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Abstract: Beta-turns are considered to be important secondary structure 

types that have essential role in molecular recognition, protein folding 

and stability. They represent 25% of protein structures, therefore they 

are the most common type of non-repetitive or tight turns structures. 

Their prediction is considered to be an important issue in bioinformatics 

and molecular biology, because it provides valuable information and 

inputs for the fold recognition and drug design. There are many machine 

learning and statistical based approaches that were designed to predict 

beta-turns. Among the successful approaches that are based on machine 

learning are the approaches that used Neural Networks (NNs) and 

Support Vector Machines (SVMs) methods. These approaches used 

different features and features organizations. Among the most usable 

features in beta-turns prediction are the Position Specific Scoring 

Matrices (PSSMs) and the predicted secondary structure. This work 

gives a review of the most successful methods that are used for beta-

turns prediction and the features as well as the organizations of these 

features that they used. 

 

Keywords: Beta-Turns, Position Specific Scoring Matrices, Predicted 

Secondary Structure, Predicted Shape String 

 

Introduction 

Secondary structure of proteins is considered to be 

an important topic in bioinformatics and it consists of 

alpha-helices, beta-sheets, random coils and turns. 

Alpha-helices and beta-sheets are considered as 

regular secondary structure, because they are 

sequences of residues with repeating φ and ψ values. 

The residues that correspond to turns structures do not 

form a regular secondary structure. In turns structures 

the Calpha-atoms of two residues are separated by one 

to five peptide bonds and the distance between these 

Calpha-atoms is less than 7A°. The number of peptide 

bonds that separate the two end residues determines 

the specific turn type. In alpha-turns and beta-turns, 

the two end residues are separated by four and three 

peptide bonds respectively. In gamma-turns, delta- 

turns and pi-turns, the two end residues are separated 

by two, one and five peptide bonds respectively. 

Beta-turns are the most common type of turn structures 

since they represent 25% of the secondary structure of the 

protein sequence. They have the ability to bring together 

and allow the interaction between the regular secondary 

structures elements thus their prediction is of significance 

to protein folding (Petersen et al., 2010). Beta-turns are 

also important in the biological activities of peptides as the 

bioactive structures that interact with other molecules such 

as receptors, enzymes and antibodies and they are 

important in the design of various peptidomimetics for 

many diseases (Kee and Jois, 2003; Zheng and Kurgan, 

2008). Therefore, the prediction of beta-turns is important 

for providing valuable insights and inputs for the fold 

recognition as well  as  drug  design. The beta-turns are 

not only two states classification problem but it can be 

further classified to 9 types according to the dihedral 

angles of residues i + 1 and i + 2 in the turn structure 

(Hutchinson and Thornton, 1994). The following Table 1 

shows the dihedral angles of beta-turns types. 
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Table 1: The average values of the dihedral angles of β-turn 
types 

 Dihedral angles (°) 
 --------------------------------------------------------- 

Turn type i +1 ψi +1 i +2 ψi +2 

I -60 -30 -90 0 

I’ 60 30 90 0 
II -60 120 80 0 
II’ 60 -120 -80 0 
IV -61 10 -53 17 
VIa1 -60 120 -90 0 
VIa2 -120 120 -60 0 

VIb -135 135 -175 160 
VIII -60 -30 -120 120 

 

The methods that are used for beta-turns prediction can 

be categorized as statistical based methods and machine 

learning based methods. The statistical based methods 

include (Chou and Fasman, 1974; Wilmot and Thornton, 

1988; 1990; Chou, 1997; Chou and Blinn, 1997; Zhang and 
Chou, 1997; Fuchs and Alix, 2005). The machine learning 

methods are found to be the most successful methods, 

because they can handle the nonlinearity in the data very 

well. Most of the successful machine learning methods 

that are used for beta-turns prediction are based on Neural 

Networks (NNs), Support Vector Machines (SVMs) and 

k-nearest neighbour methods. The methods that use NNs 

include McGregor et al. (1989), BTPRED (Shepherd et al., 

1999), BetaTpred2 (Kaur and Raghava, 2003), 

MOLEBRNN (Kirschner and Frishman, 2008) and 

NetTurnP (Petersen et al., 2010) and that which use 

SVMs methods include BTSVM method (Pham et al., 
2003), the work of Zhang et al. (2005), Zheng and 

