

 © 2019 Thiago D. Bispo, Hendrik T. Macedo, Flávio de O. Santos, Rafael P. da Silva, Leonardo N. Matos, Bruno, O.P.

Prado, Gilton J.F. da Silva and Adolfo Guimarães. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Long Short-Term Memory Model for Classification of

English-PtBR Cross-Lingual Hate Speech

1Thiago D. Bispo, 2Hendrik T. Macedo, 3Flávio de O. Santos, 2Rafael P. da Silva,
2Leonardo N. Matos, 2Bruno O.P. Prado, 2Gilton J.F. da Silva and 4Adolfo Guimarães

1Instituto Federal de Sergipe, Aracaju, Brazil
2Departamento de Computação, Universidade Federal de Sergipe, São Cristóvão, Brazil
3Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
4Departamento de Computação, Universidade Tiradentes, Brazil

Article history

Received: 28-08-2019

Revised: 24-09-2019

Accepted: 31-10-2019

Corresponding Authors

Thiago D. Bispo
Instituto Federal de Sergipe,

Aracaju, Brazil

Email: thiago.bispo@ifs.edu.br

Abstract: Automatic and accurate recognition of hate speech is a difficult
job. In addition to the inherent ambiguity of the natural language, deep
understanding of the linguistic structure is imperative. Usually, discriminatory
discourse does not make use of typical expressions and often abuse of sarcasm.
Good knowledge of world and assessment of context are thus highly
demanded. Several approaches have been proposed for automating hate speech
recognition task. Many of them consider a combination of strategies in order to
achieve better results: character-based or word-based N-grams, lexical features
such as the presence or absence of negative words, classes or expressions
indicative of insult, punctuation marks, repetition of letters, the presence of
emoji, etc. The solitary use of linguistic features such as POS tagging have
shown itself inefficient. The recent usage of neural networks to create a
distributed representation of the sentences within a hate speech corpus is a
promising path. Unfortunately, providing such a corpus is hard. Except for the
English language, hate speech corpora are rarely found. This work proposes a
cross-lingual approach to automatically recognize hate speech in Portuguese
language, leveraging the knowledge of English corpora. A deep Long Short-
Term Memory (LSTM) model has been trained and many different
experimentation scenarios were set to deal with embeddings, TFIDF, N-
grams, GloVe vocabulary and so on. At the end, a Gradient Boosting
Decision Tree (GBDT) was used to improve classification results. We
achieved accuracy of up to 70% in the better scenarios. Two important
contributions of this work are: (i) An effective approach to deal with the lack
of hate speech corpora in the desired language and (ii) a hate speech database
in Portuguese to contribute to research community.

Keywords: Hate Speech, Portuguese Language, Deep Learning, (Bi)

LSTM, GBDT

Introduction

Internet is increasingly seeing as the main source

of information and communication channel leader in

the world. Although its undoubted relevance to world

progress, it is also responsible for the spread of cyber

hate as an extension of hatred and intolerance of

human beings. Facebook and Twitter are recently

taking action to combat such spread1,2. Other

initiatives also exist. Nobata et al. (2016), for

1https://blog.twitter.com/official/en_us/topics/company/2017/sa

fetycalendar.html
22https://newsroom.fb.com/news/2017/06/ hard-questions-hate-

speech/

instance, provided a model which has been adopted by

Yahoo! as a mechanism for detecting abusive

comments. Although the number of works and

approaches that deal with the problem of classifying

hate speech in English is well-known (Schmidt and

Wiegand, 2017), most do not make their publicly

labeled data available. For Portuguese language, the

scenario is even worse: until recently, only the work

of Fortuna (2017) seems to effectively contribute.

Since Natural Language Processing activities are

highly dependent of the language of corpora, focusing on

the creation of databases from scratch and detection of

abusive speech in Portuguese is central. Moreover,

Economic reports has shown a huge growth in the

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1547

amount of people who use Portuguese on the Internet

and concerned number of victims of such abuse3.

Detecting hate speech is still a challenge for two main

reasons. Firstly, it requires an advanced level of

understanding of the structure and semantics of

comments, involving detection of user intent and the

presence of irony/sarcasm, factors that encompass,

among other things, world knowledge. That is, it

involves the computer representing common concepts

that objectively explain and delimit real-world elements.

Second, the language and artifices used to express or

mask comments such as hate speech are not static,

varying considerably even between regions of the same

country, such as slang and language vices.

The study of cross-lingual models stands out in such

scenario for being able to leverage the use of well

established corpora, available in other languages,

minimizing the need to perform the costly task of

database creation and labeling. Da Silva et al. (2018)

has shown that this approach is a promising path towards

the solution to the problem.

A research hypothesis we raise is that LSTM models

can be trained as cross-lingual models from automatically

translated datasets and produce good test results from

Portuguese datasets. This can lead to a minimization of the

impact on the task of detecting hate speech.

The main goal of this work is to train a cross-lingual

LSTM model of hate speech classification in Portuguese

using a training set written in English. Specific goals are:

1. Construct and label a hate speech dataset in

Portuguese and make it publicly available to the

concerned scientific community

2. Validate the trained template with the dataset created

in this work

3. Define promising preprocessing and vectoring

techniques within the context of hate speech

detection with a cross-lingual LSTM model using

dataset in English as a training basis

At first, due to the scarcity of datasets in the target

language (Fortuna, 2017), we focused on the creation of

a dataset of speeches and labeled them with the help of

volunteers at Internet. Next, we’ve used an Automatic

Translation System (STA) to translate the dataset

(Waseem and Hovy, 2016), containing more than 16,000

tweets labeled as sexist, racist or neither. Then, using

the Long Short-Term Memory (LSTM) model

(Goodfellow et al., 2016) and based on the work of

Badjatiya et al. (2017), we have tried different

approaches organized in 24 scenarios that demonstrated

33https://epoca.globo.com/tecnologia/experienciasdigitais/notic

ia/2017/02/ha-um-aumento-sistematico-de-discursode-odio-na-

rede-diz-diretor-do-safernet.html

the performance of the model when configured and trained

with distinct datasets for binary classification: presence or

absence of hate speech. Finally, we investigate the model’s

cross-lingual ability in the task of detecting hate speech

using, in some of the created scenarios, the dataset

constructed as a basis for validation.

Two important contributions of this work are: (i)

proposal of an alternative research approach to attack

the problem based on the translation of corpora and

(ii) provision of a dataset of hate speech in Portuguese

to the community.

The rest of the paper is organized as follows. Section

2 presents the main concepts and techniques related to

the experiments in this work. In section 3, we delve

deeper into the definition and concepts related to hate

speech. We also do a survey of works related to the

detection of hate speech. Section 4 describes step-by-

step the construction of the created dataset. In section 5,

we describe the experiments used to evaluate the model

and discuss the results. Section 7 concludes the work.

Theoretical Background

In this section we introduce some building blocks of

our approach: Recurrent Neural Networks, including the

LSTM model, the Word Embeddings concept and the

Gradient Boosting Decision Tree.

Recurrent Neural Networks

Recurrent Neural Networks (RNN) are types of

neural networks focused on the recognition of

information chains, sequential data (Goodfellow et al.,

2016). Sequences are represented as a set of inputs x(1),

..., x(), in which the input x(t) is the vector in time/step t,

with t ranging from 1 to τ. RNNs share weight matrices

over several steps in input chain processing, allowing

them to learn patterns that arise at different positions in

the sequences. This was one of the advances in

traditional feedforward neural networks, where weights

for each feature of the entry at index t are not shared

among each other, requiring that possible positions of

the desired patterns in entry chains were identified, a

task that is impractical.

Figure 1 illustrates the general representation of a

RNN. For a sequence of size τ, each time entry t is

mapped to the input t +1 by a f function which operates

on the st state. Operation Unfold is simply the

dismemberment of the RNN in its recurrent form (left

side of Figure) to its complete form (right side of

Figure). The input of the state s in time t is weighted by

the matrix of weights U; its output is multiplied by the

matrix V to generate the output o. The state value st is

used as input for the state st +1 and weighted by the

matrix W. States st are treated as the network memory

since it retains information of previous occurrences.

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1548

Fig. 1: General representation of an RNN

For the Vanilla RNN, one of the simplest RNN

models, the values of st and o are computed as:

1

max

t t t

t t

t t

s f Ux Ws

o Vs

y soft o

 (1)

Function "f" is often nonlinear, such as the hyperbolic

tangent (tanh) or ReLu. Arrays U, W and X are shared

among all states. Not all models require the output to be

generated for each state, but for the final state.

Gradient descent calculation in feedforward is

modified to take into account RNNs’ parameter sharing

and is known as BackPropagation Through Time

(BPTT). Let the cross-entropy error function defined by

the Equation (2):

ˆ ˆ(,) ()t t t t tE y y y log y (2)

ˆ ˆ(,) (,)t t t t

t

E y y E y y (3)

ˆ()t t

t

y log y (4)

In which yt represents the correct value of the feature in

time t and ˆ
ty is the value predicted by the network

according to the Equation (1). Total error is the summation

over all errors in each state st. Once the matrix V is one of

the model parameters, the error in function of V is

calculated as the sum of the partial derivatives of Et with

respect to V, according to Equation (5):

t

t

E E

V V

 (5)

In the above formula, the error function depends only

on the values of yt, ˆ
ty and st, making the results of

tE

V

calculable from a single matrix multiplication, as we

can observe in the Equation (6):

ˆ

ˆ

ˆ
,

ˆ

t t

t

t t
t t

t t

E V y

V y V

V y z
z Vs

y z V

 (6)

On the other hand, the error in function of W and U,

since both depend on st (which in turn depends on st −1),

involves the application of the chain rule, since we

cannot consider st as a constant. For this reason, tE

W

is

calculated as follows:

0

ˆ

ˆ

t
t t t t k

k t t k

E E y s s

W y s s W

 (7)

Otherwise, the gradient for calculating the error E in

time t is propagated recursively to the time t = 0, resulting
in the so-called Vanishing Gradient Problem - VGP,
which consists in the degradation of gradient values to
zero in a few steps as a consequence of the successive
matrix multiplications. Since the gradient on each
recurring unit tends to zero, it will boost the gradient of
the previous cells to zero as well; and the higher the τ
value in the input string is, the greater the network’s
chances of suffering from this problem.

There are several proposals to avoid the VGP. By far,
the most prominent and widely used is the LSTM model
(Hochreiter and Schmidhuber, 1997). One of its main
characteristics is the inclusion of special units known as
gates. These units calculate the weights that connect
them in order to avoid degradation of the gradient
through manually-chosen or parameterized values
(Goodfellow et al., 2016).

o

V

W

s

U

x

W

V

ot

st-1

V

ot-1 ot+1

st+1 st

W

U

xt xt-1

U

W

U

W
Unfold

V

xt+1

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1549

Like all gated RNNs, LSTMs have the ability to both

remember and forget about the previous state when that

information is no longer needed. At the time of training,

the network has the ability to learn exactly what to forget,

mechanism that is executed through the parameters of

forget gate. The values of previous state, the current

memory and the input are, thus, combined to form the

output of the unit (or cell). This is a mechanism that

proved quite efficient in learning long dependencies

among the terms of a sequence. An LSTM cell is

composed of three gates that control different behaviors:

input gate, forget gate and output gate (Fig. 2).

The forget gate (Fig. 3) controls the input of cell Ct in

order to determine which of the index values of the

output vector of the previous cell Ct−1 will be maintained,

through its σ function, which returns values in the range

of 0 to 1. Wf and bf are the weights and bias values for

the gateway, respectively. The LSTM cell can also

calculate what input information will be stored/updated.

