clean, 

that is, in which no discriminatory content was recognized. 
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We consider that in the real world, the higher the hit 
rate that a hate speech classifier has abusive content in 
comments, the better. For this reason, we understand 
that Precision is the ideal metric to evaluate models that 
intend to analyze hatespeech. 

Preprocessing 

In some PLN jobs, the preprocessing phase includes 
both the cleaning and tokenization steps as well as the 
data vectorization step when the task requires some 
machine learning activity. 

The cleanup step can include several subtasks, such as: 
removing unnecessary content such as stopwords, grammar 
correction, converting text to lowercase letters, removing 
noisy characters such as coding problems, etc. 

Radicalization can also be applied in the pre-processing 
step. Words are reduced to their morphological or inflected 
bases. This task has the effect of reducing the size of the 
textit dataset vocabulary. This is particularly important 
when we need to vectorially represent texts as input to 
machine learning algorithms. 

Tokenization corresponds to the identification and 
separation of the important parts of the input data known in 
PLN as tokens, which can be words, sentences, characters, 
or any information extracted from the text as the 
grammatical classes of words (POS Tag). 

The vectorization consists on the representation of 
the texts within a vector space. It is typically performed 
as the final step before enabling the use of data in 
machine learning algorithms. 

In this work, we consider the pre-processing as being 
the set of tasks performed in the preparation of the data 
for the vectorization process. 

The preprocessing we adopted was adapted from 
Badjatiya et al. (2017), which cleaned up texts by replacing 
specific tokens with expressions representing them. For 
example, URLs have been replaced by ’<url>’ mentions to 
users by ’<user>’, ’hashtags’ by ’<hashtag>’, numbers by 
’<number>’ and some emoticons by their meanings. 

These representations are interesting because they 
preserve the occurrence of contents that can be 
determinant in tasks of categorization of texts as the 
classification of hate speech. We set up the preprocessing 
to make substitutions according to the language of the 
dataset we were working on. Thus, in Portuguese 
language texts, mentions to users, for example, are 
replaced by ’<user>’, numbers by ’<numbers>’ etc. 

After this step, the texts are tokenized with the 
NLTK15 as stopwords of the language in question and 
the punctuation marks removed. 

Execution Environment 

All the experiments presented were executed in an 

architecture cluster CCET-UFS (2017) with 5 GPUs 

                                                           
15http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.casu

al.TweetTokenizer 

nodes, 22 CPU nodes and a master node for coordination 

of other. The configurations of nodes with and without 

GPUs are presented in the Table 10. 

With 5 GPUs nodes, 22 CPU nodes and a master 

node for coordination of other. 

In addition, the architecture proposed here was 

implemented in the Python 3.4 programming language, 

using Keras16 as a high-level prototyping tool for neural 

networks and TensorFlow running on backend 

configured to use GPUs and scikit-learn17 as an 

auxiliary tool to perform some machine learning tasks 

such as GBDT and cross-validation. 

LSTM Model 

The model addressed in this paper is adapted from 
Badjatiya et al. (2017). This is the state of the art work in 
terms of prediction, to the best of our knowledge it has 
the higher accuracy and F-measure in the area of hate 
speech classification and proved to be quite suitable for 
task involving tweets. Since our main dataset (as 
described in Section 5.5) of training is the one used by 
the above-mentioned authors, we prefer to adopt the 
same preprocessing method, however adapting it to 
consider the language of the text in question, since the 
database constructed in this work is in Portuguese. 

In Fig. 8, we illustrate the architecture of the LSMT 
model used. The training flow of the comments, from the 
input layer to its actual classification, follows the order 
of the steps described below: 
 

1. Pre-processing and vectorization: The data are 

preprocessed according to Section 5.2 and vectored 

according to the need of each scenario, but in all of 

them, the resulting vectors are created in order to 

respect the maximum size of all training data. Size 

is represented by the variable max_sentence_length. 

2. Input layer: Once vectored, the data is processed in 

batchs of size batch_size. The function of this layer 

is to create a representation of embeddings. The 

values of their dimensions are calculated through a 

uniform distribution and the quantity of them is 

controlled through the parameter embedding_dim. 

3. LSTM layer: The function of this layer is to learn a 

suitable representation for each comment, thus 

generating specific embeddings aimed at the 

domain of hate speech Badjatiya et al. (2017). 

These representations are then used to classify the 

model, as detailed below. The LSTM parameters 

can be checked in the Table 11. 
4. Densa layer: In deep models, it is common to add a 

fully connected layer for sorting the output data of 
the neural layer that precedes it. In our model, the 

                                                           
16https://keras.io/ 
17http://scikit-

learn.org/stable/supervised_learning.html#supervised-learning 
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dense layer consists of a Multi-Layer Perceptron, 
which is responsible for receiving the units dimension 
vector of the LSTM layer and determining its class. 
The classification error in this layer is then propagated 
to the previous layers and the updating of their 
parameters performed according to the optimization 
algorithm chosen. The output of this layer is given by a 
softmax function, responsible for calculating the 
probability for each class and thus predicting the class 
for the comments received. 