Kurgan’s (2008), Hu and Li’s (2008),  the method of  

Liu et al. (2009), DEBT (Kountouris and Hirst, 2010), the 

method of Tang et al. (2011), our own work H-SVM-LR 

(Elbashir et al., 2013a) and Nguyen et al. (2014). The 

methods that are based on k-nearest neighbour include 

the work of Kim’s (2004). 
The features are very important inputs for prediction 

or classification using machine learning or statistical 
methods. Extracting or selecting the most informative 
features leads to high classification performance. 
Selecting the most informative features requires the 
experimentation of many features. Also some of the 
features may be combined together to enhance the 
accuracy of the machine learning methods. As shown in 
the previous paragraph, there are many researches that 
developed methods or techniques for beta-turns 
prediction. These methods used different features and 
features combinations. The common used features is the 
Position Specific Scoring Matrices (PSSMs). Since there 
is intercorrelation between various structural features of 
protein, secondary structure information has been widely 
used as an additional features and it enhances the 
prediction accuracy substantially. Recent researches 
added other features such as surface accessibility, 

predicted protein block, predicted backbone dihedral 
angle and predicted shape string. 

Dataset and Performance Measures 

There are many datasets that are used for the 

evaluation of beta-turns prediction methods. The most 

commonly used dataset in almost all of the recent 

researches is BT426 dataset therefore, the results that are 

pointed out in this paper are based on it. BT426 dataset 

has 426 non-homologous protein chains. It was 
developed by Guruprasad and Rajkumar (2000). X-ray 

of crystallography at two resolution or better is used to 

determine the structures of all the proteins chains in 

BT426 dataset. Each of these chains contains at least one 

beta-turns structure. 24.9% (approximately 25%) of all 

amino acids in BT426 have a beta-turns structure. The 

dataset can be downloaded from the link 

http://crdd.osdd.net/raghava/bteval/. The most frequently 

measures that are used to evaluate beta- turns prediction 

methods are the prediction accuracy and Matthew’s 

correlation coefficient (MCC). It is important to use 
MCC with the accuracy because of the imbalanced 

dataset (25% beta-turns versus 75% non-beta-turns), 

where it is possible to achieve an accuracy of 75% by 

predicted all the residues to be non-beta-turns. In this 

paper the results of the prediction methods are based on 

these two measures. 

Basic Sequence Information and Reliability 

Indices 

The basic sequence information are normally 

obtained by encoding the protein sequence such that 

every amino acid type is represented by a single one 

according to its position in a row composed of 20 

positions that represents the 20 amino acids, e.g., alanine, 
which is located in the first position is represented by 

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0. The predicted 

three secondary structures alpha helix, beta-sheets and 

coil are normally encoded as 1,0,0 and 0,1,0 and 0,0,1 

respectively. The basic sequence information in addition 

with a secondary structure information which obtained 

using the reliability indices is used by Shepherd et al. 

(1999) to predict beta-turns. The reliability indices are 

the strengths of the prediction for each of the three target 

secondary structures states. They are represented by 

three integers in the range 0-9 and each index is divided 

by 10 to get three real numbers between 0 and 1 for each 
predicted secondary structure state. Shepherd et al. 

used a window size of 9 with 23 network inputs per 

window position (20 for the amino-acid information 

plus 3 for the secondary-structure information) to 

accomplish the prediction task. With filtering strategy, 

the accuracy and MCC of their methods are 74.9, 0.348 

respectively. Shepherd et al. used a window size of 

http://crdd.osdd.net/raghava/bteval/
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four on amino acid information only as an input to 

single layer net to predict the different types of beta-

turns, they obtained an accuracy and MCC pairs of 

(91.2, 0.219), (95.5, 0.253), (95.7, 0.062), (96.8, 0.033) 
on types I, II, VIII, IV respectively. 

PSSMs and Predicted Secondary Structure 

PSSMs are M by 20 matrices, where M represents the 

sequence length and the number 20 refers to the 20 

amino acids positions. These matrices are normally 

generated using PSI-BLAST (Altschul et al., 1997) using 
many rounds against specific sequence database. The 

widely used sequence database for generating them for the 

purpose of beta-turns prediction is the (NCBI) none 

redundant (nr) database. Beta-turns prediction is enhanced 

significantly using PSSM therefore many researchers used 

it in their prediction methods whether alone or in 

combination with other features. Kirschner and Frishman 

(2008) used two neural networks that derived from the 

Elman network (Elman 1990). These two NNS are used 

in ensemble manner in which the first NN is fed with 

PSSM of the sequence. The output of the first layer is fed 

to the second layer (structure to structure) to recognize 
beta-turns. They utilized a post-scaling by applying 

adjustable threshold on the output of the network to filter 

the prediction. The post-scaling (Montavon et al., 2012) is 

used to handle the unbalanced class distribution problem. 