As can be seen in Fig. 4, this task is divided in two

steps: (1) function decides which of the information of

Ct−1 will update (in the forget gate this step is

responsible for determining what information will be

forgotten) and (2) a new candidate input value ()tC is

calculated by the tanh function to be further multiplied

to the vector resulting from the first step. Note that

operations i and C have their own parameters, which

can also be learned by the network during training.

After these operations, there is enough information

to update the cell state Ct = ft ∗ Ct1 + it∗ rC . Two

further steps are needed to properly provide the output

ht. At first, the σ function determines what "portions"

of the vector/state Ct should be part of the output

(value ot of Fig. 5). Next, the Ct state is submitted to a

hyperbolic function (tanh) and multiplied by the result

of the previous operation.

Word Embeddings

LSTMs (actually, any RNN) can be applied to any

problem that requires the recognition of string sequences

such as Machine Translation (Liu et al., 2014),

Sentiment Analysis (Singhal and Bhattacharyya, 2016)

and Hate Speech (Badjatiya et al., 2017). In fact, any

problem involving dealing with sequences can

benefit with RNNs, as Human Action Recognition

(Jaouedi et al., 2019) and Speech Emotion Recognition

(Praseetha and Vadivel, 2018). The first one is based on

video processing (image sequence) and the second one

treat speech (sequence of sounds).

In NLP problems, we need to provide good

representation of the sentences as input to the LSTM

network. The simplest representation is the one-hot

coding. However, enriched representations are required

when dealing with domains that highly suffers from

ambiguity and context dependence, which is the case of

Hate Speech identification.

The so-called word embeddings is currently the best

shot the research community have to deal with such

challenges. They consist of vector representations capable

of capturing the relationship semantics between two words

without losing the ability to encode them in different ways

(Goodfellow et al., 2016). In the space of embeddings,

words that often appear in similar contexts are close to each

other, constructing a neighborhood of similar words.

Different algorithms were developed for the

purpose of generating embeddings. They can be

divided into two families of methods (Hartmann et al.,

2017). The first are those methods that work with the

co-occurrence matrix of words, such as GloVe

(Pennington et al., 2014). The other family are those

that work with predictive models (based on the word’s

neighborhood), such as Word2Vec (Mikolov et al.,

2013). Hartmann et al. (2017) summarize some of the

major embeddings generation models:

 The Global Vectors (GloVe) - A non-supervised

learning algorithm that computes the vectors by

analyzing the M matrix of word co-occurrence

constructed through the contextual information of

the words of the corpus

 Word2vec - It has two different training strategies: (i)

Continuous Bag-of-Words (CBOW), in which the

model attempts to predict the deleted middle word

within a word sequence and (ii) Skip-Gram, in which

the model predicts the vicinity of one of the word

 Wang2Vec: Modification of Word2vec whose

purpose is to take into account the sequence order

of words in the sentence

 FastText: In this architecture, embeddings are

associated with character N-grams with the words

coded as the combination of these representations.

As a consequence, this method attempts to

capture morphological information to construct its

word embeddings

The Word Embeddings Repository of the Inter-

Institutional Nucleus of Computational Linguistics
(NILC)4 contains several publicly available word vectors
for free download. They were generated by means of a
corpus in Brazilian Portuguese and European Portuguese,
using all the models mentioned above and for different
dimensions. In this work, for the generation of
embeddings using corpora in Portuguese, we adopted the
NILC vectors constructed through the 100-dimensional
GloVe model, hereafter referred to as GloVe100.

4http://www.nilc.icmc.usp.br/embeddings

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1550

Fig. 2: Structure of an LSTM cell; Source: Christopher Olah blog

Fig. 3: LSTM: Forget gate; Source: Christopher Olah blog

Fig. 4: LSTM: Input gate; Source: Christopher Olah blog

Fig. 5: LSTM: Output Gate

A A

ht-1 ht ht+1

xt-1 xt xt+1

+
tanh

 tanh

xt

ht-1

ft

 1,t f t t ff W h x b

1

1

,

tanh ,

t i t t i

t C t t C

i W h x b

C W h x b

xt

ht-1

it

 tanh
tC

1,

tanh

t o t t o

t t t

o W h x b

h o C

xt

ht-1

tanh

x ot

ht

ht

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1551

Gradient Boosting Decision Tree (GBDT)

Tree-based sorting or regression methods divide the

feature space into recursively sub-areas in which each step

selects the most representative characteristic of the input

data in the training process (Marsland, 2014). They are

called "decision trees" because each sub-area within the

feature space is represented by a root node (which

contains its most relevant feature) and its leaf nodes, each

containing the next relevant characteristics resulting

induction process on the tree. One of the most critical

decisions in the construction and partitioning of decision

trees is the choice of which feature best represents the data

on the node being partitioned. One of the most common

ways to evaluate the quality of partitioning is to use the

concepts of Cross-Entropy and Information Gain.

Popular error functions used for GBDT training are

AdaBoost and logistic regression (Friedman, 2002).

The latter consists of the cross-entropy function adapted

for essemble models. AdaBoost in turn proposes the

creation of weights to be applied to each weak learners.

Its effect is to allow greater influence to the classifiers

with greater accuracy, weakening the relevance of the

outputs of those that contribute to decrease the overall

performance of the model. Once the global error is

calculated, it is propagated to each classifier by adjusting

its respective weights.

According to Sutton (2005), "boosting" technique

usually benefits classifiers whose method of classification is

unstable, drastically reducing the error rate resulting from

the classification method: unstable classifiers have a high

variance and the boosting decreases its value without

increasing the bias. In addition, there is strong evidence that

GBDTs are resistant against over-fitting, possibly due to

their ability in producing reasonably strong and

uncorrelated classifiers.

Detection of hate Speech in Texts

Definition of hate speech is often misinterpreted. To

assure detection accuracy, such misinterpretation must

be solved. Table 1 presents some currently used

definitions for hate speech and their respective sources.

We are concerned with the searching for definitions

from both the Internet and authors who have studied

hate speech in other ways such as Moura (2016). Both

emphasize that any kind of comment that has or is

capable of instigating discrimination against a certain

group of people should be considered hatespeech. Note

that this definition is more comprehensive than that of

Facebook (Table 1), which allows the use of humorous

and offensive content, making the border of what

would be reprehensible more difficult to establish. We

believe that this definition is permissive and

encourages the dissemination of subtle comments and

implicit violence that are equally damaging to victims,

as usually the jokes that reinforce stereotypes (such as

blondes, gay, fat and certain physical aspects) are.

Repetition of jokes of this kind, even without

discriminatory intent, shapes the relationship between

the group of those who utter them and the target group

of victims. In other words, repeating jokes is a way of

reinforcing bad attitudes or thoughts. In the scope of

this work, thus, we adopt the definition provided by

Fortuna (2017), as it includes delicate situations,

including humorous situations in general, like jokes.

There are a plenty of concepts related to hate speech:

hate, cyberbullying, abusive language, discrimination,

profanity, toxicity and so on, that are often improperly

used. In Table 2, we briefly reproduce proper distinctions

made by Fortuna (2017).

Decision trees can be combined to improve its

individual predictive power. This method is known as

Tree Essemble and there are several models based on it.

One of the best known is Random Forest (Breiman,

2001). In this work we use another model called

Gradient Boosting Decision Tree (GBDT) (Friedman,

2002). Like Random Forest (RF), GBDT uses the

partitioning of the prediction process through the

essemble for the tasks of classification or linear

regression. However, while RF generates several trees in

parallel and applies majority voting to provide finall

prediction, in GBDT, decision trees are sequentially

constructed and each of them is focused in correcting the

mistakes of the previous one; the trees created in such

process are weak learners with a training technique

known as boosting (Friedman et al., 2001).

As we can see from the definitions provided, abusive

language does not necessarily contain the kind of

discrimination that characterizes a discourse of hate

speech. However, within the scope of this paper, for the

sake of simplicity, we adopt the definition that a

comment is abusive if it contains some kind of hate

speech and otherwise clean.

Table 3 displays the main types of hatespeech and

some example of its main targets.

Additionally, Cavalcante Segundo (2016) talks

about a type of discourse that contains political

intolerance and how much it is present in the world. In

this scenario, the hate speech is usually manifested in

comments with explicit intent or not to downgrade or

offend the opponent. In Brazil, political intolerance is

evident in the "petistas" (person who is a member or

sympathizer of the PT political party) and

"antipetitas" (on the contrary).

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1552

Table 1: Examples of definitions of hate speech

Source Definition

Facebook5 "Contents that attack people based on their race, ethnicity, nationality, religion, gender, gender or

 gender identity, sexual orientation, disability or illness, whether actual or presumed, are not allowed.

 However, we allow clear attempts at jokes or satire that do not have the character of threats or attacks.

 This includes content that many people may find distasteful (e.g., jokes, stand-up comedy, certain

 lyrics of popular songs, etc.)."

Twitter6" Hateful conduct: You may not promote violence against or directly attack or threaten other people on

 the basis of race, ethnicity, national origin, sexual orientation, gender, gender identity, religious

 affiliation, age, disability, or serious disease. We also do not allow accounts whose primary purpose is

 inciting harm towards others on the basis of these categories."

(Moura, 2016) "The speech of hatred refers to words that tend to insult, intimidate or harass people because of their

 race, color, ethnicity, nationality, sex or religion, or who have the ability to instigate violence, hate or

 discrimination against such persons."

(Cavalcante Segundo, "Hate speech is one that aims to disseminate and promote hate on the basis of race, religion,

2016) ethnicity or nationality [...], even though it is not limited to such vectors and can also be example,

 according to gender, sexual orientation, etc."

(Fortuna, 2017) "Hate speech is language that attacks or diminishes, that incites violence or hate against groups, based

 on specific characteristics such as physical appearance, religion, descent, national or ethnic origin,

 sexual orientation, gender identity or other and it can occur with different linguistic styles, even in

 subtle forms or when humour is used."

Table 2: Hate speech and related concepts

Concept Definition Difference to hate speech

Hate Expression of hostility without any stated Hate speeches contain hatred directed against

 justification. specific groups.

Cyberbullying Name given to aggression and offenses Hate speech is more general and not necessarily

 practiced electronically among children and aimed at a specific person.

 adolescents repeatedly and over time with the

 intention of humiliating and undermining the other.

Discrimination Process through which a difference is identified Hate speech is a form of discrimination that

 is identified and used as the basis for unfair manifests verbally or in writing.

 treatment.

Abusive language Refers to harmful languages and includes Hate speeches are a form of abusive language.

 discourses of hatred, profanity and derogatory

 messages. Hate speeches may use profane language, but

Profanity Offensive or obscene language. not necessarily.

Toxic language Rude, disrespectful and irrational comments Not all toxic comments contain hate speech.

 aimed at causing the person to quit.

Source: Adapted of Fortuna (2017)

Table 3: Types of hate speech and their targets

Category Hate Targets

Race people with light skin, afro-descendants

Behavior insecure people, sensitive people

Physical appearance obese people, beautiful people

Sexual orientation gay, straight

Social class poor people, marginalized people, rich people

Genre pregnant, feminist

Xenophobia Chinese, Indian, Northeastern

Deficiency bipolar, autistic, people with specific needs

Religion religious people, islamic

Other drunks, people with little education

Source: Adapted of Silva et al. (2016)

Why is Automatic Detection of Hate Speech a

Difficult Task?

Identifying hate speech in comments is difficult for

different reasons. The language used in the text, for

example, can be very noisy and contain misspellings,

expressions or informal linguistic constructions. In

addition, discrimination can occur veiled, requiring

knowledge of user intent and context analysis to infer the

existence of some hate speech.