 
As we defined earlier, in our experiments we used 

LSTM and its combination with a GBDT. We saved the 
result of the classification using the neural network and 
the dense layer MLP (result identified with the word 
"LSTM" after the scenario number) and then, using the 
same trained model, extract the learned embeddings and 
submit them to GBDT, thus performing a new 
classification (result identified with the word "GBDT" 
after the scenario number). In other words, when we 
combine the LSTM model with the GBDT, we ignore 
the result of the neural network classification using the 
dense layer and perform a new training with the GBDT. 

Parameters Default Value 

The parameters’s default values are defined in the 
Table 11. 

The maximum size adopted for each vectorized 
sentence (input_length) has been defined in each 
scenario and calculated to respect the maximum size of 
the training and test comments. 

Multiple Datasets 

When we run experiments with supervised learning 
algorithms, we need to be careful about various 
aspects that influence their performance. One of them 
is the process of choosing test training data. During 
training, few data can cause underfitting, that is, the 
model will not have enough information and examples 
to generalize in prediction. 

In the opposite, overfitting occurs when the model 
becomes over-specializes in the input data, making it 
specialized to recognize only the already seen examples, 
but being weak when needs to deal with the examples 
that were not present in the training dataset. 

In order to execute the training and testing processes 
with the LSTM model discussed here, we used the datasets 
of Waseem and Hovy (2016) and Fortuna (2017) because 
they were the only ones publicly available and found. The 
Table 12 lists all the databases used in this paper. The 
"Name" column refers to the name used to reference the 
dataset in this work. The "Size" column displays quantity 
and comments present in each dataset, showing the quantity 
of positives and negatives. 

 
Table 10:  LCAD Cluster Nodes Settings 

Node without GPU Node with GPU 

20 Cores in 2 sockets Intel Xeon Ten-Core 20 Cores in 2 sockets Intel Xeon Ten-Core 
E5-2660v2 de 2.2-GHz, with 25MB of cache E5-2660v2 of 2.2-GHz, com 25MB of cache 
Cache, 8 GT/s Cache, 8 GT/s 
64-GB of memory DDR3 1866 MHz 64-GB of memory DDR3 1866 MHz 
1 disk of 160-GB SSD 1 disk de 160-GB SSD 
1 port Infiniband QDR 440 Gbps 1 port Infiniband QDR 440 Gbps 
 2 cards NVIDIA Tesla K20 
 
Table 11: Default configuration of LSTM model parameters 

Parameter Description Valor 

input_dim Maximum expected numeric value in input layer 10,000 
output_dim Word embedding size to be generated 200 
input_length Size of the input sentence vector Variable 
units Number of cells in the LSTM layer 100 
weights Input layer initialization weights [] 
dropout_rate1 Dropout rate of the input layer 0.25 
dropout_rate2 LSTM layer dropout rate 0.50 
optimizer Function optimizer and loss "rmsprop" 
loss_fun Error function "categorical_crossentropy" 
bach_size mini bach size 128  

 
Table 12: List of datasets used in this work 

Name Description Size 

discursos_votado Dataset built in this work 491 neg + 533 pos = 1024 
discursos_votados_en Dataset “discursos_votados” translated into English 491 neg + 533 pos = 1024 
NAACL_SRW_2016 Dataset de tweets created by Waseem and Hovy (2016) 1034 neg + 5047 pos = 16081* 
NAACL_SRW_2016_pt Dataset “NAACL_SRW_2016” translated to Portuguese  1034 neg + 5047 pos = 16081* 
NAACL_SRW_2016_cleaned_pt Dataset “NAACL_SRW_2016”  11034 neg + 5047 pos = 16081* 
 pre-processed and translated, in that order  
dataset_portugues Dataset in Portuguese created by Fortuna (2017) 1977 neg + 547 pos = 2524*  
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Fig. 8: LSTM model 

 

NAACL_SRW_2016 is a set of tweets labeled from 

one of three distinct classes: "sexism", "racism" and 

"none." We assume that the labels corresponding to 

"none" refer to comments that do not contain hate 

speech, that is, using the expression adopted in this 

work, are clean comments. Comments labeled "racism" 

or "sexism" are therefore considered abusive comments 

because they contain some kind of hatespeech. In this 

way, we convert the base originally created with 3 types 

of different classes to a base of binary labels. 

Originally, the NAACL_SRW_2016 has 16,914 

tweets labeled, of which 3,383 are sexist, 1,972 are 

racist and 11,559 are neither. However, as tweets can 

only be made available through their IDs according to 

Twitter’s privacy policy18, we were able to download 

only 16,131 of them. We then detected that 25 of them 

were duplicates and with divergent labels and removed 

                                                           
18https://developer.twitter.com/en/developer-terms/agreement-

and-policy 
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along with their duplicates, since redundant data can 

cause overfitting and divergent labels hampers the 

learning process of the model. 

