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Abstract: Machine Learning (ML) can potentially enhance predictions in 

real-life domains. This study presents an evaluation and comparison of 

different ML methods which can be applied on thyroid cancer dataset, 

called Prostate, Lung, Colorectal and Ovarian (PLCO), of approximately 

155,000 participants with thyroid cancer occurrence and mortality 

incidence. The ML models are explored for predicting mortality rates of 

patients with thyroid cancer. These models include the Logistic Regression 

model (LR), K-Neighbors model (KN), Support Vector Classifier (SVC), 

Gaussian Naïve Bayes (GNB), decision tree classifier (DT), Random Forest 

classifier (RF), ada boost classifier (AdaB) and Gradient Boosting classifier 

(GB). The results reveal that AdaB and GB classifiers have the best 

performance among the models. The results also show that different 

predictive models can significantly differ with others in terms of their 

performance evaluated by various metrics. This study shows that the chosen 

parameters for classifiers will affect their performance; therefore, it is 

important to explore and evaluate them before final implementation.  
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Introduction  

Utilizing data to support decision makers and to 
create predication models is not a novel method. 
However, complexities come along with this method due 
to challenges of managing and analyzing large volumes 
of data. According to Alpaydin (2009) and Marsland 
(2015), ML is an analysis technique with a distinctive 
ability to learn from experience without explicit 
programming by humans. The two types of ML 
algorithms are supervised and unsupervised classification. 
The main objective of the supervised algorithm is to infer 
a function from labelled training dataset. By adjusting to 
the training dataset, the most optimal model can be found 
to predict unknown labels on a test set. On the other hand, 
unsupervised learning algorithms use training datasets 
with unlabelled data. They will cluster them based on 
observed similarities between the data.  

Unlike ML algorithms, statistical methods are user-

driven. The user should determine variables, functions 

and the interaction approach. This involvement could 

affect the results. Due to an automatic ML technique in 

scanning and analyzing variables, it has been considered 

a useful tool. It has led to dramatic changes in research 

and practice in all fields of science (Cukier and Mayer-

Schoenberger, 2013). In addition, because of the 

variation of data from different fields, there is no single 

model that achieves the highest accuracy of all solutions 

for all problem types. 

Utilizing ML approaches in the prediction of medical 

cases (i.e., disease, death) has attracted many researchers 

in the medical domain. In this study, the authors evaluate 

classification models using PLCO data 

(https://biometry.nci.nih.gov/cdas/learn/plco/instructions

/?type=data) for thyroid cancer occurrence and mortality 

incidence. This dataset consists of a record for 

approximately 155,000 participants and 143 features. 

This large number of participants and features highlights 

the strengths and uniqueness of the study. To the best of 

the author’s knowledge, this is the first study to evaluate 

the performance of ML classification models for 

predicting mortality rates of patients with thyroid cancer 

using a PLCO dataset. These models are LR, KN, SVC, 

GNB, DT, RF, AdaB and GB.  

Background 

The thyroid gland is a critical organ in the human 

body. This organ, which is centrally located on the 

human neck, is shaped like a butterfly. The thyroid 

creates hormones which are sent to the bloodstream to 

control the human body’s functionalities. There are 
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different diseases related to the thyroid gland. 

Hypothyroidism occurs when the bloodstream has small 

amounts of thyroid hormones. In this case, patients 

normally lose weight. Hyperthyroidism is a case in 

which high amounts of thyroid hormones exist in the 

bloodstream. Patients normally suffer from a high heart 

rate. Thyroid cancer exists when malignant cells are 

found in the tissues of the thyroid gland. This is most 

likely caused when patients have been exposed to large 

amounts of radiation. If symptom occur, including a 

lump or swelling in the neck, an investigation must be 

performed through blood tests and scans. The doctor 

may require a biopsy requiring the removal of a small 

amount of the gland’s tissue. After inserting a fine 

needle, the removed tissue is checked under a 

microscope to identify the cancer. Four types of thyroid 

cancer can be identified: (1) papillary; (2) follicular; (3) 

medullary; and (4) anaplastic. The prognosis depends on 

the cancer’s speed of growth, stage of the cancer’s spread 

to other parts of the body and the age and health of the 

patient. Cancer recovery options include four types of 

treatment based on the cancer: (1) radiation; (2) hormone 

therapy; (3) chemotherapy; and (4) surgery to remove the 

cancer through a lobectomy, near-total thyroidectomy, 

total thyroidectomy and/or lymph node dissection. 