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1553

For example, the comment "essi accent and very

funny" (sic), posted on Facebook, was made in response

to Northeastern rap singers, who were shriveled by their

peers from other regions. Without this context, it is

difficult for both the computer and a human judge to

discern whether or not a comment contains abusive

content. In the possession of this information, it is clear

that the intention of the comment is to ridicule the singer

specifically for the Northeastern accent, using it as a

criterion for discrimination. The posting, therefore, is

xenophobic. The commentary "rubbish accent,

northeastern junk, has only sugarcane there kk" (sic)

(made in the same context as the previous paragraph), on

the other hand, contains explicit discrimination, making it

easier to classify it as abusive and, specifically,

xenophobic, since it attacks all north-easterners, even

using stereotypes (the fact that the term "rapadura" is very

common in the northeast) for this purpose.

Recently, in 2018, some racist declarations have

gained prominence in the media, among which we

highlight the following phrase: "always wanted to play a

black hair" (sic). We identify in it a subtle

discrimination, which is not determined by the presence

of the word "negro", but by the way the author speaks of

the Negro, putting him as someone differentiated,

precisely by the color of his skin and the type of his hair,

discriminating against him and thus practicing racism.

This comment illustrates another situation in which it is

difficult to classify hate speech by considering only the

words of the sentence, without acknowledging the

user’s intention or the implicit meaning of his words.

In the work of Nobata et al. (2016), the authors list what

they consider to be the basis for automatic classification of

hate speech, which we summarize below:

 Do not search for keywords only: Use of regular

expressions in the recognition of hate speech may

result in false positives, since comments with

typical discriminating expressions are not always

discriminatory. In addition, the list of keywords

based on blacklists often varies over time and can

be overshadowed in different ways by users,

making their use insufficient for sorting tasks

 Abusive comments can be well constructed: Not

all hateful comments are written in informal words.

Some may be very fluent and grammatically clean.

Therefore, considering the presence of noise as

grammatical errors is not sufficient for the

automatic detection of hate speech

 Hate speeches can cross sentences: We often need

to consider more than one sentence to determine

whether a comment is abusive or not.

Discriminatory ideas may be manifested in different

sentences and world knowledge is often required to

properly characterize them

 Irony/Sarcasm: It is not difficult for users to

grasp ironic phrases to discriminate their targets,

making recognition of their meaning even more

difficult for humans

Related Works

In Nobata et al. (2016), the authors used three

different datasets to analyze the impact of the model

developed for identifying abusive content messages

(which include hate speech). The first is the "Primary

Data Set" which consists of comments provided and

moderated by Yahoo! Finance and News in the period of

October 2012 to January 2014. The second, called

"Temporal Data Set", is used to analyze the influence

of language change on the classification of comments as

abusive or clean; the dataset was also provided by

Yahoo! Finance and News and collected between April

2014 to April 2015. Finally, the third dataset, named

"WWW2015 Data Set", was created by Djuric et al.

(2015) and used by Nobata et al. (2016) for the purpose

of comparison to the state-of-the-art in the field at the time

of work completion. Authors trained a model using the

machine learning program called Vowpal Wabbit with 4

different types of features: Linguistic, Syntactic and

Semantic. Semantic features include pre-trained word

embedding templates and an embedding template created

with word2vec through a text corpus of Finance and News.

The work outperformed the state-of-the-art at 10 AUC

(0.9055 versus 0.8007). One of the most important

contributions of this work was to prove that character-based

n-grams are robust against datasets with a lot of noise, as is

the case with those coming from social networks.

Badjatiya et al. (2017) performed several

experiments using distinct deep learning architectures to

classify the tweets collected and classified in the work

of Waseem and Hovy (2016), used as benchmark: in all

of them, there were more 16k tweets labeled as racist,

sexist, or neither. The work explored deep techniques

and used various aproache combinations like

embeddings trained with LSTM, character N-Grams,

TF-IDF, Bag of Words Vectors (BoWV) and (GloVe).

They used both a CNN architecture and an LSTM, since

their individual characteristics could make a difference

in speech detection. In fact, the combination of an

LSTM network, randomly generated embeddings plus a

Gradient Boosted Decision Trees (GBDT) proved to be

the best method, surpassing the State-of-the-Art in

classifying hate speech with a F-Measure of 0.93. The

embeddings were trained by LSTM and then submitted

to GBDT. The LSTM architecture of Badjatiya et al.

(2017) is represented in Fig. 8. It is worth mentioning

that our work leverages this architecture (see Section 6).

Surprisingly, the randomly generated template

performed better than the one initialized with GloVe, a

fact that may indicate that the inherent power of LSTMs

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1554

to capture long series of word dependencies in tweets

is maximized when the vector representation of the input

data is randomly initialized. Another hypothesis is that

GloVe does not have enough semantic representation

power to improve the performance of a hate speech

classification model as expected. A further hypothesis,

which is most likely, is that the method of combining the

embeddings of words to represent the embedding of

texting tweets by word2vec is not robust enough. A

paragraph embedding approach is probably more

appropriate (Schmidt and Wiegand, 2017).

Schmidt and Wiegand (2017) studied a wide range of

works on hate speech detection with natural language

processing, highlighting the relevance of using features in

various models discussed so far. Some of the most

relevant features suggested by the authors were: character-

based N-Grams, use of paragraph embeddings, comment

analysis, lexical features such as presence of negative

words, linguistic resources such as the class of words

(POST-tag) and knowledge bases with expert knowledge

of writing patterns in hate speech, to cite some.

Park and Fung (2017) used word-based convolutional

(CNN) neural networks (represented as embedgings by

means of word2vec), characters (converted to the one-hot

coding) and a hybrid approach (words + characters) for the

detection of abusive language. The dataset used was that of

Waseem and Hovy (2016). Firstly, classification of the

speeches as abusive or not was provided and, then, this

information was used to classify its subtype (racist or

sexist). Best result was obtained by the combination of

Hybrid CNN with the logistic regression algorithm,

achieving 0.828, 0.831 and 0.824 for accuracy, coverage

and F-measure, respectively.

Gao and Huang (2017) demonstrated the importance of

using the context of comments to be sorted. With a

handcrafted dataset, they combined the logistic regression

model with an LSMT architecture and extracted character-

based N-Grams using semantic and lexical information for

each word of the vocabulary. The best results in terms of

accuracy, precision, coverage, Measurement-F, AUC were,

respectively: 0.779, 0.650, 0.678, 0.600, 0.804.

The work of Fortuna (2017) is almost the only one

dealing with corpora in Portuguese. The author has carried

out an extensive study on several definitions that seek to

delimit what are hate speech and related concepts, such as

cyberbyllying. A manually typed dataset of tweets was

constructed, totaling 5,668 messages of which 22% were

declared as one of the 85 types and subtypes of hate speech

considered in the paper. For the labeling task, the

hierarchical classification approach was used: a technique

that decomposes the classification task into a set of smaller

problems, which can be efficiently solved and combined to

classify documents composed of those (Hao et al., 2007).

Fortuna (2017) also conducted experiments with binary

classification (named as "unimodel") of speeches and multi-

class classification (named "multimodel"). In terms of

precision, the best unimodel and multimodel algorithm was

Rpart (Kuhn, 2008) with 0.778 and 0.883, respectively. The

best coverage value was achieved with the SVM Linear for

both models, with 0.720 and 0.765, respectively.

Table 4 summarizes main works cited so far together

with the achieved results, features and algorithms used.

PtBR Initiative

Despite the already mentioned shortage of scientific

work to deal with the detection of hate speech in Portuguese

languages, there are important initiatives that could help.

One of them is the blog "Comunica que Muda" (CQM),

which built a dossier called "Dossiê da Intolerância" (in

English, Intolerance Dossier)5,6 in regards to the digital

world in Brazil. The dossier catalogs the most obvious types

and the most common expressions and phrases used in

social networks in Brazil. Ten different types of intolerance

were monitored for three months - from April to June 2016.

The types of hatred highlighted were those regarding the

appearance of people, their social classes, the numerous

disabilities, homophobia, misogyny, politics,

age/generation, racism, religion, appearance and

xenophobia. Whenever a word or phrase referring to one of

these subjects was identified in a Facebook post, Twitter

post, Instagram, some blog or comment on websites, it was

collected and analyzed by the project team. In total, 542,781

mentions were analyzed. The method of classifying CQM

comments was therefore based on blacklists. This is a

known fragility from both capture and selection methods

because many hate speech does not necessarily contain

expressions present in such lists. Moreover, intolerant

comments can be structured into several sentences in order

to take into account previous sentences to determine

whether the other is abusive (Nobata et al., 2016). So, it is

very likely that the filter used in the project has left out a

representative amount of abusive comments. The Table 5

displays some expressions/mentions used by the CQM blog

to capture the desired content.

Expressions of Table 5 and details of the capture

method were provided promptly via email contact by the

project organizers. The list of classified comments,

however, has not been released by the CQM group.
Although the capture method is based on

blacklists, the extracted and classified comments were
relevant insofar as they made clear the types of
speeches that are given in social networks, as can be
evidenced in the publicly available document of the

Dossier. Clearly offensive or discreetly intolerant
phrases were highlighted and showed the perceived
and proven preconception scenario of the group.

5http://www.comunicaquemuda.com.br/dossie/quando-

intolerancia-chega-as-redes/
6http://s18628.pcdn.co/wp-

content/themes/comunica/dist/dossie/dossie_intolerancia.pdf

http://www.comunicaquemuda.com.br/dossie/quando-intolerancia-chega-as-redes/
http://www.comunicaquemuda.com.br/dossie/quando-intolerancia-chega-as-redes/

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1555

Table 4: Main approaches and results in terms of Accuracy (Acc), Precision (P), Coverage (C) and Measure-F (F), its features and

algorithms used

Ano Acc P C F AUC Features Algorithms Paper

2017 – 0.93 0.93 0.93 – Word embeddings, Logistic Regression, Badjatiya et al. (2017)
 BoWV Random Forest,
 GBDT, SVM,
 DNN, CNN
2017 0.78 0.78 0.72 0.764 – word N-Grams Logistic Regression, Fortuna (2017)
 MLP, SVM
2017 – 0.828 0.831 0.824 – Caracteres,Word Logistic Regression, Park and Fung (2017)
 embeddings, SVM, CNN
2017 0.78 0.65 0.68 0.60 0.80 N-Grams, Word Logistic Regression, Gao and Huang (2017)
 embeddings, Features LSTM, BiLSTM
 semantics and lexical,
2016 – 0.82 0.82 0.82 – Tokens size, N-Grams, skip-bigram Nobata et al. (2016)
 punctuations, POS-tag

Table 5: Examples of expressions used by CQM to capture comments

Discoursetype Expressions

1 Intolerance against appearance “Narigudo”/ “seu” “gordo” / “gordo fazendo gordice” / “cabelo ruim”/ “cabelo de

 bombril”

2 Intolerance against social class “Bolsa esmola” / “pobraiada” / “parece favelado” / “favelado é foda” / “coisa de

 favelado”

3 Intolerance against the disabled “retardadomental”/“temdown”/“alejado” / “demente” / “leproso” / “aidético”

4 Homophobia “boiola” / “baitola” / “gay” “desperdicio” /“cara de traveco” / “voz de traveco”

5 Misogyny “feminazi” / feminista mal comida / odeio vagabunda/ vadia vagabunda / tudo

 vagabunda / “vai lavar louça” / “mal comida”

6 Political Intolerance / “comunista safado" / “coxinha fascista” / “comunista” "ladrão" / “bolsa esmola” / “

 bolsa” “compra votos” /“petista vagabundo”

7 Prejudice against ag /generation / "velho asilo" / “não tenho idade” /"adolescente preguiçoso"/ "adolescente chato /

 “adolescente

8 Racism “Cabelo ruim”/ “cabelo de bombril” / “não sou tuas nega” / “preto é foda”

 / “nego é foda”

9 Religious intolerance “crente do rabo quente” / “crente do cu quente” /. “odeio crente” / “sem Deus no

 coração” / “muçulmano bomba”

10 Xenophobia / “arabe” “bomba” / “muçulmano” “bomba” / “japones é tudo igual” "voltapra sua

 terra” / "caiçara folgado"

Source: CQM Project

For this reason, we use these expressions as a
starting point for capturing tweets and pre-selecting
comments to be voted on in the construction and
labeling process of the dataset we present in this paper.
Details are discussed in Section 4.