The dataset NAACL_SRW_2016_pt corresponds to 

the base "NAACL_SRW_2016 translated" into the 

Portuguese language with the help of the Google 

Translate API. The use of Automatic Translation 

Systems (STA) like this is not new in the task of textual 

categorization. Da Silva et al. (2018) used this 

approach to train a character-based CNN model in a 

translated dataset of feelings analysis. The results were 

similar to the original ones, i.e. results from the original 

English language. 

The dataset dataset_portugues originally had 5,668 

tweets annotated in several types and subtypes of 

hatespeech. Only 2,524 of them were available for 

download. 

Training Methods 

The scenarios described here were submitted to the 

training methods described below, according to the need 

of each scenario: 

 

 Method 1 - Cross validation: When the dataset is 

trained on itself, i.e., there is no independent test set, 

the template is cross-validated with 10 folds and 

caculated metrics by averaging their values in each 

fold. Therefore, the models trained by this method 

can present F-Measure value outside the range 

defined by the accuracy and Recall presented, since 

it was not calculated directly from these, but the 

average of their history 

 Method 2 - When training and test data are 

predefined: The model is trained with the complete 

training base and tested with the test data 

 

In both methods, training occurs in mini batchs of 

size batch_size (Table 11). 

Experimental Scenarios 

We separate the experiments into scenarios so that 

their evolution becomes easier to understand. Each 

scenario corresponds to an attempt to improve the results 

of the previous scenario or a new approach to evaluate 

the performance of the preprocessing, vectorization or 

mixing of the datasets described in Section 12. 

Altogether, 24 scenarios have been defined. 

In Table 13, we summarize the experiments performed 

in scenarios 1 to 4. Initially, we tested the performance of 

the LSTM + GBDT model in the task of classifying the 

hate speech present in NAACL_SRW_2016, considering 

their original labels (racism, sexism, or none) and using 

Training Method 1, which is run within Scenario 1, 

presented in Table 14, along with Scenario 2, described 

below. We show both the model result using the LSTM 

classifier and the GBDT. Network performance is 

displayed in terms of the metrics described in Section 5.1 

and represents our baseline. 

Our goal in Scenarios 1 to 4 was to validate the 

research hypothesis on the LSTM performance as a 

cross-lingual model using only the translated dataset, 

without data originally in Portuguese. 

In Scenario 2, we trained the model with the 

NAACL_SRW_2016_pt dataset in order to validate its 

suitability for the task of predicting hate speech, also with 

ternary labels. The results are equivalent to the means of the 

values calculated along the cross validation, as previously 

explained. In parentheses, we show the standard deviations 

of the set of calculated metrics. 

The metric values for each fold were macro weighted 

according to the number of labels for each class, as is 

commonly done in multi-class categorization. 

Scenarios 3 and 4 (Table 14) consist of the same 

experiment executed in Scenarios 1 and 2, respectively. 

But this time, only binary labels are considered: we 

trained the model LSTM with the datasets 

NAACL_SRW_2016 and NAACL_SRW_2016_pt to 

classify the comments as abusive or clean. 

Once the good performance of the trained LSTM 

with NAACL_SRW_2016_pt has been verified, we 

perform experiments in Scenarios 5 to 11 using the same 

network trained in different ways and tested with our 

dataset. The Scenarios are summarized in the Table 15 

and their results listed in the Table 16. This time, we 

tried to validate the research hypothesis in a different 

way: considering data originally in Portuguese. 

In Scenarios 5 and 6, the LSTM model was trained 

with NAACL_SRW_2016_pt and tested with 

"speeches", according to Training Method 2. Only the 

words present in the training dataset were considered 

in Scenario 5. In other words, the vocabulary of the 

model was the vocabulary of NAACL_SRW_2016_en 

after preprocessing and tokenization discussed in 

Section 5.2. 

In Scenario 6, the vocabulary considered outside 

Glove100: only the words present in this model were 

added to the vector resulting from the vectorization 

process for each sentence. The hypothesis that 

justifies this approach is: using a vocabulary greater 

than Scenario 6, the smaller the number of words out 

of the vocabulary at the time of the vectorization and 

thus more information a cross-lingual model would 

have to generalize. 
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Table 13: Summary of the experiments performed in Scenarios 1 to 4 

Scenario Experiment 

1 LSTM trained with NAACL_SRW_2016 using their own vocabulary for classification ternary 

2 LSTM trained with NAACL_SRW_2016_pt using their own vocabulary for classification ternary 

3 LSTM trained with NAACL_SRW_2016 using their own vocabulary for classification binary 

4 LSTM trained with NAACL_SRW_2016_pt using their own vocabulary for classification binary 

 
Table 14: Results of Scenarios 1 to 4 

Scenario Precision Recall F-measure 

1 (LSTM) 0.818 (+/- 0.0095) 0.807 (+/- 0.0219) 0.807 (+/- 0.0176) 