Related Works 

Applying machine learning techniques in predicting 
various medical targets using medical datasets attract 
researchers in the medical domain. The evaluation study 
in this paper is different from the previous evaluation 
studies. It evaluates the performance of ML 
classification models for predicting mortality rates of 
patients with thyroid cancer using different dataset called 
PLCO. It is based on supervised ML methods using 
different classification models including, LR, KN, SVC, 
GNB, DT, RF, AdaB and GB on a dataset called PLCO. 
which is highly unbalanced. The designed models 
predict the mortality incidence for patient with thyroid 
cancer. In order to evaluate the classification models, 
different performance metrics is accomplished for the 
ML models trained with and without sampling.  

Some of the previous works focus on designing 
predictive models for thyroid dysfunctions (i.e. 
hypothyroidism or hyperthyroidism) using either 
supervised or unsupervised methods. Saastamoinen and 
Ketola (2006) studied results established through logical 
similarity measures in classification, namely C4.5, LDA, 
MLP and DIMLP. Medical data is retrieved from the 
UCI ML Repository. Logical comparison measures are 
used to compare the approach used in this article with 
the approach proposed by Bologna (2000). 

Prerana and Taneja (2015) predicted the analysis of 
thyroid disease using the back propagation algorithm, a 
learning algorithm of a neural network. The chosen 
algorithm consists of a propagation stage and a weight 

update. The former stage experiences forward and 
backward propagations to generate input activations and 
deltas for output and hidden neurons, respectively. The 
latter stage updates weight by multiplying output delta 
with input activation to form the gradient, as well as 
subtracting a ratio of gradient from the weight. The two 
stages are repeated until the network is satisfactorily 
performed. Gradient descent and Levenberg algorithms 
present a difference between Mean Squared Error (MSE) 
and numbers of epochs, as well as plots of variant gradient 
errors during training. As a result of the experiment, the 
Levenberg algorithm achieved a better performance in 59 
epochs as compared to a gradient decent approach. Chandel 
et al. (2016) classified thyroid disease using K-NN and 
Naïve Bayes techniques based on parameters like TSH, 
T4U and goiter. The researchers aimed to understand and 
analyze thyroid disease in association with the chosen 
parameters. The study conducted was on KEEL dataset 
using RapidMiner software 
(http://sci2s.ugr.es/keel/dataset/data/classification/thyroi
d-names.txt). To measure criteria to evaluate the 
performance of the chosen algorithms, it used Kappa, 
accuracy and classification errors. The experimental 
results indicated that the obtained accuracy of K-NN was 
comparatively higher than Naïve Bayes. Ioniţă and Ioniţă 
(2016) performed an analysis and comparison between 
ML models for classification with the following: (1) 
decision tree; (2) Naïve Bayes; (3) radial basic function 
network (RBFN); and (4) multilayer perception. The 
authors targeted hypothyroidism and hyperthyroidism. 
UCI dataset and Romanian data were used to construct 
the classifiers and perform a data analysis 
(http://tiroida.ro/). Two data mining platforms, namely 
Weka and KNIME, were used to build and test the 
classification models. A significant accuracy was 
recorded for the classification models. However, the 
decision tree beat the other with a 97% accuracy. Ahmed 
and Soomrani (2016) proposed a Thyroid Diseases 
Types Diagnostics (TDTD) framework to support 
physicians. They preprocessed the data using medical 
data cleaning (MDC) based on the algorithm of Bayesian 
isotonic regression to fill missing values and eliminate 
incomplete observations. They trained the data using 
multi- and binary support vector machine (SVM) 
algorithms to decide the occurrences of thyroid disease. 
Shaheed Muhtarma Benazir Bhutto Medical University 
(SMBBMU) medical and UCI datasets provided 
information for training and testing (the former), as well as 
for constructing a decision model to fill the omitted values 
(the latter). Precision and recall measures were calculated 
for the performance evaluation. The overall performance of 
the TDTD system was measured at 95.7%. Chandio et al. 
(2016) proposed an intelligent system for Thyroid Disease 
Visualization (TVD) to support policymakers by providing 
them with a significant observation of thyroid diseases 
between 2013 and 2022. The authors presented thyroid 
disease incidences from the last 10 years (2002-2012). The 
system was built on three phases: (1) preprocessing of 
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data; (2) construction of the decision model with Time 
Series Regression (TSR); and (3) visualization of the 
outcomes using Q-GIS. The system showed that thyroid 
disease is more likely to be incremented by 15% for the 
next 10 years, especially in females between 21 and 30 
years of age. The findings focused on the analysis of the 
data rather than the measurement of the system’s 
performance. Prasad et al. (2016) proposed a hybrid 
system to identify disease progression of the thyroid 
gland. The authors’ system consists of a rough set theory 
and ML algorithms. A String-Matching System (SMS) 
was developed to predict the thyroid disease. When SMS 
fails to achieve the desired goal, Particle Swarm 
Optimization (PSO) and Artificial Bee Colony (ABC) 
optimization are implemented to accomplish high levels 
of accuracy. The rough set theory calculates missing 
values of attributes. Therefore, closely correlated 
diseases of the thyroid can be identified. The expected 
system outputs may be information, description about 
the disease, diagnosis, or health advice. The system 
performance was measured based on the accuracy level 
when predicting disease levels. The accuracy 
consistently reached between 99% and 100% optimistic 
levels. González et al. (2017) developed a local 
laboratory testing kit to classify indeterminate nodules of 
thyroid glance using an in vitro diagnostics (IVD) set. 
The first phase was a determination of expression data to 
apply supervised ML methods for training classifiers. 
The second phase was a prototype assay called the 
multiplexed-qPCR IVD, which was developed after 
selecting the best classifier. An optimal performance was 
achieved by the best classifier when testing 10 genes to 
register 81% specificity and 93% sensitivity.  