Dataset Tagged with Hate Speech in PtBR

In this section, we depict the construction and
labeling of the hate speech dataset for Portuguese
language we have built and used in the experiments and
which is publicly available. Manual labeling of a
dataset is a laborious and error prone task, but it is
highly required for supervised learning methods. We
used the hatespeech comment database which Fortuna
(2017) had made public to improve our dataset and
help the validation of our models.

Selection of Data Sources

In the process of collecting comments, we need to

carefully select the sources to maximize the likelihood

that extracted texts contain some sort of hate speech, so

that the proportion of true positive texts (those that

actually contain hate speech) be representative

(Schmidt and Wiegand, 2017). This strategy also makes

it possible to direct the search process to specific sub-

topics and sub-types of desired hate speech.

In the scope of this work, we do not intend to

classify comments within specific types of

hatespeech, but to determine the presence or absence

of abusive content. That said, we carefully selected

some websites that were highly likely to contain

controversial issues and comments from haters and

other discriminatory opinions or ideas. In total, 35

URLs have been listed, including news sites,

Facebook communities, YouTube pages and forums.
The topics of news sites aggregate the list of articles

whose theme is related to it. For instance, in the topic (listed

by employees) http://g1.globo.com/politica/, we find all the

G1 news relevant to the topic "politics". In the topic

https://veja.abril.com.br/noticias-sobre/homofobia/, there

http://g1.globo.com/politica/
https://veja.abril.com.br/noticias-sobre/homofobia/
https://veja.abril.com.br/noticias-sobre/homofobia/

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1556

are articles categorized as "homophobia". The comments in

the articles of these topics, as a consequence, has a high

probability of containing content on the subject

homophobia or politics, be they positive or negative.

Selection of Facebook Communities

Facebook communities were mostly selected by

means of the hate map7 created by the Laboratory of

Image and Cyberculture Studies (Labic)8, which is a

map of admirers (extremists) of the Military Police on

Facebook. The following quotation of CartaCapital

magazine about the map9 (translated for the purpose

of the paper) summarizes it content:

"They are pages dedicated to defending the use
of violence against what they call "bandits",
"vagabonds" and "robbers", apologizing to
lynchings and murder, defending police officers,
publishing photos of "violated" or violently
killed people, selling war equipment and
combating human rights."

Criterion for Capturing Tweets

Tweets were collected in regards to the keywords

listed in Table 5. We also considered some keywords

specially selected or copied from blacklist Hatebase10.

Below, in Table 6, we quote the expressions added

and separated by category.

It is worth emphasizing that the existence of one of

these expressions in the text does not mean that it

conveys hate speech Schmidt and Wiegand (2017).

Conversely, the complete absence does not guarantee

that it is clean. We use only a hint of probable

relevance, considering its existence as a pre-selection

criterion of tweets, since capturing all of them without

criterion would be inefficient and not qualitative.

All the tweets that was captured by the above method

were considered regardless of their size. Even the 1-

word sized comments could be voted on.

Collection Method

We used facebook-sdk11 to extract content from

Facebook; for each community, we accessed all comments

of the posts by its users, as well as the metadata provided by

the API. In regards to Tweeter, we used the Tweetpy12

library and connected to the tweets online streaming web

79https://www.cartacapital.com.br/blogs/outras-

palavras/facebook-um-mapa-das-redes-de-odio-327.html/
8http://www.labic.net/
9https://www.cartacapital.com.br/blogs/outras-

palavras/facebook-um-mapa-das-redes-de-odio-327.html
10https://www.hatebase.org/
11http://facebook-sdk.readthedocs.io/en/ latest/api.html
12http://www.tweepy.org/

site that the Twitter API provides, detecting those that

contained one of the expressions present in the Tables 5 and

6. Forums and news websites do not provide API for

extracting your content. For this reason, we used web

scraping techniques to recognize users’ comments and their

available metadata. Some news websites like Estadão and

Veja have an HTML structure that is difficult to predict, so

we were not able to collect their information. The extraction

process and parsing were executed by the Selenium

wrapper for Python13. This was necessary because some

page contents are only displayed by means of some sort of

user-centred interaction like clicks, for example. The total

number of pages and comments extracted for each

collection source is listed in Table 7.

Following is a detailed list of the steps we have taken

to collect the comments:

1. For sources without available API (Like news

webpages):

 We manually analyzed the HTML page of each
collection source to determine the tags concerned
to user comments

 Using a web scraping tool, we extracted and saved
each comment in the database

 In addition to the comments, we saved the
creation/editing data of the comment as well as the
hyperlink of the webpage

2. Twitter:

 We selected the catch expressions defined in

the Tables 5 and 6 and introduced some

linguistic variations to better fit the users’

informal style of writing. As an example of

that, we added the variation "vc" for the word

"você" ("you"), "n" for "não" ("not") and so on

 We used the Twitter API to capture all the

tweets containing at least one of the previously

defined expressions
 We saved the serialized representation of each

tweet for any needs

3. Facebook:

 After selecting communities, we used the
Facebook API to access all comments on posts
on each of the pages

 Additionally, we saved all the author’s as well
as the post data

Labelling

To facilitate the help of volunteers in the labelling

process, a dedicated web application was developed for the

task; user-friendly interface and responsiveness were central

requirements.

13http://selenium-python.readthedocs.io/

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1557

Table 6: Expressions added to the table list 5 for capturing tweets

Discoursetype Expressions

1 Xenofobia “nordestino burro”/ "sotaque ridículo" / "sotaque lixo" / "nordeste lixo" /

 "nada contra o nordeste" / “nada contra nordestino”/ “nordeste não tem água” /

 "sotaque de viado" / "nordestino viado" / "volta pra sua terra"

2 Racismo “caboclo” / "mestiço" / "volta para a senzala" / "carcamano"

Table 7: Total number of pages and comments extracted from different sources

Source Pages Comments

G1 11,774 724,997

Facebook 11 658

Youtube 81 74,013

Twitter – 136,118

Stormfront 129 1,249

TOTAL 11,995 937,035

The system

The labelling Web application was developed in

Python/Django and it is available at14. Figure 6 shows

the welcome page, whose main function is to encourage

the user to collaborate with the project.
The menu item "COMO CLASSIFICAR?" ("How to

classify?") assist the volunteers to properly identify and
distinguish between comments with hate speeches and
clean comments and distinguish other types of offenses
that are not hate speech, increasing their likelihood of
making the best possible decision at the moment of the
vote. After clicking the "OK, VAMOS CLASSIFICAR"
("Ok, let’s classify") button, the system is redirected to
the classification page, shown in Fig. 7. The user is
thus asked whether the shown comment conveys a hate
speech. In the event of any doubt, it is possible to skip or
check the "Não tenho certeza" ("I’m not sure") option,
then press the "Salvar" ("Save") button.

In short, the system provides the volunteer with the
opportunity to vote each comment in three different
ways: (1) "Contém discurso de ódio" ("Conveys hate
speech"), "Não contém discurso de ódio" ("Doesn’t
convey") and "Não tenho certeza" ("I’m not sure"). We
chose to record the vote of doubt for the comment in a
way that would allow it to be voted on by another
volunteer and thus increase the chances of the speech
being recognized as clean or abusive, since if it were
submitted to the same users who had doubts about its
content the vote would probably be maintained.

We set up the system so that we do not repeat the
next 150 comments for the current volunteer, based on
his/her session data. Thus, in addition to increasing the
variety of voted speeches, we limit the amount of votes
that the same users can give for each comment.

Choosing Comments for Voting

Because we did not filter the comments from some

collection sources, the size of the database grew

14http://thiagodiasbispo.pythonanywhere.com/

considerably, this leads to being necessary to find out an

efficient criterion for elicitation of comments at the time

of voting and thus increase the amount of Positive

Labeling by volunteers, as well as the number of

speeches of different types and characteristics.

The comments were randomly selected according to

the priority order set out below. When there is no

comment that fits into a given selection criterion, the

next criterion in the sequence is evaluated.

1. Comments with 2 votes exactly.

2. Comments with 1 vote exactly.

3. Comments voted undefined more than 1 time if

there are more than 10 of them.

4. Comments containing or not one of the filter

expressions defined for tweets and without any vote.

5. Any comment already voted.

Criteria 1 and 2 were placed to maximize the number

of speeches with at least 3 votes, since without them

most of the comments would not be submitted to a

sufficient number of volunteers given the total amount of

comments present in the database (Table 7).
Criterion 3, in turn, was used as a way to minimize

the amount of comments with a vote of doubt. As we
defined earlier, the next 150 comments were not
repeated for the same volunteer and, in addition,
Criterion 3 gives him the chance to vote speeches in
which other volunteers had some uncertainty.

Using Criterion 4, we aimed to balance the number of
voted comments that contains any of the expressions
present in the Tables 5 and 6 and the number of
comments that did not contain them. In this way, we kept
the chance of those hate speech with more subtle
discriminations being selected.

Criterion 5 ensures that there is always a candidate

comment for voting, even when everyone has already

been voted on. In practice, we never need to use this

criterion since our total database is considerably large

and the amount of volunteers is insufficient to vote for

all of its comments.

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1558

Fig. 6: Welcome screen of the labelling Web application

Fig. 7: Labelling system: classification screen

Labeling Results

During the period in which the volunteers contributed
with the lettering, from 09/27/2017 to 05/15/2018, we got
exactly 7,673 votes. The comments were randomly selected

in order to increase the number of speeches with at least 3
votes and allow to classify those comments already marked
with the option "NÃO TENHO CERTEZA" (I am not
sure). Thus, whenever a speech reached at least 3 votes of
the same type, i.e., 3 votes as "abusive" (abusive) or 3 votes
as clean, we consider it classified.

We noticed that many comments were voted on
several times as "NÃO TENHO CERTEZA" (I am not
sure). According to some volunteers, they were faced
with texts that, without the context to which the
discourses were inserted, it was difficult to gauge the
presence or not of abusive content.

The total of 1,191 speeches remained with 2 votes and

1,797 with 1 vote and for that reason we did not include

them in our final dataset. Considering only those with at

least 3 votes, we obtained a total of 1024 labeled comments,

of which 491 were classified as abusive and 533 as clean.
In the total of classified speeches, we detected that

299 of them contained some of the expressions listed in
the Tables 5 and 6, representing 24.83% of the 1,024
comments classified and made available in our dataset.
This result demonstrates that there was a tendency for
our method to choose more comments without such
expressions, which is an important behavior for allowing
exposure to a greater proportion of comments with
abusive content less common to volunteers.

In the Table 8 we display the quantitative of
comments by collection source. We note that all
sources, from which any comments were saved in our
database, were represented in our dataset. The data
summarized therein illustrates that, not coincidentally,
the amount of voted tweets is close to the amount of
comment with any of the hate expressions (299). This
result was expected, since tweets were captured using
as a criterion the presence of such expressions.

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1559

Table 8: Quantitative discourse by source of collection

Source Quantity

G1 493

Youtube 132

Twitter 248

Stormfront 92

Facebook 59

Table 9: Statistics of the size of abusive and clean comments

 Minimum Maximum Median Mean

Abusive 1 119 12 13.12

Clean 1 88 15 15.75

Size of Comments

The comments showed a wide variation in sentence

size, considering all the words originally present and

disregarding punctuation marks. There is no significant

difference between abusive and clean comments (Table

9). Since we did not have established the minimum

amount of words in the comment. The minimum size of

the labeled speech is 1 for both classes.