1 (GBDT) 0.913 (+/- 0.0097) 0.913 (+/- 0.0096) 0.913 (+/- 0.0096) 

2 (LSTM) 0.813 (+/- 0.0065) 0.815 (+/- 0.0080) 0.812 (+/- 0.0070) 

2 (GBDT) 0.918 (+/-) 0.0063) 0.918 (+/-) 0.0061) 0.918 (+/- 0.0063) 

3 (LSTM) 0.739 (+/- 0.0457) 0.695 (+/- 0.0714) 0.712 (+/- 0.0178) 

3 (GBDT) 0.867 (+/- 0.0104) 0.843 (+/- 0.0161) 0.855 (+/- 0.0097) 

4 (LSTM) 0.732 (+/- 0.0159) 0.663 (+/- 0.0345) 0.695 (+/- 0.0173) 

4 (GBDT) 0.873 (+/- 0.0125) 0.847 (+/- 0.0157) 0.860 (+/- 0.0097) 

 
Table 15: Summary of experiments performed in Scenarios 5 to 11 

Scenario Experiment 

5 LSTM trained with NAACL_SRW_2016_pt, your own vocabulary and tested with discursos_votados 

6 LSTM trained with NAACL_SRW_2016_pt, GloVe vocabulary and tested with discursos_votados 

7 LSTM trained with NAACL_SRW_2016_cleaned_pt your own vocabulary and tested with discursos_votados 

8 LSTM trained with NAACL_SRW_2016_cleaned_pt, Glove vocabulary and tested with discursos_votados 

9 LSTM trained with NAACL_SRW_2016_cleaned_pt + dataset_portugues, with the resulting vocabulary and tested 

 with discursos_votados 

10 LSTM trained with NAACL_SRW_2016_cleaned_pt + dataset_portugues, vocabulary GloVe and tested with 

 discursos_votados 

11 LSTM trained with NAACL_SRW_2016, own vocabulary and tested with discursos_votados_en 

 
Table 16: Results of Scenarios 5 to 11 

Scenario Precision Recall F-measure 

5 (LSTM) 0.606 0.274 0.377 

5 (GBDT) 0.648 0.280 0.391 

6 (LSTM) 0.720 0.126 0.214 

6 (GBDT) 0.653 0.176 0.278 

7 (LSTM) 0.627 0.283 0.390 

7 (GBDT) 0.661 0.300 0.413 

8 (LSTM) 0.703 0.156 0.255 

8 (GBDT) 0.665 0.223 0.334 

9 (LSTM) 0.659 0.171 0.271 

9 (GBDT) 0.653 0.240 0.351 

10 (LSTM) 0.679 0.167 0.268 

10 (GBDT) 0.619 0.161 0.256 

11 (LSTM) 0.558 0.281 0.374 

11 (GBDT) 0.553 0.285 0.376 

 
Table 17: Summary of experiments performed in Scenarios 12 to 15 

Scenario Experiment 

12 LSTM trained with vectors TF-IDF of N-grams of characters of NAACL_SRW_2016_cleaned_pt and tested 

 with discursos_votados 

13 LSTM trained with a N-grams frequencies of characters of NAACL_SRW_2016_cleaned_pt and tested with 

 discursos_votados 

14 LSTM trained with the N-grams frequencies added to the index vetors of NAACL_SRW_2016_cleaned_pt

 and tested withdiscursos_votados 

15 LSTM trained with the N-grams frequencies concatenated to the index vectors of NAACL_SRW_2016 

 cleaned_pt and tested with discursos_votados 
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Since NAACL_SRW_2016 is composed of tweets 

which contains informal expressions like hastags, 

mentions to users, URLs, slangs etc., their translation 

(NAACL_SRW_2016_en) contains many unknown 

English words. 

For this reason, we created the 

NAACL_SRW_2016_clenaned_pt and use them in 

Scenario 7. This dataset consists of the preprocessed 

NAACL_SRW_2016 according to the method described 

in Section 5.2 and, then, translated. As discussed earlier, 

the preprocessing has the advantage of not deleting 

certain content from the text, transforming it into "well-

behaved" expressions. 

To be clear about the motivation behind creating 

NAACL_SRW_2016_clenaned_pt, note the comment 

below belonging to NAACL_SRW_2016 and labeled 

as sexist: 

 

Borrowed time #CuntAndArsehole cant wait 

for you to get_from_file blown away by the 

decent teams. #FirstElimination #BeatItDogs 

#MKR #KatAndAndre (sic) 

 

The "#" symbol will be deleted in the preprocessor 

and the English words that follow will remain. As 

they are known Portuguese words, at the time of the 

vectorization, they will be ignored and replaced by a 

special token representing a word unknown in the 

vocabulary. 