Others focus on designing the predictive models for 
thyroid cancer using either supervised or semi-
supervised methods. Upadhayay et al. (2013) 
implemented the C4.5 and C5.0 data mining 
classification algorithms. The authors observed the large 

size of the C4.5 tree in comparison to the C5.0 tree. The 
C5.0 algorithm was superior to the C4.5 in the following 
ways: (i) generated more accurate rules after the pruning 
process, (ii) consumed less running time and (iii) 
generated six rule sets with a 95% confidence level. 
Kongburan et al. (2016) used text mining technology to 
extract hidden significance from vast unstructured text of 
biomedical information published in PubMed in 
reasonable time. They utilized a text mining technique 
called, Named Entity Recognition (NER) to discover 
information from a custom-made corpus called a thyroid 
cancer intervention corpus. Steps were conducted to 
construct the corpus by retrieving all abstract files 
containing INTERVENTION and DISEASE from 
PubMed, tokenizing the data, manually annotating each 
token based on three classes (i.e., INTERVENTION, 
DISEASE and O) and training the NER model. The 
experiments showed that NER was not able to classify 
INTERVENTION from O. It could, however, classify 
DISEASE from O. An excellent classification was 
achieved by NER when classifying INTERVENTION 
and DISEASE classes. Using a multiclassifier technique, 
Jothi and Rajam (2017) proposed a Computer Aid 
Diagnosis (CAD) platform to distinguish between 
histopathology images for a normal thyroid and papillary 
thyroid cancer. The platform consisted of three phases. 
First, the extraction of dark blue nuclei and orphan annie-
eye nuclei are taken from binary images. These images 
segment the particle swarm optimization-based Otsu’s 
multilevel thresholding (PSO-O) into multiple partitioned 
binary images. Then, texture features and morphology are 
extracted from the partitioned images. During the last stage, 
the classification distinguishes between affected thyroid by 
papillary cancer and unaffected by utilizing individual or 
multiple classifiers. The maximum accuracy of 99.54 is 
achieved by combining SVM-L, SVM-Q, SVM-RBF and 
CMR, as well as by combining SVM-L, SVM-Q and CMR. 
Table 1 shows comparisons of related work. 