The two stages neural network that is used by Andreas 

Kirschner and Dmitrij Frishman was adopted in 

bioinformatics by (Qian and Sejnowski, 1988; Rost and 

Sander, 1993; Adamczak et al., 2005). Their two stages 

neural networks obtained accuracy and MCC of 77.9 and 

0.45 respectively. For the beta-turns types they used the 

threshold to obtain two results for their prediction one 
that maximizes the MCC and the other is a tradeoff 

between the MCC and the accuracy and their results are 

as follows: For type I by maximizing the MCC, the 

accuracy = 82.5 and MCC = 0.317, by using the tradeoff, 

the accuracy = 85.4 and MCC = 0.314. For type II the 

results of maximizing the MCC and the trade of are the 

same, the accuracy = 96.2 and MCC = 0.339. For type 

VIII by maximizing the MCC, the accuracy = 53.4 and 

MCC = 0.109, by using the tradeoff, the accuracy = 93.0 

and MCC = 0.076. For type IV by maximizing the MCC, 

the accuracy = 72.3 and MCC = 0.236, by using the 

tradeoff, the accuracy = 85.2 and MCC = 0.196. For type 
I’, the results of maximizing the MCC and the trade of 

are the same, the accuracy = 98.8 and MCC = 0.356. 

And for type II’, the results of maximizing the MCC and 

the trade of are the same as well, the accuracy = 98.6 and 

MCC = 0.137. 

Almost all of the recent researches combined the 

predicted secondary structure with PSSM to enhance the 

prediction accuracy. These researches used different 

secondary structure organizations. Zhang et al. (2005) 

used a window size of 7 on the PSSM and then added the 

secondary structure prediction. The total features that 

they used is 143. The accuracy and MCC that they 

obtained are 74.8% and 41% respectively. 
Kaur and Raghava (2003) used two feed-forward 

back- propagation networks with a single hidden layer. 

They used a window size of 9 residue on the PSSM as an 

input to their networks. Both of their networks have a 

single hidden layer with 10 units. The prediction results 

of their first network, which is turn/non-turn (0 or 1) is 

combined with the probabilities of the predicted 

secondary structure (3 states) to form 4 units code, which 

is used as an input for the second network. The three 

structures states are provided by PSIPRED prediction 

method (Jones, 1999). The probabilities represent the 
strength of the prediction and they are in the range of 0-

1. Harpreet Kaur and Gajendra Pal Singh Raghava 

filtered the final result of the prediction using a filtering 

strategy to calculate the final accuracy and MCC, which 

are found to be 75.5% and 43% respectively. 

Zheng and Kurgan (2008) developed a method, which 

is considered to be the first to break the 80% accuracy 
barrier. They used sliding window of 7 to extract the 

features from PSSM. They employed four prediction 
methods to obtain the secondary structure features. These 

four methods are PSIPRED v2.5 (McGuffin et al., 2000; 
Bryson et al., 2005), JNET (Cuff and Barton, 2000), 

TRANSSEC (Montgomerie et al., 2006) and 
PROTEUS2 (Montgomerie et al., 2006). Each one of the 

four methods produces 3 features, where each represent 
specific structural states. The total number of the features 

generated from the four methods is 3×4 = 12. The 
confidence score of each one of the four prediction 

methods is added to the features vector after dividing it by 
10. The confidence score added another 4 features to the 

feature vector. A binary value representing a specific 
arrangement of the secondary structure predicted with the 

four prediction methods for the central and the two 
adjacent residues is considered in the features vector. This 

binary value is calculated as follows: If the central amino 
acids is predicted as C then the two adjacent residues can 

be C and C this will form CCC arrangement, if one of 
them is C and the other one is either H or E and if X is 

assumed to be the set (E, H) then the resulted arrangement 
will be CCX, or XCC. If both of the adjacent residues are 

not C, this will result in the arrangement XCX. The total 
number of features produced by the binary number 

which represents specific arrangement of the secondary 
structure will be 4(number of prediction methos) * 3 (the 

three secondary structures states) * 4 (the pattens CCC, 
CCX, XCC, or XCX), which is equals to 48 features. 