In the preprocessed phrase below, note the 

substitution of hashtags for the word "hashtag", which 

on the one hand causes its content (and possible 

semantic value) to be eliminated, but allows for 

inclusion of representative generic information: 

 

borrowed time hashtag cant wait for you to 

get_from_file blown away by the decent 

teams. hashtag hashtag hashtag hashtag 

 

This time, all words are recognized and represented 

by specific values at the time of vectorization, returning 

a more significant representation than their translated 

version without preprocessing and enriching the 

resulting vector with neighborhood information that 

these expressions represent. 

For example, in the calculated vocabulary index 

vector of the expression above, after the index of the 

word "descents", the index of the word "hashtag" will be 

added. In regards to the translated comment of the 

original English version, the hashtags maintained would 

be transformed into a special index that represents an 

unknown word, as we said previously. 

After this experiment, in Scenario 8, we evaluated the 

performance of the trained LSTM with 

NAACL_SRW_2016_clenaned_pt using the GloVe100 

vocabulary, thus increasing the training vocabulary in 

the same way as in Scenario 6. Then, we tried to join 

the previous dataset with the dataset_portugues and to 

train using the resulting vocabulary (Scenario 9) and 

the vocabulary GloVe100 (Scenario 10). 

Our goal was to introduce in the training set abusive 

and clean discourses, originally written in Portuguese, to 

mitigate possible negative effects that the 

NAACL_SRW_2016 machine translation may cause in 

the training process and, thus, improve model test 

performance by using our dataset, since the comments 

are in Portuguese. 

In Scenario 11, we tested the inverse of what we 

tested in Scenarios 5 to 10: we trained the LSTM with 

the NAACL_SRW_2016 and tested it with our dataset 

automatically translated to English. This time, the goal 

was to evaluate if the translations from Portuguese to 

English cause less noise than the translations from 

English to Portuguese, improving the performance of the 

trained model. 

Up to Scenario 11 we vectored the comments through 

their calculated vocabulary index vectors, converting 

these vectors into embeddings of hate speech used in 

each scenario. 

We also tried to vectorize the comments using two 

traditional techniques of vectorization in Machine 

Learning: N-grams frequency vectors and TFIDF 

vectors. Both are Bag-of-Words techniques that allow 

the calculation of the frequency of the top K N-grams 

that are present in each training and test example. The 

first represents the comments using the frequencies 

themselves, i.e., the occurrence counts or, depending on 

the case, the presence or absence of each sequence 

relevant to each comment. The second one constructs 

vectors in order to represent the importance of the N-

gram for each sentence in relation to all the others. 

In Scenarios 12 to 15 (summarized in Table 17), we 

vectored the comments using the TFIDF vector character 

counting methods discussed earlier. In all of them, we 

trained the LSTM model with the dataset 

NAACL_SRW_2016_cleaned_pt and tested it with 

discourses_voted. Their results are found in Table 18. 

In Scenario 12, we trained with TFIDF vectors using the 

dataset training vocabulary itself, while in Scenario 13 we 

used frequency vectors. Next, in Scenario 14, we tried to 

add to the vectors of vocabulary indexes to the frequency 

vectors of each comment. In Scenario 15, we concatenate 

these two vectors for each training and test example. The 

Table ref tab: summaryCenario12-15 summarizes the 

experiments performed for each of these scenarios. 
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Table 18: Scenarios result from 12 to 15 

Scenario Precision Recall F-measure 

12 (LSTM) 0.000 0.000 0.000 

12 (GBDT) 0.000 0.000 0.000 

13 (LSTM) 0.000 0.000 0.000 

13 (GBDT) 0.417 0.000 0.000 

14 (LSTM) 0.530 0.381 0.443 

14 (GBDT) 0.563 0.443 0.496 

15 (LSTM) 0.000 0.000 0.000 

15 (GBDT) 0.000 0.000 0.000 

 
Table 19: Summary of the experiments performed in Scenarios 16,17 and 18 

Scenario Experiment 

16 LSTM trained with NAACL_SRW_2016_cleaned_pt, your own vocabulary and tested with dataset_portugues 

17 LSTM trained with NAACL_SRW_2016_cleaned_pt, GloVe vocabulary and tested with dataset_portugues 

18 LSTM trained with dataset_portugues, your own vocabulary and tested with discursos_votados 

 
Table 20: Scenario results of 16, 17 and 18 

Scenario Precision Recall F-measure 

16 (LSTM) 0.275 0.402 0.326 

16 (GBDT) 0.274 0.349 0.307 

17 (LSTM) 0.284 0.325 0.303 

17 (GBDT) 0.279 0.369 0.318 

18 (LSTM) 0.586 0.146 0.234 

18 (GBDT) 0.596 0.191 0.290 

 
Table 21: Summary of experiments performed in Scenarios from 19 to 24 

Scenario Experiment 

19 LSTM trained with NAACL_SRW_2016_cleaned_pt lemmatized, GloVe vocabulary and tested with 

 dataset_portugues 

20 LSTM trained with o vetores de N-Grams concatenated with index vectors NAACL_SRW_2016_cleaned_pt 

 from lemmatized and tested with discursos_votados. 