 

Table 1: Comparison of existing work 
Research - Dataset  Disease Algorithms Performance test Results 

Saastamoinen and Ketola, 2006, Hypo/ Hyper-thyroidism  Classification, C4.5, LDA,   Combined (Lukasiewicz and  Maximum, optimal and variant 
UCI ML Rep  MLP, DIMLP Shweizer & Sklar), Kleene-Dienes,  performance depends on 
   and Reichenbach   dependent on used data set 
Upadhayay and et al., 2013, UCI ML Rep Thyroid Cancer Decision Tree, C4.5, C5.0  Accuracy, speed, memory, C5.0 Tree generated more 
   smaller DT, boosting, accurate rule set with smaller 
   weighting running time 
Prerana and Taneja, 2015, UCI ML Rep Hypo/ Hyper-thyroidism Prediction- ANN (gradient Accuracy-Number of  Levenberg has shown a better 
  descent, Levenberg) epochs-MSE-Gradient values training compared to gradient decent 
 Chandel et al., 2016, KEEL, Text   Hypo/ Hyper-thyroidism KNN, SVM and Accuracy, Kappa and  The accuracy of KNN is 
  Naive Bayes Classification error  better than NB 
Ioniţă and Ioniţă, 2016, UCI ML Rep. Hypo/ Hyper-thyroidism ANN (MLP- RBF), Accuracy (Precision, Recall,  The best model being 
  Naïve Bays, DT Sensitivity, Specify, Decision Tree with 
  (ID3, CART, C4.5) F-measures)  96.5% accuracy  
Kongburan et al., 2016, Thyroid Cancer Text-mining (NER)  Accuracy (precision,  Reasonable performance in 
Intervention Corpus   recall, F1-score) constructing of the corpus 
Ahmed, 2016, SMBBMU Hypo/ Hyper-thyroidism Bayesian isotonic regression- Confusion matrix, precision Overall classification of the system 
dataset and UCI dataset   multi and binary SVM  and recall measures  was measured as 95.7%  
Chandio et al., 2016, Ten year Hypo/ Hyper-thyroidism Time Series Regression  None  Focusing on the findings of  
real-world datasets    the plot and graph analysis  
Prasad et al., 2016, UCI data Hypo/ Hyper-thyroidism Un-supervised (SMS, Accuracy  Accuracy reached at most  
  ABC, PSO)  99% to 100 %.  
González et al. 2017, Gene data  Thyroid cytology  a multiplexed-qPCR Sensitivity, specificity sensitivity 93% and  
  IVD prototype  specificity 81%  
Jothi and Rajam, 2017, annie-eye Normal thyroid and SVM- KB- KNN- CMR Sensitivity, specificity, accuracy 99.54 is achieved by combining  
nuclei and the dark blue nuclei papillary thyroid cancer   SVM-L, SVM-Q, SVM-RBF and CMR 
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Method 
In this study, the authors use a comprehensive thyroid 

dataset consisting of the PLCO data for thyroid cancer 

occurrence and mortality incidence. The dataset contains 

the data of 155,000 participants. 

There are 19 different classes of 143 variables 

containing data about the diagnosis of patients. Classes 

include trial entry (patient information), exit, cancer 

diagnoses (target variables), cancer characteristics, 

mortality status, cause of death and cause of death. The 

authors analyze the trial entry class because it contains 

data on patients and mortality status. After exploring the 

trial entry, the target variable for the prediction of 

thyroid cancer is “thyd_cancer.” The number of patients 

with thyroid cancer is 248; 154,649 patients are without 

cancer. Figure 1 shows the phases of our experiments. 

Data Preprocessing 

Out-of-range values and/or missing values may be 

collected during the data gathering phase. Excessive 

amounts of noisy or missing data makes it difficult to 

discover knowledge during the training phase.  

Data preprocessing is important. However, 

processing, cleaning, normalization, transformation, 

feature extraction of data consume a considerable 

amount of time. If the data is incorrectly preprocessed, 

the analysis and produced prediction results may be 

misleading. The following preprocessing step was 

conducted in this study. Manipulating missing values, 

for example, “thyd_fh_age” refers to the age of the 

youngest relative with thyroid cancer and “thyd_type” 

refers to thyroid cancer type, has been performed using a 

missing data imputation model for variables containing 

80% to 90% of missing values. The model is based on 

computing mean values for the missing values. 