Being aware of the number of words present in our

text is important because we can measure the

maximum size that the training vectors need to have.

It avoids to lose information.

Vocabulary Size

Vocabulary size was got based on the total amount

of unique unigrams existing for the entire base, for the

clean comment set and for the abusive ones. We

disregard hashtags, links, mentions, punctuation marks

(including emojis) and retweet ("RT") tags. As result, we

extracted 3,607 unique unigrans from all 1,024 labeled

messages. The abusive discourses have vocabulary of

size 2022 unigrams. Clean discourses, however, have a

unique 2,342 unigrams, 13.66% more than the

vocabulary of hate speech.

Performance of Models Using Labeled

Dataset

In this section we will detail the method used to

evaluate the dataset annotated through different

scenarios. Each scenario consists of a combination of

one of the datasets used for training or testing LSTM

model addressed here using distinct forms of

preprocessing. We will explain the reasons for the

construction of each scenario, the performance of the

models using the metrics adopted (discussed later) and

analysis of the results obtained.

Evaluation Metrics Adopted

Considering that TP is the number of positive

examples correctly classified, FP is a number of negative

examples classified as positive and FN represents the

number of positive examples classified as negative, the

metrics proposed to evaluate the method presented is as

follows Alpaydin (2014):

 Precision - Defined as:

TP
Precision

FP TP

 (8)

Intuitively, precision measures the model’s ability to

classify negative examples as negative. The higher

the value, the greater the number of examples

correctly classified as positive.

 Recall - Defined as:

TP
Recall

TP FN

 (9)

In other words, Recall measures the efficiency of

the model in "finding" all positive examples present

in the dataset.

 F-Measure: Consists of the harmonic mean

between accuracy and recall. This measure is

approximately the average of both when their values

are close.

2
Precision Recall

F Measure
Precision Recall

 (10)

A model of high recall and low precision is able to

classify many examples as positive, but few of them will

actually be positive (FP). On the other hand, a model with

low recall and high precision is able to classify few

examples as positive, but in contrast there is a high

probability that the positive labels are correct (TP).

In an ideal classification system, high Precision and

Recall result in most precise one. When both metrics are

equally important the balance between them, i.e., F-

Measure, is quite adequate.

In this work, we adopt as positive the discourses

classified as abusive and negative those classified as clean,

that is, in which no discriminatory content was recognized.

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1560

We consider that in the real world, the higher the hit
rate that a hate speech classifier has abusive content in
comments, the better. For this reason, we understand
that Precision is the ideal metric to evaluate models that
intend to analyze hatespeech.

Preprocessing

In some PLN jobs, the preprocessing phase includes
both the cleaning and tokenization steps as well as the
data vectorization step when the task requires some
machine learning activity.

The cleanup step can include several subtasks, such as:
removing unnecessary content such as stopwords, grammar
correction, converting text to lowercase letters, removing
noisy characters such as coding problems, etc.

Radicalization can also be applied in the pre-processing
step. Words are reduced to their morphological or inflected
bases. This task has the effect of reducing the size of the
textit dataset vocabulary. This is particularly important
when we need to vectorially represent texts as input to
machine learning algorithms.

Tokenization corresponds to the identification and
separation of the important parts of the input data known in
PLN as tokens, which can be words, sentences, characters,
or any information extracted from the text as the
grammatical classes of words (POS Tag).

The vectorization consists on the representation of
the texts within a vector space. It is typically performed
as the final step before enabling the use of data in
machine learning algorithms.

In this work, we consider the pre-processing as being
the set of tasks performed in the preparation of the data
for the vectorization process.

The preprocessing we adopted was adapted from
Badjatiya et al. (2017), which cleaned up texts by replacing
specific tokens with expressions representing them. For
example, URLs have been replaced by ’<url>’ mentions to
users by ’<user>’, ’hashtags’ by ’<hashtag>’, numbers by
’<number>’ and some emoticons by their meanings.

These representations are interesting because they
preserve the occurrence of contents that can be
determinant in tasks of categorization of texts as the
classification of hate speech. We set up the preprocessing
to make substitutions according to the language of the
dataset we were working on. Thus, in Portuguese
language texts, mentions to users, for example, are
replaced by ’<user>’, numbers by ’<numbers>’ etc.

After this step, the texts are tokenized with the
NLTK15 as stopwords of the language in question and
the punctuation marks removed.

Execution Environment

All the experiments presented were executed in an

architecture cluster CCET-UFS (2017) with 5 GPUs

15http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.casu

al.TweetTokenizer

nodes, 22 CPU nodes and a master node for coordination

of other. The configurations of nodes with and without

GPUs are presented in the Table 10.

With 5 GPUs nodes, 22 CPU nodes and a master

node for coordination of other.

In addition, the architecture proposed here was

implemented in the Python 3.4 programming language,

using Keras16 as a high-level prototyping tool for neural

networks and TensorFlow running on backend

configured to use GPUs and scikit-learn17 as an

auxiliary tool to perform some machine learning tasks

such as GBDT and cross-validation.

LSTM Model

The model addressed in this paper is adapted from
Badjatiya et al. (2017). This is the state of the art work in
terms of prediction, to the best of our knowledge it has
the higher accuracy and F-measure in the area of hate
speech classification and proved to be quite suitable for
task involving tweets. Since our main dataset (as
described in Section 5.5) of training is the one used by
the above-mentioned authors, we prefer to adopt the
same preprocessing method, however adapting it to
consider the language of the text in question, since the
database constructed in this work is in Portuguese.

In Fig. 8, we illustrate the architecture of the LSMT
model used. The training flow of the comments, from the
input layer to its actual classification, follows the order
of the steps described below:

1. Pre-processing and vectorization: The data are

preprocessed according to Section 5.2 and vectored

according to the need of each scenario, but in all of

them, the resulting vectors are created in order to

respect the maximum size of all training data. Size

is represented by the variable max_sentence_length.

2. Input layer: Once vectored, the data is processed in

batchs of size batch_size. The function of this layer

is to create a representation of embeddings. The

values of their dimensions are calculated through a

uniform distribution and the quantity of them is

controlled through the parameter embedding_dim.

3. LSTM layer: The function of this layer is to learn a

suitable representation for each comment, thus

generating specific embeddings aimed at the

domain of hate speech Badjatiya et al. (2017).

These representations are then used to classify the

model, as detailed below. The LSTM parameters

can be checked in the Table 11.
4. Densa layer: In deep models, it is common to add a

fully connected layer for sorting the output data of
the neural layer that precedes it. In our model, the

16https://keras.io/
17http://scikit-

learn.org/stable/supervised_learning.html#supervised-learning

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1561

dense layer consists of a Multi-Layer Perceptron,
which is responsible for receiving the units dimension
vector of the LSTM layer and determining its class.
The classification error in this layer is then propagated
to the previous layers and the updating of their
parameters performed according to the optimization
algorithm chosen. The output of this layer is given by a
softmax function, responsible for calculating the
probability for each class and thus predicting the class
for the comments received.

As we defined earlier, in our experiments we used

LSTM and its combination with a GBDT. We saved the
result of the classification using the neural network and
the dense layer MLP (result identified with the word
"LSTM" after the scenario number) and then, using the
same trained model, extract the learned embeddings and
submit them to GBDT, thus performing a new
classification (result identified with the word "GBDT"
after the scenario number). In other words, when we
combine the LSTM model with the GBDT, we ignore
the result of the neural network classification using the
dense layer and perform a new training with the GBDT.

Parameters Default Value

The parameters’s default values are defined in the
Table 11.

The maximum size adopted for each vectorized
sentence (input_length) has been defined in each
scenario and calculated to respect the maximum size of
the training and test comments.

Multiple Datasets

When we run experiments with supervised learning
algorithms, we need to be careful about various
aspects that influence their performance. One of them
is the process of choosing test training data. During
training, few data can cause underfitting, that is, the
model will not have enough information and examples
to generalize in prediction.

In the opposite, overfitting occurs when the model
becomes over-specializes in the input data, making it
specialized to recognize only the already seen examples,
but being weak when needs to deal with the examples
that were not present in the training dataset.

In order to execute the training and testing processes
with the LSTM model discussed here, we used the datasets
of Waseem and Hovy (2016) and Fortuna (2017) because
they were the only ones publicly available and found. The
Table 12 lists all the databases used in this paper. The
"Name" column refers to the name used to reference the
dataset in this work. The "Size" column displays quantity
and comments present in each dataset, showing the quantity
of positives and negatives.

Table 10: LCAD Cluster Nodes Settings

Node without GPU Node with GPU

20 Cores in 2 sockets Intel Xeon Ten-Core 20 Cores in 2 sockets Intel Xeon Ten-Core
E5-2660v2 de 2.2-GHz, with 25MB of cache E5-2660v2 of 2.2-GHz, com 25MB of cache
Cache, 8 GT/s Cache, 8 GT/s
64-GB of memory DDR3 1866 MHz 64-GB of memory DDR3 1866 MHz
1 disk of 160-GB SSD 1 disk de 160-GB SSD
1 port Infiniband QDR 440 Gbps 1 port Infiniband QDR 440 Gbps
 2 cards NVIDIA Tesla K20

Table 11: Default configuration of LSTM model parameters

Parameter Description Valor

input_dim Maximum expected numeric value in input layer 10,000
output_dim Word embedding size to be generated 200
input_length Size of the input sentence vector Variable
units Number of cells in the LSTM layer 100
weights Input layer initialization weights []
dropout_rate1 Dropout rate of the input layer 0.25
dropout_rate2 LSTM layer dropout rate 0.50
optimizer Function optimizer and loss "rmsprop"
loss_fun Error function "categorical_crossentropy"
bach_size mini bach size 128

Table 12: List of datasets used in this work

Name Description Size

discursos_votado Dataset built in this work 491 neg + 533 pos = 1024
discursos_votados_en Dataset “discursos_votados” translated into English 491 neg + 533 pos = 1024
NAACL_SRW_2016 Dataset de tweets created by Waseem and Hovy (2016) 1034 neg + 5047 pos = 16081*
NAACL_SRW_2016_pt Dataset “NAACL_SRW_2016” translated to Portuguese 1034 neg + 5047 pos = 16081*
NAACL_SRW_2016_cleaned_pt Dataset “NAACL_SRW_2016” 11034 neg + 5047 pos = 16081*
 pre-processed and translated, in that order
dataset_portugues Dataset in Portuguese created by Fortuna (2017) 1977 neg + 547 pos = 2524*

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1562

Fig. 8: LSTM model

NAACL_SRW_2016 is a set of tweets labeled from

one of three distinct classes: "sexism", "racism" and

"none." We assume that the labels corresponding to

"none" refer to comments that do not contain hate

speech, that is, using the expression adopted in this

work, are clean comments. Comments labeled "racism"

or "sexism" are therefore considered abusive comments

because they contain some kind of hatespeech. In this

way, we convert the base originally created with 3 types

of different classes to a base of binary labels.

Originally, the NAACL_SRW_2016 has 16,914

tweets labeled, of which 3,383 are sexist, 1,972 are

racist and 11,559 are neither. However, as tweets can

only be made available through their IDs according to

Twitter’s privacy policy18, we were able to download

only 16,131 of them. We then detected that 25 of them

were duplicates and with divergent labels and removed

18https://developer.twitter.com/en/developer-terms/agreement-

and-policy

Dense layer Softmax

Dropout layer 2

LSTM

Dropout layer 1

bach_size

Input layer

max_sentence_length
embedding_dim

max_sentence_length

output_dim

output_dim

unit

units

Class

2

bach_size

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1563

along with their duplicates, since redundant data can

cause overfitting and divergent labels hampers the

learning process of the model.