21 LSTM trained with NAACL_SRW_2016_cleaned_pt lemmatized, your own vocabulary and tested with 

 dataset_portugues + discurso_votado lemmatized. 

22 LSTM trained with NAACL_SRW_2016_cleaned_pt lematizado, your own vocabulary and tested with 

 dataset_portugues + discurso_votado lemmatized. 

23 LSTM trained with NAACL_SRW_2016_cleaned_pt lemmatized, your own vocabulary and tested with 

 discursos_votados lemmatized. 

24 LSTM bidirectional trained with NAACL_SRW_2016_cleaned_pt, your own vocabulary and tested with  

 discursos_votados. 

 
Table 22: Scenarios result from 19 to 24 

Scenario Precision Recall F-measure 

19 (LSTM) 0.219 0.322 0.261 

19 (GBDT) 0.206 0.360 0.262 

20 (LSTM) 0.000 0.000 0.000 

20 (GBDT) 0.000 0.000 0.000 

21 (LSTM) 0.000 0.000 0.000 

21 (GBDT) 0.676 0.047 0.088 

22 (LSTM) 0.346 0.231 0.277 

22 (GBDT) 0.329 0.250 0.284 

23 (LSTM) 0.562 0.161 0.251 

23 (GBDT) 0.560 0.296 0.388 

24 (LSTM) 0.703 0.049 0.091 

24 (GBDT) 0.586 0.077 0.136 
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In Table 19, we describe the results of the dataset 

NAACL_SRW_2016_cleaned_pt used for LSTM 

training and tested with discursos_votados, without and 

with the vocabulary GloVe100, in Scenarios 16 and 17, 

respectively. We also trained the model with the 

dataset_portugues and we tested with discursos_votados 

(Scenario 18). The results can be checked in the Table 

20. In these scenarios, we validate our research 

hypothesis by training or testing the model with 

another dataset in Portuguese that was not ours. 

To simplify the vocabulary of the dataset 

NAACL_SRW_2016_cleaned_pt, we try to add the 

stemming step Martin and Jurafsky (2009) to its pre-

processing. By hypothesis, some of the previous 

results could be improved if the number of words in 

common between the training set and the test set 

increased. As lemmatization reduces words to their 

most basic lexicographical units, it is important to 

validate our hypothesis. The experiments were run in 

Scenarios 19 through 23 (Table 21) and their results 

are listed in Table 22. 

In scenario 24, we used a BiLSTM (respecting the 

same LSTM architecture discussed here) to evaluate 

how it behaved in training with the 

NAACL_SRW_2016_cleaned_pt and test 

discursos_votados as a cross-lingual model. 

Result Analysis 

Our goal with Scenarios 1 and 2 was to partially 

reproduce the experiment used in the State of the Art 

paper and validate the quality of the automatic 

translation of its dataset using the same LSTM model 

combined or not with the GBDT for ternary 

classification. The results using Scenario 1 are similar to 

the values reached by Badjatiya et al. (2017) when 

using the combined models: 0.913 in precision against 

0.93 of the article. Using the initialized LSTM with 

random weights, our results were subtly better than 

theirs: 0.818, 0.807 and 0.807 against 0.805, 0.804, 

0.804 accuracy, recall and F-measure, respectively. 

The little difference in the result is well justified 

because the dataset used in this work does not have the 

same number of examples of its original version, since 

some tweets were unavailable at the time of their 

download and duplicate examples were removed, as 

explained before. 

Scenario 2 used NAACL_SRW_2016_pt for the 

ternary sort task and achieved better results if 

compared to the same template trained in the original 

text in English: 0.918 versus 0.913 for the metrics 

adopted, considering only the result of the model 

combined with the decision tree. The result is promising 

because it validates the hypothesis that the use of the 

dataset translated for training the same model used with 

the English data guarantees comparable results. 

The fact that the model performs well in both 

datasets in the classification into 3 distinct classes does 

not guarantee that it will achieve similar or even 

reasonable hit rates in the two-class classification. For 

this reason, in Scenarios 3 and 4, we performed the 

same experiments of Scenarios 1 and 2 changing them 

only for binary classification. The best result was in 

terms of accuracy: 0.867 and 0.873 in Scenarios 3 and 

4, respectively. 

Their results are lower than their versions run with 

the 3 classes. We believe that the difference occurs 

because of the patterns of clean or abusive discourses 

that are best recognized when grouped into their original 

classes (sexist, racist, or none), thus preserving the 

specific features that define them. Despite the 

difference, the values are still good, especially because 

one of the datasets is the result of machine translation. 