Lastly Zheng C, Kurgan added the ratio between the 
number of residues in a given secondary structures and 

the window size, this will add additional 12 features. The 
same features organization that is used by Zheng C, 

Kurgan L is adopted by Elbashir et al. (2013b) for 
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predicting beta-turns in protein using Kernel logistic 
regression. Elbashir et al. obtained accuracy and MCC of 

80.7 and 0.50 respectively. 
Our own method (Elbashir et al., 2013a) used PSSMs 

and predicted secondary structure to predict the beta-

turns. Because the training sets used for beta-turns 

prediction are imbalanced sets 1:3 for beta-turns and 

non-beta-turns, a clustered model is used. In the cluster 

model the non-beta-turns are clustered into 3 clusters and 

each cluster is used with the beta-turns cluster to form a 

balanced set that can be used to train three localized 

SVMs. Each localized SVM produce beta-turns and non- 
beta-turns predictions. The outputs of the three SVMs 

are combined to form a single beta-turn/non-turn output 

using fractional polynomial. The method tried different 

PSSMs and secondary structure organization i.e., using 

a sliding window on the PSSMs and then add the 

predicted secondary structure or using a sliding window 

on both PSSMs and predicted secondary structure. It 

was found that using sliding window on both PSSMs and 

predicted secondary structure produces the best results. 

Our own method obtained an accuracy and MCC of 

82.87 and 0.56 respectively. 

PSSMs, Predicted Secondary Structure and 

Surface Accessibility 

Petersen et al. (2010) designed a method that consists 

of two layers of artificial neural networks. They utilized 

PSSMs, predicted secondary structure and surface 

accessibility, which is the surface area of a biomolecule 

that is accessible to a solvent as an input for the first 

layer Networks. The first layer networks consists of five 

network one of them is to predict whether an amino acid 

has beta-turn confirmation or not and the other four are 

used for predicting the position of the amino acid in the 

beta-turns confirmation (position1, position2, position3, 

position4). The surface accessibility is predicted using 

NetSurfP (Petersen et al., 2009), NetsurfP uses primary 

network that accepts PSSMs and secondary structure and 

produces 'B/E Classification' which refer to the raw 

buried/exposed. The output of the primary network is 

used with the PSSMs to form an input for the secondary 

network, which predict the buried/exposed of the given 

amino acid. The output from the first layers networks, 

which compose of five networks is used again with the 

secondary structure and surface accesability as an input 

to the second layer network to produce the final beta-

turn/non-turn prediction. The method of Petersen et al. 

reached accuracy and MCC of 78.2% and 50% 

respectively. Petersen et al. used the same method of the 

first NN layer to predict the beta-turns types. Their 

prediction shows a MCC of 0.36, 0.23, 0.31, 0.16, 0.27, 

0.16 on the types I, I', II, II', IV and VIII respectively. 

PSSMs, Predicted Backbone Dihedral Angle 

and Secondary Structure 

There is a high correlation between backbone 

dihedral angles and the secondary structure elements of 

the protein so they can be combined together in a feature 

matrix to enhance the predictions. Kountouris and Hirst 

(2010) added another features to the PSSM and predicted 

secondary structure, which is the seven state predicted 

dihedral angle that obtained from DISSPred 

(Kountouris and Hirst, 2009). DISSPred is also used to 

predict the three state secondary structures elements. They 

used a sliding window of nine on the PSSM to obtain 

(9×20 = 180) dimension vector. The window size that is 

used on the three predicted secondary structures states and 

the seven state predicted dihedral angle is five. These 

features add (3×5+7×5 = 50) dimension vector. So a 230 

dimension vector is used as an input to their classifier 

which is a SVM classifier. They obtained accuracy and 

MCC after filtering the final prediction of 79.2% and 0.48 

respectively. The same features that are used as input to 

predict beta-turn/non-turn structure are supplied to SVMs 

classifiers to recognize the different types of beta-turns 

and the accuracies obtained are 78.6, 87.4, 71.5, 71.1, 97.6 

for types I, II, IV, VIII, NS respectively, where the other 

types are combined in type NS. 