Feature Selection 

In practice, incorporating irrelevant variables in ML 

predictive models can cause unnecessary complexity in 

the generated model. To develop a better model, an 

“extra tree classifier” is utilized in this study to select 

feature importance (Geurts et al., 2006).  

The Gini algorithm is used to calculate feature 

importance. In this algorithm, across all trees containing 

the feature, the sum is calculated over the total number 

of splits averaged by the total number of splitting 

samples. It assists the feature importance of each variable. 

These variables are then ranked according to importance. 

Figure 2 shows the top 10 variables selected based on 

feature importance for the models. These include 

“thyd_is_first_dx” (if thyroid cancer was the first diagnosed 

cancer) and “mortality_exitstat” (patient exit stage status 

for the case of mortality to “dead” or “alive”). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Experimental phases 

 

Unbalancing Data 

A main challenge of the PLCO dataset is imbalanced 
data because 154,649 patients are not diagnosed with 
cancer (99.83%) and 248 patients are diagnosed with 
cancer (0.16%). Typically, this indicates that the dataset 
classes are not equally represented. In turn, misleading 
prediction accuracy is more likely to occur (Pazzani et 

al., 1994). In other words, if the number of instances in 
each class is minimally different, it will not affect the 
analysis results. According to the authors’ experiments, 
Fig. 3 shows the confusion matrix and Receiver 
Operating Characteristic (ROC) curve for the Naïve 
Bayes classification model. A100% accuracy is achieved 
due to the imbalanced data because 99.83% of the 
dataset is a “no cancer” class. The model will always 
predict the class “no cancer” due to its majority. 
Therefore, it achieves high accuracy. 

There are different approaches to treating an 

imbalanced dataset. One approach is to perform data 

sampling through over-sampling or under-sampling. The 

over-sampling approach duplicates variables to the minority 

class to balance the dataset. The under-sampling approach 

drops the variables of the majority class to balance the 

dataset. According to Drummond and Holte (2003) and 

the authors’ experiments with both approaches, under-

sampling is more effective because it generates a 

reasonable change in class distribution and performance.  

PLCO Dataset 

Features 

Balanced Data 

Data pre-processing 

Classifiers 

Extraction 

Sampling 

Without 

sampling 

Evaluation 
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Fig. 2: Variables selected based on feature importance in building classification models 

 

 
 

 
 

Fig. 3:  Overfitting data due to data imbalance 
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However, in the case of over-sampling, little or no 

change is generated in class distribution and 

performance. The authors use under-sampling, 

particularly the NearMiss algorithm, to handle 

imbalanced classes. This algorithm chooses samples 

from the majority class based on computing the average 

distance where the nearest neighbors are the smallest.  

Classification Models 

The authors’ experiments are performed on the 

following ML classification techniques: 

LR: This predictive model employs to two levels of 

the dependent variable with two possible values labelled 

“1” and “0.” In fact, the model can cover a binary 

dependant variable like categorical variables with more 

than binary values (Cox, 1958). The authors apply a 

prepacked Python library for the implementation of the 

LR model. They vary the solver and penalty parameters. 

They use “newton-cg” and “lbfgs” solvers, which only 

support L2 penalty. The “liblinear” solver can support 

either L1 or L2 penalty. 
KN: This memorizes the training set to predict the 

label based on other labels of nearest neighbors in the 
training set. Usually, the k closest training variables in 
the feature space are provided to the model as inputs 
to generate a class membership as output. The 
classification of an object is based on a majority vote 
of its neighbours (Altman, 1992). The authors apply a 
prepacked Python ML “sklearn” library for the 
implementation of the KN classifier. They fix the 
number of neighbors to be used by the model queries 
to two. They use BallTree, KDTree and brute-force 
search algorithms to calculate the closest neighbors. 