It is worth mentioning that the use of GBDTs has 

drastically improved all the results of the LSTM network 

in the scenarios discussed above, demonstrating that its 

"boosting" technique is also effective in dealing with 

networks trained in datasets translated as in our case. 

The LSTM model and its combination with GBDT 

produced good results, which validates our research 

hypothesis: the same architecture achieved good results 

both for the original comments in English and for its 

translated version, characterizing as cross-lingual. The 

next step is to determine the validity of the hypothesis 

when the same model is evaluated with comments in 

Portuguese, as is the case of our dataset. 

After completing experiments with the main training 

datasets from Scenarios 5 to 11, we evaluated the 

performance of the same model validated in Scenarios 1 

and 2, testing it with our dataset. As we can see, we 

achieved expressive results in several scenarios in terms 

of Precision, within which the best of the results was that 

of Scenario 6, with 0.720 in this metric, thus validating 

our research hypothesis again of the cross-lingual 

character of the LSMT architecture. 

Another highlight was Scenario 8, whose vectoring 

process considered only the vocabulary words 

GloVe100, causing tokens not present in them to be 

discarded, but providing the advantage of being a much 

larger vocabulary and potentially containing more words 

present in the training and test data. 

Note that the results of Scenarios 6 and 8 are similar: 

0.720 and 0.703, respectively. In the case of Scenario 8, we 

used NAACL_SRW_2016_clenaned_pt in order to reduce 

the number of words out of the vocabulary at the time of the 

vectorization. This approach, however, did not produce 

significant differences to justify the use of the strategy, 

contrary to the hypothesis established previously. 

The use of the GBDT did not always result in an 

improvement in the performance of the LSTM, as we 

can see in Scenarios 6, 8, 9, 10 and 11 whose precision 
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values declined with the use of the Decision Tree. One 

of the hypotheses for this is that the database was not 

large enough so the GBDT could be able to improve 

and stabilize the LSTM classification 

Unlike precision, from which we obtained reasonable 

results, the coverage results in none of the Scenarios 

between 5 and 11 were good, all remaining below 0.5. 

The F-measure, since it is the harmonic mean between 

the precision and coverage values, was pushed to values 

also below 0.5, as a consequence of the coverage 

behavior in all scenarios. 

Looking at the coverage Equation (9), we note that 

the ratio of their low values is usually high False 

Negative (FN) rates. The higher the value, the higher the 

denominator and the lower the final value of the fraction. 

Scenario 6, we can easily identify this behavior through 

its confusion matrix (Fig. 9) calculated from the values 

predicted by the LSTM network (without GBDT). 

By convention, in the confusion matrix the lines 

represent true positive values (abusive comments) and 

true negatives (clean comments). Columns represent the 

values predicted by the network. Crossing rows and 

columns, we establish the relationships we need to 

calculate the metrics we use in this work. 466 comments 

were classified as clean when in fact they are abusive 

(False negatives). 

However, as we argued earlier, we consider accuracy 

to be the most important metric for hate speech detection 

models. In this sense, the precision values of Scenarios 

6 and 7 are indicative of the ability of the model to 

actually recognize abusive discourses. 

In Scenarios 12 through 15, we tried out some classic 

machine learning features associated with the LSTM. 

Our goal was to evaluate if sequences of occurrences of 

character N-Grams (Scenarios 13, 14 and 15) trained by 

a recurring network could cause the learning of the 

sequences of these occurrences, thus associating the 

BoW model with a model whose sequence order input 

is important. In Scenario 12, we initially tested the 

behavior of the network using TFIDF vectors. None of 

the scenarios presented satisfactory results, as we can 

observe in Table 18. 

We can conclude that vectors of occurrences of 

character sequences, alone, do not aggregate 

information enough to allow the kind of learning that 

LSMT requires. Note that in Scenario 14, there was 

some gain in information relative to others, however 

derisory. In it alone, we take into account the vectors 

of indexes of words, by their sum to the vectors of 

frequencies of N-Grams. Probably for this reason, the 

network was able to gain some learning using the 

portions of the input vector of the network that 

contained the vocabulary word indexes. 

In Scenarios 16 and 17, we tried to test the LSTM 

model with the dataset_portugues to evaluate its 

performance by using it as test data. The results were 

even lower in terms of accuracy, which was below 0.3. 

Even the LSTM trained as the dataset_portugues and 

tested with our dataset (Scenario 18) had unsatisfactory 

results, getting below 0.6. 

This result was expected, since the amount of training 

data is very small relative to the amount of parameters to be 

trained (even though it does not train the embeddings in the 

LSTM), which sum in this Scenario 80.602. When this type 

of problem occurs, we come across a curse of 

dimensionality Christopher (2016). 