PSSMs, Predicted Secondary Structures and 

Predicted Shape String 

Tang et al. (2011) and our own method (Elbashir et al., 

2013a) utilized shape strings together with PSSM and 

predicted secondary structure to predict beta-turns in 

protein both Tang et al. and our method are SVM 

methods. The shape strings can be predicted from a 

predictor constructed based on structural alignment 

approach. The eight states S, R, U, V, K, A, T and G 

represents the shape strings of a protein. A detailed 

information about protein structure including random 

coil in which beta-turn is located can be provided by 

shape strings. This can make them as important 

component that can be used to predict beta- turns. Both 

of the methods used protein shape string and its Profile 

Prediction Server (DSP) (Sun et al. 2012) to obtain the 

predicated shape strings. The eight states of the shape 

string are encoded using the binary encoding schema. In 

parts of proteins sequence there can be a location where 

the j and ψ angles are undefined, or the structure 

determination for it may be unknown. For these specific 

parts the DSP server defines additional shape N. an 

example for the binary encoding schema where the shape 

is S is (1 0 0 0 0 0 0 0 0) and where the shape is N is (0 0 

0 0 0 0 0 0 1). In our method (Elbashir et al., 2013a) we 
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used a cluster model to deal with the imbalance problem 

in predicting beta-turns. In the cluster model the non-b-

turns set is divided into a three subsets by k-means 

clustering algorithm and then three SVMs are used, each 

of them used one cluster of the non-beta-turns against the 

beta-turns and then a logistic regression model, modeled 

using fractional polynomial is used to aggregate the results 

of the three SVMs. The accuracy and MCC achieved 

using our own method are 87.37 and 0.67 respectively. 

PSSM, Predicted Shape String and 

Predicted Protein Block 

In addition to PSSM and predicted shape string, Lan 
Anh T. Nguyen et al., added predicted protein block (de 
Brevern et al., 2000; de Brevern, 2005; Joseph et al., 
2010), which they obtained from the web site of PB-
kPRED. Sixteen pentapeptide motifs with labels A, B, 
C, D, E, F, G, H, I, J, K, L, M, N, O and P determine 
the structural alphabet of the predicted protein block 
(de Brevern et al., 2000; de Brevern 2005; Tyagi et al., 
2006). To deal with imbalance problem in predicting 
beta-turns (25% turn vs 75% non-turn), Lan Anh T. 
Nguyen et al used oversampling technique with SVM as 
a base classifier. They used a window size of 9 on the 
PSSM, predicted shape string and predicted protein 
blocks and obtained accuracy and MCC of 87.48 and 
0.66 respectively. For bet-turns types prediction they 
combined types VIa1, VIa2 and VIb in one type named 
VI that is because types VIa1, VIa2 and VIb are rare 
(Chou, 2000). Lan Anh T. Nguyen et al. obtained an 
accuracy of 93.45, 99.28, 97.90, 99.44, 90.18, 98.07, 
90.18 on types I, I’, II, II’, IV, VI, VIII respectively. And 
MCC of 0.61, 0.75, 0.75, 0.64, 0.38, 0.14, 0.30. 

Discussion 

The methods that are applied on beta-turns prediction 

and their types use different proteins sequence features. 

These features include the basic sequence information, 

PSSMs, predicted secondary structure, predicted 

dihedral angle and predicted surface accessibility and the 

predicted shape string. Table 2 summarizes the results of 

predicting beta-turns that are obtained by the different 

prediction methods together with the features they used, 

while Table 3 summarizes the results of predicting beta-

turns types that are obtained by the different prediction 

methods and the features they used. PSSMs are proved 

to be having a significant contribution in accuracy of 

beta-turns prediction compared to the basic sequence 

information. Therefore, PSSMs are used in almost all of 

the most successful methods that are constructed for 

beta-turns predictions. In most of the successful beta-

turns predictions methods, PSSMs are generated using 

several rounds of the PSI-BLAST program (Altschul et 

al., 1997) against National Center for Biotechnology 

Information (NCBI) nonredundant (nr) database. A 

window based approach is used to compose the input 

vector from the PSSM. Some of the methods used a 

window size of 9 whereas most of the methods used a 

window size of 7. Figure 1 depicts the use of window 

size of 7 on a PSSM. 

Most of the successful methods used an equation to 

scale the value of the PSSMs to a range between 0 and 1. 