The dataset NAACL_SRW_2016_pt corresponds to

the base "NAACL_SRW_2016 translated" into the

Portuguese language with the help of the Google

Translate API. The use of Automatic Translation

Systems (STA) like this is not new in the task of textual

categorization. Da Silva et al. (2018) used this

approach to train a character-based CNN model in a

translated dataset of feelings analysis. The results were

similar to the original ones, i.e. results from the original

English language.

The dataset dataset_portugues originally had 5,668

tweets annotated in several types and subtypes of

hatespeech. Only 2,524 of them were available for

download.

Training Methods

The scenarios described here were submitted to the

training methods described below, according to the need

of each scenario:

 Method 1 - Cross validation: When the dataset is

trained on itself, i.e., there is no independent test set,

the template is cross-validated with 10 folds and

caculated metrics by averaging their values in each

fold. Therefore, the models trained by this method

can present F-Measure value outside the range

defined by the accuracy and Recall presented, since

it was not calculated directly from these, but the

average of their history

 Method 2 - When training and test data are

predefined: The model is trained with the complete

training base and tested with the test data

In both methods, training occurs in mini batchs of

size batch_size (Table 11).

Experimental Scenarios

We separate the experiments into scenarios so that

their evolution becomes easier to understand. Each

scenario corresponds to an attempt to improve the results

of the previous scenario or a new approach to evaluate

the performance of the preprocessing, vectorization or

mixing of the datasets described in Section 12.

Altogether, 24 scenarios have been defined.

In Table 13, we summarize the experiments performed

in scenarios 1 to 4. Initially, we tested the performance of

the LSTM + GBDT model in the task of classifying the

hate speech present in NAACL_SRW_2016, considering

their original labels (racism, sexism, or none) and using

Training Method 1, which is run within Scenario 1,

presented in Table 14, along with Scenario 2, described

below. We show both the model result using the LSTM

classifier and the GBDT. Network performance is

displayed in terms of the metrics described in Section 5.1

and represents our baseline.

Our goal in Scenarios 1 to 4 was to validate the

research hypothesis on the LSTM performance as a

cross-lingual model using only the translated dataset,

without data originally in Portuguese.

In Scenario 2, we trained the model with the

NAACL_SRW_2016_pt dataset in order to validate its

suitability for the task of predicting hate speech, also with

ternary labels. The results are equivalent to the means of the

values calculated along the cross validation, as previously

explained. In parentheses, we show the standard deviations

of the set of calculated metrics.

The metric values for each fold were macro weighted

according to the number of labels for each class, as is

commonly done in multi-class categorization.

Scenarios 3 and 4 (Table 14) consist of the same

experiment executed in Scenarios 1 and 2, respectively.

But this time, only binary labels are considered: we

trained the model LSTM with the datasets

NAACL_SRW_2016 and NAACL_SRW_2016_pt to

classify the comments as abusive or clean.

Once the good performance of the trained LSTM

with NAACL_SRW_2016_pt has been verified, we

perform experiments in Scenarios 5 to 11 using the same

network trained in different ways and tested with our

dataset. The Scenarios are summarized in the Table 15

and their results listed in the Table 16. This time, we

tried to validate the research hypothesis in a different

way: considering data originally in Portuguese.

In Scenarios 5 and 6, the LSTM model was trained

with NAACL_SRW_2016_pt and tested with

"speeches", according to Training Method 2. Only the

words present in the training dataset were considered

in Scenario 5. In other words, the vocabulary of the

model was the vocabulary of NAACL_SRW_2016_en

after preprocessing and tokenization discussed in

Section 5.2.

In Scenario 6, the vocabulary considered outside

Glove100: only the words present in this model were

added to the vector resulting from the vectorization

process for each sentence. The hypothesis that

justifies this approach is: using a vocabulary greater

than Scenario 6, the smaller the number of words out

of the vocabulary at the time of the vectorization and

thus more information a cross-lingual model would

have to generalize.

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1564

Table 13: Summary of the experiments performed in Scenarios 1 to 4

Scenario Experiment

1 LSTM trained with NAACL_SRW_2016 using their own vocabulary for classification ternary

2 LSTM trained with NAACL_SRW_2016_pt using their own vocabulary for classification ternary

3 LSTM trained with NAACL_SRW_2016 using their own vocabulary for classification binary

4 LSTM trained with NAACL_SRW_2016_pt using their own vocabulary for classification binary

Table 14: Results of Scenarios 1 to 4

Scenario Precision Recall F-measure

1 (LSTM) 0.818 (+/- 0.0095) 0.807 (+/- 0.0219) 0.807 (+/- 0.0176)

1 (GBDT) 0.913 (+/- 0.0097) 0.913 (+/- 0.0096) 0.913 (+/- 0.0096)

2 (LSTM) 0.813 (+/- 0.0065) 0.815 (+/- 0.0080) 0.812 (+/- 0.0070)

2 (GBDT) 0.918 (+/-) 0.0063) 0.918 (+/-) 0.0061) 0.918 (+/- 0.0063)

3 (LSTM) 0.739 (+/- 0.0457) 0.695 (+/- 0.0714) 0.712 (+/- 0.0178)

3 (GBDT) 0.867 (+/- 0.0104) 0.843 (+/- 0.0161) 0.855 (+/- 0.0097)

4 (LSTM) 0.732 (+/- 0.0159) 0.663 (+/- 0.0345) 0.695 (+/- 0.0173)

4 (GBDT) 0.873 (+/- 0.0125) 0.847 (+/- 0.0157) 0.860 (+/- 0.0097)

Table 15: Summary of experiments performed in Scenarios 5 to 11

Scenario Experiment

5 LSTM trained with NAACL_SRW_2016_pt, your own vocabulary and tested with discursos_votados

6 LSTM trained with NAACL_SRW_2016_pt, GloVe vocabulary and tested with discursos_votados

7 LSTM trained with NAACL_SRW_2016_cleaned_pt your own vocabulary and tested with discursos_votados

8 LSTM trained with NAACL_SRW_2016_cleaned_pt, Glove vocabulary and tested with discursos_votados

9 LSTM trained with NAACL_SRW_2016_cleaned_pt + dataset_portugues, with the resulting vocabulary and tested

 with discursos_votados

10 LSTM trained with NAACL_SRW_2016_cleaned_pt + dataset_portugues, vocabulary GloVe and tested with

 discursos_votados

11 LSTM trained with NAACL_SRW_2016, own vocabulary and tested with discursos_votados_en

Table 16: Results of Scenarios 5 to 11

Scenario Precision Recall F-measure

5 (LSTM) 0.606 0.274 0.377

5 (GBDT) 0.648 0.280 0.391

6 (LSTM) 0.720 0.126 0.214

6 (GBDT) 0.653 0.176 0.278

7 (LSTM) 0.627 0.283 0.390

7 (GBDT) 0.661 0.300 0.413

8 (LSTM) 0.703 0.156 0.255

8 (GBDT) 0.665 0.223 0.334

9 (LSTM) 0.659 0.171 0.271

9 (GBDT) 0.653 0.240 0.351

10 (LSTM) 0.679 0.167 0.268

10 (GBDT) 0.619 0.161 0.256

11 (LSTM) 0.558 0.281 0.374

11 (GBDT) 0.553 0.285 0.376

Table 17: Summary of experiments performed in Scenarios 12 to 15

Scenario Experiment

12 LSTM trained with vectors TF-IDF of N-grams of characters of NAACL_SRW_2016_cleaned_pt and tested

 with discursos_votados

13 LSTM trained with a N-grams frequencies of characters of NAACL_SRW_2016_cleaned_pt and tested with

 discursos_votados

14 LSTM trained with the N-grams frequencies added to the index vetors of NAACL_SRW_2016_cleaned_pt

 and tested withdiscursos_votados

15 LSTM trained with the N-grams frequencies concatenated to the index vectors of NAACL_SRW_2016

 cleaned_pt and tested with discursos_votados

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1565

Since NAACL_SRW_2016 is composed of tweets

which contains informal expressions like hastags,

mentions to users, URLs, slangs etc., their translation

(NAACL_SRW_2016_en) contains many unknown

English words.

For this reason, we created the

NAACL_SRW_2016_clenaned_pt and use them in

Scenario 7. This dataset consists of the preprocessed

NAACL_SRW_2016 according to the method described

in Section 5.2 and, then, translated. As discussed earlier,

the preprocessing has the advantage of not deleting

certain content from the text, transforming it into "well-

behaved" expressions.

To be clear about the motivation behind creating

NAACL_SRW_2016_clenaned_pt, note the comment

below belonging to NAACL_SRW_2016 and labeled

as sexist:

Borrowed time #CuntAndArsehole cant wait

for you to get_from_file blown away by the

decent teams. #FirstElimination #BeatItDogs

#MKR #KatAndAndre (sic)

The "#" symbol will be deleted in the preprocessor

and the English words that follow will remain. As

they are known Portuguese words, at the time of the

vectorization, they will be ignored and replaced by a

special token representing a word unknown in the

vocabulary.

In the preprocessed phrase below, note the

substitution of hashtags for the word "hashtag", which

on the one hand causes its content (and possible

semantic value) to be eliminated, but allows for

inclusion of representative generic information:

borrowed time hashtag cant wait for you to

get_from_file blown away by the decent

teams. hashtag hashtag hashtag hashtag

This time, all words are recognized and represented

by specific values at the time of vectorization, returning

a more significant representation than their translated

version without preprocessing and enriching the

resulting vector with neighborhood information that

these expressions represent.

For example, in the calculated vocabulary index

vector of the expression above, after the index of the

word "descents", the index of the word "hashtag" will be

added. In regards to the translated comment of the

original English version, the hashtags maintained would

be transformed into a special index that represents an

unknown word, as we said previously.

After this experiment, in Scenario 8, we evaluated the

performance of the trained LSTM with

NAACL_SRW_2016_clenaned_pt using the GloVe100

vocabulary, thus increasing the training vocabulary in

the same way as in Scenario 6. Then, we tried to join

the previous dataset with the dataset_portugues and to

train using the resulting vocabulary (Scenario 9) and

the vocabulary GloVe100 (Scenario 10).

Our goal was to introduce in the training set abusive

and clean discourses, originally written in Portuguese, to

mitigate possible negative effects that the

NAACL_SRW_2016 machine translation may cause in

the training process and, thus, improve model test

performance by using our dataset, since the comments

are in Portuguese.

In Scenario 11, we tested the inverse of what we

tested in Scenarios 5 to 10: we trained the LSTM with

the NAACL_SRW_2016 and tested it with our dataset

automatically translated to English. This time, the goal

was to evaluate if the translations from Portuguese to

English cause less noise than the translations from

English to Portuguese, improving the performance of the

trained model.

Up to Scenario 11 we vectored the comments through

their calculated vocabulary index vectors, converting

these vectors into embeddings of hate speech used in

each scenario.

We also tried to vectorize the comments using two

traditional techniques of vectorization in Machine

Learning: N-grams frequency vectors and TFIDF

vectors. Both are Bag-of-Words techniques that allow

the calculation of the frequency of the top K N-grams

that are present in each training and test example. The

first represents the comments using the frequencies

themselves, i.e., the occurrence counts or, depending on

the case, the presence or absence of each sequence

relevant to each comment. The second one constructs

vectors in order to represent the importance of the N-

gram for each sentence in relation to all the others.

In Scenarios 12 to 15 (summarized in Table 17), we

vectored the comments using the TFIDF vector character

counting methods discussed earlier. In all of them, we

trained the LSTM model with the dataset

NAACL_SRW_2016_cleaned_pt and tested it with

discourses_voted. Their results are found in Table 18.