In Scenarios 19 to 23, we evaluated the performance 

of the LSTM model using in some cases the 

lemmatization technique and in Scenario 24 we 

applied the dataset NAACL_SRW_2016_cleaned_pt in a 

BiLSTM model. The best results achieved in terms of 

accuracy were in Scenarios 21 and 24. In the first, we 

tested the network by joining our dataset lemmatized as 

dataset_portugues using the vocabulary of the training 

data itself and reached the precision of 0.676. In the 

second, the LSTM network reached 0.703. In this 

scenario, the application of the GBDT resulted in the 

worse performance of the network. In Scenario 21, the 

network went from precision 0.0 to 0.676 only with the 

use of the decision tree. 

In scenario 20, note that, again, the network failed to 

learn from the use of N-Grams sequences even with the 

typed input data, reinforcing the clue that this type of 

data representation is not suitable for recurrent models. 

The result of Scenario 24 suggests that the BiLSTM 

model also behaves as a cross-lingual model, confirming 

our research hypothesis once again, as well as the 

traditional LSTM. Its accuracy is comparable to our best 

Scenario (Scenario 6), although the use of the GBDT 

associated with it did not cause performance improvement. 

Scenarios 1 through 4 are promising: they demonstrate 

that the LSMT model addressed is robust in recognizing 

hate speech even in automatically translated textit datasets, 

confirming that it can be used both in Portuguese and in 

English, without any special configuration. 

However, performance in the following scenarios 

were not as good as those 4, with some models and 

preprocessing techniques notorious for achieving high 

accuracy but low coverage overall. A fact that confirms 

that the models are correctly classifying what in fact 

considers hate speech. 

The results also suggest that working on a 

commentary as is with multiple types of hate speech but 

treated as if they were all clean or abusive speeches can 

be challenging. The various patterns inherent in each 

type probably require more training and test data and 

preferably data with types or subtypes of speech 

compatible with each other. 
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Fig. 9: Scenario 6 confusion matrix using the LSTM result 

 

It is likely that if our database contained only sexist, 

racist, or clean discourses, some of the scenarios would 

achieve superior accuracy and coverage when trained 

with the NAACL_SRW_2016_pt database. 

In summary, we verified the following items after the 

experiments: 

 

 Homogeneous bases: Based on Scenarios 1, 2, 3 

and 4: Training and testing bases with the same 

types of speech tend to achieve better results 

 GBDTs are robust: Its boosting technique allows 

you to stabilize and improve rankings even in 

difficult scenarios such as those involving different 

language textures, most of the time 

 External vocabulary: The use of external 

vocabulary, despite the computational cost when it 

is very large, is decisive for vectorizing the input 

data, mainly in decreasing the amount of 

unrecognized words in the vectorization 

 Sequence vectors of words: In isolation, they do 

not represent good features for recurring models 

such as LSTM 

Conclusion 

In this work, various models for hate speech 

classification were analysed from collection of user 

comments. An english database was employed to explore 

different approaches of data preprocessing and vectoring. 

Several cross-lingual models were trained to detect 

hate speech as a general work objective. Due to the lack 

of labeled datasets in Portuguese language, we created a 

dataset from volunteers contributions. The experiments 

were divided into scenarios to evaluate the performance 

of model for each input data provided, especially for 

hate speech dataset. The precision achieved is 0.720 in 

hate speech assessment. 

The major contribution of this work is the proposal of 

techniques to automate and aid hate speech detection 

from content available in social media. To fight 

discriminating comments, State of Art approaches were 

used to demonstrate their low effectiveness in 

Portuguese language domain. 

In order to do this, we explored several forms of 

pre- processing and vectoring of the datasets used and 

those submitted to the LSTM model and its variant, 

BiLSMT. By the detection of which approaches 

represented by the 24 scenarios created were the most 

promising within the scope of our work, they serve as a 

reference for other researchers. 

In summary, our contributions were: (i) training of 

cross-lingual models through the use of an English 

database for automatic classification of hate speech in 

Portuguese, despite the lack of this language datasets (ii) 

determination of the most promising pre-processing and 

vectorization techniques using dataset in English, 

serving as a reference to researchers in area detection 

of hate speech interested in cross-lingual models. 
As future work, we consider the research of features 

of semantic nature as a bias for the classification of hate 

speech. Some articles found use semantic information to 

iteratively find more sentences similar to those already 

466 67 

465 26 

Class expected 

Clean 

Abusive 

Class predicted 

Abusive 

Clean 
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found based on words enriched by WordNet 

information, for example. 
In addition, since labelled hate speech corpus is 

extremely rare, working with unsupervised or semi-
supervised learning as in Xu et al. (2017) seems quite 
adequate for pre-identification of abusive comments. 
Another very promising area is the semantic frames 
Barreira et al. (2017). They are ideal for problems such 
as identifying hate speech, both for not requiring huge 
databases and for easily identifying new patterns of 
discrimination and offense, a feature that is appreciated 
since variation in language and hate speech varies 
constantly in the digital world. 
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