Predicted secondary structures are combined with 

PSSMs to enhance the prediction accuracy. This 

combination is organized differently in the researches. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1: A window size of 7 on a PSSM 
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Table 2: The results of predicting beta-turns that are obtained by the different prediction methods and the features used 

Prediction method Features used Accuracy MCC 

Shepherd et al. (1999) Basic Sequence information and reliability indices 74.9% 0.35 
Kirschner and Frishman (2008) PSSMs 77.9% 0.45 
Zhang et al. (2005) PSSMs and predicted secondary structure 74.8 % 0.41 
Kaur and Raghava (2003) PSSMs and predicted secondary structure 75.5% 0.43 
Zheng and Kurgan (2008) PSSMs and predicted secondary structure 80.7% 0.50 
Elbashir et al. (2013a) PSSMs and predicted secondary structure 82.87% 0.56 
Petersen et al. (2010) PSSMs, Predicted secondary structure and surface ccessibility 78.2% 0.50 
Kountouris and Hirst (2010) PSSMs, Predicted backbone dihedral angle and secondary structure. 79.2% 0.48 
Tang et al. (2011) PSSMs, Predicted secondary structures and predicted shape string 87.2% 0.66 
Elbashir et al. (2013a) PSSMs, Predicted secondary structures and predicted shape string 87.37 0.67 
Nguyen et al. (2014) PSSM, predicted shape string and predicted protein block. 87.48 0.66 
 
Table 3: The results of predicting beta-turns types that are obtained by the different prediction methods and the features used 

Prediction method Features used Beta-turns Type Accuracy MCC 

Shepherd et al. (1999) Basic Sequence information I 91.2% 0.219 
 and reliability indices II 95.5% 0.253 
  VIII 95.7% 0.062 
  IV 96.8% 0.033 

Kirschner and Frishman PSSM I 82.5% 0.317 
(2008)  (Maximizing MCC) 
  I 85.4% 0.314 
  (tradeoff between the MCC and the accuracy) 
  II 96.2% 0.339 
  (Maximizing MCC) 

  II 96.2% 0.339 
  (tradeoff between the MCC and the accuracy) 
  VIII 53.4% 0.109 
  (Maximizing MCC) 
  VIII 93.0% 0.076 
  (tradeoff between the MCC and the accuracy) 

  IV 72.3% 0.236 
  (Maximizing MCC) 
  IV 85.2% 0.196 
  (tradeoff between the MCC and the accuracy) 
  I’ 98.8% 0.356 
  (Maximizing MCC) 

  I’ 98.8% 0.356 
  (tradeoff between the MCC and the accuracy) 
  II’ 98.6% 0.137 
  (Maximizing MCC) 
  II’ 98.6% 0.137 
  (tradeoff between the MCC and the accuracy) 

Petersen et al. (2010) PSSMs, Predicted secondary I, N/A 0.36 
 structure and surface I' N/A 0.23 
 accessibility II N/A 0.31 
  II' N/A 0.16 
  IV N/A 0.27 
  VIII N/A 0.16 

Kountouris and Hirst PSSMs, Predicted backbone I 78.6% N/A 
(2010) dihedral angle and secondary II 87.4% N/A 
 structure IV 71.5% N/A 
  VIII 71.1% N/A 
Nguyen et al. (2014) PSSM, predicted shape string I 93.45% 0.61 
 and predicted protein block. I’ 99.28% 0.75 

  II 97.90% 0.75 
  II’ 99.44% 0.64 
  IV 90.18% 0.38 
  VI 98.07% 0.14 
  VIII 90.18% 0.30 

 
Some of the researcher used a sliding window on the 

PSSMs only and then the three state secondary structures 

are attached to the feature vector, where others used a 

sliding window on both PSSMs and predicted secondary 

structures. In our own work (Elbashir et al.. 2013), we tried 

both of these organizations and we found that using sliding 

window on Both PSSMs and predicted secondary structures 

gives better classification results. The method that is 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Kaur%20H%5BAuthor%5D&amp;cauthor=true&amp;cauthor_uid=12592033
https://www.ncbi.nlm.nih.gov/pubmed/?term=Raghava%20GP%5BAuthor%5D&amp;cauthor=true&amp;cauthor_uid=12592033


Murtada Khalafallah Elbashir Elfaki / Journal of Computer Science 2019, 15 (9): 1331.1340 