In Scenario 12, we trained with TFIDF vectors using the

dataset training vocabulary itself, while in Scenario 13 we

used frequency vectors. Next, in Scenario 14, we tried to

add to the vectors of vocabulary indexes to the frequency

vectors of each comment. In Scenario 15, we concatenate

these two vectors for each training and test example. The

Table ref tab: summaryCenario12-15 summarizes the

experiments performed for each of these scenarios.

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1566

Table 18: Scenarios result from 12 to 15

Scenario Precision Recall F-measure

12 (LSTM) 0.000 0.000 0.000

12 (GBDT) 0.000 0.000 0.000

13 (LSTM) 0.000 0.000 0.000

13 (GBDT) 0.417 0.000 0.000

14 (LSTM) 0.530 0.381 0.443

14 (GBDT) 0.563 0.443 0.496

15 (LSTM) 0.000 0.000 0.000

15 (GBDT) 0.000 0.000 0.000

Table 19: Summary of the experiments performed in Scenarios 16,17 and 18

Scenario Experiment

16 LSTM trained with NAACL_SRW_2016_cleaned_pt, your own vocabulary and tested with dataset_portugues

17 LSTM trained with NAACL_SRW_2016_cleaned_pt, GloVe vocabulary and tested with dataset_portugues

18 LSTM trained with dataset_portugues, your own vocabulary and tested with discursos_votados

Table 20: Scenario results of 16, 17 and 18

Scenario Precision Recall F-measure

16 (LSTM) 0.275 0.402 0.326

16 (GBDT) 0.274 0.349 0.307

17 (LSTM) 0.284 0.325 0.303

17 (GBDT) 0.279 0.369 0.318

18 (LSTM) 0.586 0.146 0.234

18 (GBDT) 0.596 0.191 0.290

Table 21: Summary of experiments performed in Scenarios from 19 to 24

Scenario Experiment

19 LSTM trained with NAACL_SRW_2016_cleaned_pt lemmatized, GloVe vocabulary and tested with

 dataset_portugues

20 LSTM trained with o vetores de N-Grams concatenated with index vectors NAACL_SRW_2016_cleaned_pt

 from lemmatized and tested with discursos_votados.

21 LSTM trained with NAACL_SRW_2016_cleaned_pt lemmatized, your own vocabulary and tested with

 dataset_portugues + discurso_votado lemmatized.

22 LSTM trained with NAACL_SRW_2016_cleaned_pt lematizado, your own vocabulary and tested with

 dataset_portugues + discurso_votado lemmatized.

23 LSTM trained with NAACL_SRW_2016_cleaned_pt lemmatized, your own vocabulary and tested with

 discursos_votados lemmatized.

24 LSTM bidirectional trained with NAACL_SRW_2016_cleaned_pt, your own vocabulary and tested with

 discursos_votados.

Table 22: Scenarios result from 19 to 24

Scenario Precision Recall F-measure

19 (LSTM) 0.219 0.322 0.261

19 (GBDT) 0.206 0.360 0.262

20 (LSTM) 0.000 0.000 0.000

20 (GBDT) 0.000 0.000 0.000

21 (LSTM) 0.000 0.000 0.000

21 (GBDT) 0.676 0.047 0.088

22 (LSTM) 0.346 0.231 0.277

22 (GBDT) 0.329 0.250 0.284

23 (LSTM) 0.562 0.161 0.251

23 (GBDT) 0.560 0.296 0.388

24 (LSTM) 0.703 0.049 0.091

24 (GBDT) 0.586 0.077 0.136

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1567

In Table 19, we describe the results of the dataset

NAACL_SRW_2016_cleaned_pt used for LSTM

training and tested with discursos_votados, without and

with the vocabulary GloVe100, in Scenarios 16 and 17,

respectively. We also trained the model with the

dataset_portugues and we tested with discursos_votados

(Scenario 18). The results can be checked in the Table

20. In these scenarios, we validate our research

hypothesis by training or testing the model with

another dataset in Portuguese that was not ours.

To simplify the vocabulary of the dataset

NAACL_SRW_2016_cleaned_pt, we try to add the

stemming step Martin and Jurafsky (2009) to its pre-

processing. By hypothesis, some of the previous

results could be improved if the number of words in

common between the training set and the test set

increased. As lemmatization reduces words to their

most basic lexicographical units, it is important to

validate our hypothesis. The experiments were run in

Scenarios 19 through 23 (Table 21) and their results

are listed in Table 22.

In scenario 24, we used a BiLSTM (respecting the

same LSTM architecture discussed here) to evaluate

how it behaved in training with the

NAACL_SRW_2016_cleaned_pt and test

discursos_votados as a cross-lingual model.

Result Analysis

Our goal with Scenarios 1 and 2 was to partially

reproduce the experiment used in the State of the Art

paper and validate the quality of the automatic

translation of its dataset using the same LSTM model

combined or not with the GBDT for ternary

classification. The results using Scenario 1 are similar to

the values reached by Badjatiya et al. (2017) when

using the combined models: 0.913 in precision against

0.93 of the article. Using the initialized LSTM with

random weights, our results were subtly better than

theirs: 0.818, 0.807 and 0.807 against 0.805, 0.804,

0.804 accuracy, recall and F-measure, respectively.

The little difference in the result is well justified

because the dataset used in this work does not have the

same number of examples of its original version, since

some tweets were unavailable at the time of their

download and duplicate examples were removed, as

explained before.

Scenario 2 used NAACL_SRW_2016_pt for the

ternary sort task and achieved better results if

compared to the same template trained in the original

text in English: 0.918 versus 0.913 for the metrics

adopted, considering only the result of the model

combined with the decision tree. The result is promising

because it validates the hypothesis that the use of the

dataset translated for training the same model used with

the English data guarantees comparable results.

The fact that the model performs well in both

datasets in the classification into 3 distinct classes does

not guarantee that it will achieve similar or even

reasonable hit rates in the two-class classification. For

this reason, in Scenarios 3 and 4, we performed the

same experiments of Scenarios 1 and 2 changing them

only for binary classification. The best result was in

terms of accuracy: 0.867 and 0.873 in Scenarios 3 and

4, respectively.

Their results are lower than their versions run with

the 3 classes. We believe that the difference occurs

because of the patterns of clean or abusive discourses

that are best recognized when grouped into their original

classes (sexist, racist, or none), thus preserving the

specific features that define them. Despite the

difference, the values are still good, especially because

one of the datasets is the result of machine translation.

It is worth mentioning that the use of GBDTs has

drastically improved all the results of the LSTM network

in the scenarios discussed above, demonstrating that its

"boosting" technique is also effective in dealing with

networks trained in datasets translated as in our case.

The LSTM model and its combination with GBDT

produced good results, which validates our research

hypothesis: the same architecture achieved good results

both for the original comments in English and for its

translated version, characterizing as cross-lingual. The

next step is to determine the validity of the hypothesis

when the same model is evaluated with comments in

Portuguese, as is the case of our dataset.

After completing experiments with the main training

datasets from Scenarios 5 to 11, we evaluated the

performance of the same model validated in Scenarios 1

and 2, testing it with our dataset. As we can see, we

achieved expressive results in several scenarios in terms

of Precision, within which the best of the results was that

of Scenario 6, with 0.720 in this metric, thus validating

our research hypothesis again of the cross-lingual

character of the LSMT architecture.

Another highlight was Scenario 8, whose vectoring

process considered only the vocabulary words

GloVe100, causing tokens not present in them to be

discarded, but providing the advantage of being a much

larger vocabulary and potentially containing more words

present in the training and test data.

Note that the results of Scenarios 6 and 8 are similar:

0.720 and 0.703, respectively. In the case of Scenario 8, we

used NAACL_SRW_2016_clenaned_pt in order to reduce

the number of words out of the vocabulary at the time of the

vectorization. This approach, however, did not produce

significant differences to justify the use of the strategy,

contrary to the hypothesis established previously.

The use of the GBDT did not always result in an

improvement in the performance of the LSTM, as we

can see in Scenarios 6, 8, 9, 10 and 11 whose precision

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1568

values declined with the use of the Decision Tree. One

of the hypotheses for this is that the database was not

large enough so the GBDT could be able to improve

and stabilize the LSTM classification

Unlike precision, from which we obtained reasonable

results, the coverage results in none of the Scenarios

between 5 and 11 were good, all remaining below 0.5.

The F-measure, since it is the harmonic mean between

the precision and coverage values, was pushed to values

also below 0.5, as a consequence of the coverage

behavior in all scenarios.

Looking at the coverage Equation (9), we note that

the ratio of their low values is usually high False

Negative (FN) rates. The higher the value, the higher the

denominator and the lower the final value of the fraction.

Scenario 6, we can easily identify this behavior through

its confusion matrix (Fig. 9) calculated from the values

predicted by the LSTM network (without GBDT).

By convention, in the confusion matrix the lines

represent true positive values (abusive comments) and

true negatives (clean comments). Columns represent the

values predicted by the network. Crossing rows and

columns, we establish the relationships we need to

calculate the metrics we use in this work. 466 comments

were classified as clean when in fact they are abusive

(False negatives).

However, as we argued earlier, we consider accuracy

to be the most important metric for hate speech detection

models. In this sense, the precision values of Scenarios

6 and 7 are indicative of the ability of the model to

actually recognize abusive discourses.

In Scenarios 12 through 15, we tried out some classic

machine learning features associated with the LSTM.

Our goal was to evaluate if sequences of occurrences of

character N-Grams (Scenarios 13, 14 and 15) trained by

a recurring network could cause the learning of the

sequences of these occurrences, thus associating the

BoW model with a model whose sequence order input

is important. In Scenario 12, we initially tested the

behavior of the network using TFIDF vectors. None of

the scenarios presented satisfactory results, as we can

observe in Table 18.

We can conclude that vectors of occurrences of

character sequences, alone, do not aggregate

information enough to allow the kind of learning that

LSMT requires. Note that in Scenario 14, there was

some gain in information relative to others, however

derisory. In it alone, we take into account the vectors

of indexes of words, by their sum to the vectors of

frequencies of N-Grams. Probably for this reason, the

network was able to gain some learning using the

portions of the input vector of the network that

contained the vocabulary word indexes.

In Scenarios 16 and 17, we tried to test the LSTM

model with the dataset_portugues to evaluate its

performance by using it as test data. The results were

even lower in terms of accuracy, which was below 0.3.

Even the LSTM trained as the dataset_portugues and

tested with our dataset (Scenario 18) had unsatisfactory

results, getting below 0.6.

This result was expected, since the amount of training

data is very small relative to the amount of parameters to be

trained (even though it does not train the embeddings in the

LSTM), which sum in this Scenario 80.602. When this type

of problem occurs, we come across a curse of

dimensionality Christopher (2016).

In Scenarios 19 to 23, we evaluated the performance

of the LSTM model using in some cases the

lemmatization technique and in Scenario 24 we

applied the dataset NAACL_SRW_2016_cleaned_pt in a

BiLSTM model. The best results achieved in terms of

accuracy were in Scenarios 21 and 24. In the first, we

tested the network by joining our dataset lemmatized as

dataset_portugues using the vocabulary of the training

data itself and reached the precision of 0.676. In the

second, the LSTM network reached 0.703. In this

scenario, the application of the GBDT resulted in the

worse performance of the network. In Scenario 21, the

network went from precision 0.0 to 0.676 only with the

use of the decision tree.

In scenario 20, note that, again, the network failed to

learn from the use of N-Grams sequences even with the

typed input data, reinforcing the clue that this type of

data representation is not suitable for recurrent models.

The result of Scenario 24 suggests that the BiLSTM

model also behaves as a cross-lingual model, confirming

our research hypothesis once again, as well as the

traditional LSTM. Its accuracy is comparable to our best

Scenario (Scenario 6), although the use of the GBDT

associated with it did not cause performance improvement.

Scenarios 1 through 4 are promising: they demonstrate

that the LSMT model addressed is robust in recognizing

hate speech even in automatically translated textit datasets,

confirming that it can be used both in Portuguese and in

English, without any special configuration.