DOI: 10.3844/jcssp.2019.1331.1340 

 

1337 

constructed by Zheng and Kurgan (2008) was the first 

method to predict beta-turns at over 80% accuracy. This 

method used four protein secondary structure prediction 

methods to extract several secondary structure information 
and then combine these information with the PSSMs in 

different organization. Figure 2 to 5 show this 

combinations. Figure 2 depicts the secondary structure 

features that are extracted from the four secondary structure 

prediction methods (PSIPRED, JNET, TRANSEC and 

PROTEUS). Figure 3 shows the confidence value of the 

central residue for each of the prediction method, which are 

used as features in addition with the secondary structure 

features. Figure 4 shows the binary values representing a 

specific arrangement of the secondary structure predicted 

with the four prediction methods for the central and the two 
adjacent residues, in the figure TRANSEC is shown as an 

example of the prediction methods. Figure 5 shows the 

features that are taken from the ratio between the number of 

residues in a given secondary structures and the window 

size for each of the prediction method. 
 

 
 
Fig. 2: Secondary structure prediction for each of the 

prediction method 
 

 
 
Fig. 3: The confidence value of the central residue for each of 

the prediction method 

A great leap in the prediction of beta-turns was 
obtained after adding the predicted shape string of the 
protein to the PSSM and the predicted secondary 
strictures to form the input features. The accuracy and 
The MCC that were obtained after adding the predicted 
shape string of the protein are more the 87% and 55% 
respectively. Figure 6 shows how the PSSMs, predicted 
secondary structures and the predicted shape string 
features are represented. 
 

 
 
Fig. 4: Binary values representing a specific arrangement of 

the secondary structure predicted with the four 
prediction methods for the central and the two 
adjacent residues (the figures shows the prediction 
using TRANSEC) 

 

 
 
Fig. 5: The ratio between the number of residues in a given 

secondary structures and the window size for each of 
the prediction method 
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Fig. 6: PSSMs created using PSI-BLAST, PSS predicted using Proteus and the shape strings predicted using the protein shape string 

and its profile prediction server (DSP) 
 

de Brevern (2016) extended the classical classification 
(Venkatachalam, 1968; Richardson, 1981; Chan et al., 
1993; Hutchinson and Thornton, 1996) of beta-turns types 
by adding additional beta-turn types. Shapovalov et al. 
(2019) defined new 18 turn types. These new added beta-
turns types should be considered in future researches that 
predict beta-turns types in proteins. Deep learning, which 

is a rapidly growing research area and many NN 
architectures are designed to implement it awaits wide 
applications in bioinformatics (Zhang and Rajapakse, 
2009). Its NN architectures consist of multiple nonlinear 
layers and there are several types of these architectures 
according to the input characteristic and the objectives for 
which it is designed (Liu et al., 2017). Deep learning can 
make a breakthrough in beta-turns prediction, because the 
features will be automatically created by the NN when it 
learns, but this does not mean that obtaining features and 
pre-process it is totally irrelevant. Extracted features 
such as PSSMs and predicted secondary structures can 

be used as an input for deep learning algorithms to ease 
difficulties from complex biological data and improve 
performance (Zhang and Rajapakse 2009). 

Conclusion 

The protein secondary structure is considered to be the 

base of analyzing the functional properties of the protein. 

These functional properties depend on the protein three- 

dimensional structure. The beta-turns is the most 

important part of protein secondary structure, therefore 

their prediction is crucial for the advancement in protein 

folding and drug design. The methods that are designed 

for beta-turns prediction used different kinds of features. 

The most used features in the recent prediction methods 

is the PSSMs. Although beta-turns itself is one of the 
secondary structures types, the predicted secondary 

structures obtained using different prediction servers are 

added to the PSSMs to form the input vector for 

prediction methods. These prediction methods used 

different PSSMs and predicted secondary structures 

organization and some of them used another secondary 

structure information combined with PSSMs and 

predicted secondary structures to form the input vector. 

Some methods used other features such as surface 

accessibility and predicted backbone dihedral angle 

combined with predicted secondary structures and 
PSSMs. The state of the art methods that obtained the 

highest classification performance have used either 

predicted shape string in a combination with PSSMs and 

predicted secondary structure or predicted protein block in 

a combination with predicted shape strings and PSSMs. 
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