However, performance in the following scenarios

were not as good as those 4, with some models and

preprocessing techniques notorious for achieving high

accuracy but low coverage overall. A fact that confirms

that the models are correctly classifying what in fact

considers hate speech.

The results also suggest that working on a

commentary as is with multiple types of hate speech but

treated as if they were all clean or abusive speeches can

be challenging. The various patterns inherent in each

type probably require more training and test data and

preferably data with types or subtypes of speech

compatible with each other.

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1569

Fig. 9: Scenario 6 confusion matrix using the LSTM result

It is likely that if our database contained only sexist,

racist, or clean discourses, some of the scenarios would

achieve superior accuracy and coverage when trained

with the NAACL_SRW_2016_pt database.

In summary, we verified the following items after the

experiments:

 Homogeneous bases: Based on Scenarios 1, 2, 3

and 4: Training and testing bases with the same

types of speech tend to achieve better results

 GBDTs are robust: Its boosting technique allows

you to stabilize and improve rankings even in

difficult scenarios such as those involving different

language textures, most of the time

 External vocabulary: The use of external

vocabulary, despite the computational cost when it

is very large, is decisive for vectorizing the input

data, mainly in decreasing the amount of

unrecognized words in the vectorization

 Sequence vectors of words: In isolation, they do

not represent good features for recurring models

such as LSTM

Conclusion

In this work, various models for hate speech

classification were analysed from collection of user

comments. An english database was employed to explore

different approaches of data preprocessing and vectoring.

Several cross-lingual models were trained to detect

hate speech as a general work objective. Due to the lack

of labeled datasets in Portuguese language, we created a

dataset from volunteers contributions. The experiments

were divided into scenarios to evaluate the performance

of model for each input data provided, especially for

hate speech dataset. The precision achieved is 0.720 in

hate speech assessment.

The major contribution of this work is the proposal of

techniques to automate and aid hate speech detection

from content available in social media. To fight

discriminating comments, State of Art approaches were

used to demonstrate their low effectiveness in

Portuguese language domain.

In order to do this, we explored several forms of

pre- processing and vectoring of the datasets used and

those submitted to the LSTM model and its variant,

BiLSMT. By the detection of which approaches

represented by the 24 scenarios created were the most

promising within the scope of our work, they serve as a

reference for other researchers.

In summary, our contributions were: (i) training of

cross-lingual models through the use of an English

database for automatic classification of hate speech in

Portuguese, despite the lack of this language datasets (ii)

determination of the most promising pre-processing and

vectorization techniques using dataset in English,

serving as a reference to researchers in area detection

of hate speech interested in cross-lingual models.
As future work, we consider the research of features

of semantic nature as a bias for the classification of hate

speech. Some articles found use semantic information to

iteratively find more sentences similar to those already

466 67

465 26

Class expected

Clean

Abusive

Class predicted

Abusive

Clean

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1570

found based on words enriched by WordNet

information, for example.
In addition, since labelled hate speech corpus is

extremely rare, working with unsupervised or semi-
supervised learning as in Xu et al. (2017) seems quite
adequate for pre-identification of abusive comments.
Another very promising area is the semantic frames
Barreira et al. (2017). They are ideal for problems such
as identifying hate speech, both for not requiring huge
databases and for easily identifying new patterns of
discrimination and offense, a feature that is appreciated
since variation in language and hate speech varies
constantly in the digital world.

Acknowledgment

The authors thank CAPES and FAPITEC-SE for the
financial support [Edital CAPES/FAPITEC/SE No
11/2016 - PROEF, Processo 88887.160994/2017-00].
The authors also thank FAPITEC-SE for granting a
graduate scholarship to Flávio Santos and CNPq for
granting a productivity scholarship to Hendrik Macedo
[DT-II, Processo 310446/2014-7]. Finally, the authors
thank the research group Ludii.co/DCOMP/UFS.

Author’s Contributions

Thiago D. Bispo: Bibliographic review,
development, execution and validation of experiments;
manuscript writing.

Hendrik T. Macedo: Principal advisor of work and
scope delimitation; manuscript writing.

Flávio de O. Santos: Assistance in theory and
practice related to experiments; implementation and
validation of codes used for training.

Rafael P. da Silva and Adolfo Guimarães:
Assistance in theory and practice related to experiments.

Leonardo N. Matos, Bruno O.P. Prado and Gilton
J.F. da Silva: Assistance in theory and practice related
to experiments; manuscript writing.

Ethics

This paper is original with unpublished material. The

corresponding author confirms that this manuscript has

not been published elsewere and that no ethical issues

are involved.

References

Alpaydin, E., 2014. Introduction to machine learning.

MIT Press.

Badjatiya, P., S. Gupta, M. Gupta and V. Varma, 2017.

Deep learning for hate speech detection in tweets.

Proceedings of the 26th International Conference on

World Wide Web Companion, Apr 03-07, Perth,

Australia, pp: 759-760.

 DOI: 10.1145/3041021.3054223

Barreira, R., V. Pinheiro and V. Furtado, 2017.

Framefor-uma base de conhecimento de frames

semânticos para perícias de informática (framefora

knowledge base of semantic frames for digital

forensics) [in portuguese]. Proceedings of the 11th

Brazilian Symposium in Information and Human

Language Technology, (HLT’ 17), pp: 171-180.

Breiman, L., 2001. Random forests. Machine Learn., 45:

5-32.

Cavalcante Segundo, A.D.H., 2016. Questão de

Opinião? Lumen Juris.

CCET-UFS, 2017. Laboratório de computação alto

desempenho. Laboratório de Computação Alto

Desempenho, Universidade Federal de Sergipe.

Christopher, M.B., 2016. Pattern Recognition and Machine

Learning. 1st Edn., Springer, New York,

 ISBN-10: 1493938436, pp: 738.

Da Silva, R.P., F.A.O. Santos, F.B. do Nascimento and

H.T. Macedo, 2018. Cross-Language Approach for

Sentiment Classification in Brazilian Portuguese

with Convnets. In: Information Technology - New

Generations, Latifi, S. (Ed.), Springer International

Publishing, Cham, ISBN-13: 978-3-319-77027-7,

pp: 311-316.

Djuric, N., J. Zhou, R. Morris, M. Grbovic and V.

Radosavljevic, 2015. Hate speech detection with

comment embeddings. Proceedings of the 24th

International Conference on World Wide Web, May

18-22, ACM, Florence, Italy, pp: 29-30.

 DOI: 10.1145/2740908.2742760

Fortuna, P.C.T., 2017. Automatic detection of hate

speech in text: an overview of the topic and dataset

annotation with hierarchical classes.
Friedman, J., T. Hastie and R. Tibshirani, 2001. The

Elements of Statistical Learning. 1st Edn., Springer,
New York, ISBN-13: 978-0-387-84858-7, pp: 748.

Friedman, J.H., 2002. Stochastic gradient boosting.

Comput. Stat. Data Anal., 38: 367-378.

 DOI: 10.1016/S0167-9473(01)00065-2

Gao, L. and R. Huang, 2017. Detecting online hate

speech using context aware models. Arxiv preprint

arXiv: 1710.07395.

Goodfellow, I., Y. Bengio and A. Courville, 2016. Deep

learning. MIT Press.

Hao, P.Y., J.H. Chiang and Y.K. Tu, 2007.

Hierarchically SVM classification based on support

vector clustering method and its application to

document categorization. Expert Syst. Applic., 33:

627-635. DOI: 10.1016/j.eswa.2006.06.009

Hartmann, N., E. Fonseca, C. Shulby, M. Treviso and J.

Rodrigues, 2017. Portuguese word embeddings:

Evaluating on word analogies and natural language

tasks. arXiv preprint arXiv:1708.06025.

Hochreiter, S. and J. Schmidhuber, 1997. Long short

term memory. Neural Comput., 9: 1735-1780.

Thiago D. Bispo et al. / Journal of Computer Science 2019, 15 (10): 1546.1571

DOI: 10.3844/jcssp.2019.1546.1571

1571

Jaouedi, N., N. Boujnah and M.S. Bouhlel, 2019. Deep

learning approach for human action recognition

using gated recurrent unit neural networks and

motion analysis. J. Comp. Sci., 15: 1040-1049.

 DOI: 10.3844/jcssp.2019.1040.1049

Kuhn, M., 2008. Building predictive models in r using

the caret package. J. Stat. Software, 28: 1-26.

Liu, S., N. Yang, M. Li and M. Zhou, 2014. A recursive

recurrent neural network for statistical machine

translation. Proceedings of the 52nd Annual Meeting

of the Association for Computational Linguistics,

(ACL’ 14), Association for Computational

Linguistics, Baltimore, Maryland, pp: 1491-1500.

Marsland, S., 2014. Machine Learning: An Algorithmic

Perspective. CRC Press, ISBN-13: 9781466583283,

pp: 457.

Martin, J.H. and D. Jurafsky, 2009. Speech and

Language Processing: An Introduction to Natural

Language Processing, Computational Linguistics

and Speech Recognition. 1st Edn., Upper Saddle

River, ISBN-10: 0131873210, pp: 988.

Mikolov, T., K. Chen, G. Corrado and J. Dean, 2013.

Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781.

Moura, M.A., 2016. O Discurso do Ódio em Redes

Sociais. Lura Editorial (Lura Editoração Eletrônica

LTDA-ME).

Nobata, C., J. Tetreault, A. Thomas, Y. Mehdad and Y.

Chang, 2016. Abusive language detection in online

user content. Proceedings of the 25th International

Conference on World Wide Web, Apr. 11-15,

International World Wide Web Conferences

Steering Committee, Canada, Montréal, Québec,

Canada, pp: 145-153.

 DOI: 10.1145/2872427.2883062

Park, J.H. and P. Fung, 2017. One-step and two-step

classification for abusive language detection on

twitter. arXiv preprint arXiv:1706.01206

Pennington, J., R. Socher and C. Manning, 2014.

Glove: Global vectors for word representation.

Proceedings of the Conference on Empirical

Methods in Natural Language Processing, (NLP’

14), Association for Computational Linguistics,

Doha, Qatar, pp: 1532-1543.

Praseetha, V.M. and S. Vadivel, 2018. Deep learning

models for speech emotion recognition. J. Comput.

Sci., 14: 1577-1587.

 DOI: 10.3844/jcssp.2018.1577.1587

Schmidt, A. and M. Wiegand, 2017. A survey on hate

speech detection using natural language processing.

Proceedings of the 5th International Workshop on

Natural Language Processing for Social Media,

(PCM’ 17), Association for Computational

Linguistics, Valencia, Spain, pp: 1-10.

Silva, L.A., M. Mondal, D. Correa, F. Benevenuto and I.

Weber, 2016. Analyzing the targets of hate in online

social media. Proceedings of the 10th International

Conference on Web and Social Media, May 17-20,

AAAI Press, Cologne, Germany, pp: 687-690.

Singhal, P. and P. Bhattacharyya, 2016. Sentiment

analysis and deep learning: a survey.

Sutton, C.D., 2005. Classification and regression trees,

bagging and boosting. Handbook Stat., 24: 303- 329.

DOI: 10.1016/S0169-7161(04)24011-1

Waseem, Z. and D. Hovy, 2016. Hateful symbols or

hateful people? predictive features for hate speech

detection on twitter. Proceedings of the NAACL

Student Research Workshop, (SRW’ 16),

Association for Computational Linguistics, San

Diego, California, pp: 88-93.

Xu, Z., J. Li, B. Liu, J. Bi and R. Li et al., 2017. Semi-

supervised learning in large scale text

categorization. J. Shanghai Jiaotong Univ., 22:

291-302. DOI: 10.1007/s12204-017-1835-3