SVC: This creates a hyperplane or a set of it in 
infinite-dimensional space to be used in the 
classification. The hyperplane with the largest distance 
to the closest point of training data in any class achieve 
better separation. The authors test the model using the 
Python implementation based on “libsvm” (Cortes and 
Vapnik, 1995). They specify a different kernel to be used 
in the algorithm, including “linear,” “rbf,” and “poly.” 
The penalty, gamma, epsilon and degree parameters are 
varied by different given values in the testing model. 

GNB: This classification model consists of a group of 
Naïve “probabilistic classifiers” using Bayes’ theorem. 
This theorem is based on Naïve assumptions between the 
features. These classifiers are highly scalable. They 
require several parameters that are linear with the 
number of features when creating a learning model. The 
authors apply the implemented ML Python library for 
“GaussianNB” classification. 

DT: This model uses a tree-like graph as a predictive 
model to infer from observations about data conclusions 
about the data’s target variable. If the target variable 
takes a discrete set of values, the tree model is used for 
classification. In this tree-like graph model, leaf nodes 
represent class labels. Conjunctions of features leading to 

these labels are represented by tree branches (Apté and 
Weiss, 1997). In the authors’ testing model implementing 
Python, different values of the following parameters are 
used: “criterion,” “max_depth,” and “max_features.” The 
criterion measures function for the quality of a split. The 
authors use “entropy” (information gain) and “gini” (Gini 
impurity) as two supported criteria. The authors use 
“max_depth” to identify the maximum depth of the tree 
(3, 5 and 7). To gain the best split, the authors determine 
the number of features to be considered during the split. 

RF: This model forms many decision trees during the 

training or testing phases, as well as outputting a class 

that is the mode of the classes (classification). The 

model’s learning process is based on decision rules from 

the data features. This model overcomes problems of the 

decision trees, including over-fitting issues (Ho, 1995). 

The authors test this model using Python. The authors use 

200 trees in the forest. They vary the number of features to 

use when searching for the best split (0, 3 and 5). 

AdaB: This adaptive model can be adapted with other 

types of ML models to boost performance. A weighted 

sum of the boosted classifier’s output is combined with 

the output of the weak algorithm. AdaBoost is sensitive 

to noisy data (Freund and Schapire, 1996). The authors’ 

test using Python varies the parameters “n_estimators” 

(100 and 250) and “learning_rate” (0.1, 1 and 10). The 

former parameter represents the maximum number of 

estimators when terminating the boosting process. The 

latter parameter shrinks the influence of each classifier 

by the provided learning rate. 

GB: This creates an additional model in a forward 

stage-wise fashion by optimizing arbitrary differentiable 

loss functions (Breiman, 1997). In each phase, decision 

trees adjust to the negative gradient differentiable loss 

function. By implementing Python for GB, the authors 

test the model performance when changing the values of 

“n_estimators” parameters (50, 100 and 150) and 

“learning_rate” parameters (0.01, 0.1 and 1). The 

“n_estimators” parameter represents the number of 

boosting stages to be performed. Better performance can 

be achieved when a large number of gradient boosting is 

performed. 

Evaluation Metrics  

To evaluate ML models, the authors apply the k-fold 

cross-validation evaluation approach in which the data is 

equality partitioned into k-subsets. Next, k-time test 

operations are performed. This method reduces the variance 

in the model performance over k-partitions. Partitioning 

steps are computed using the following metrics.  

Accuracy is the fraction of correct predictions of the 

authors’ model. It is computed considering the positives 

and negatives of the prediction: 

 

Accuracy = TP + TN / TP + TN + FP + FN 
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Precision denotes the ratio of the classifier’s ability to 

label tuples as positive that is not negative: 
 

Precision = TP / TP + FP 
 

Recall is the ratio of the classifier’s ability to find all 

the positive tuples: 
 

Recall = TP / TP + FN 
 

F-beta score represents the weighted harmonic mean 
of precision. Recall True Positive (TP) refers to the 
number of patients without thyroid cancer who are 
classified as without thyroid cancer. False Positive (FP) 
refers to the number of patients without thyroid cancer 
who are classified as with thyroid cancer. On the other 
hand, False Negative (FN) refers to the number of 
patients with thyroid cancer who are classified as 
patients without thyroid cancer. True Negative (TN) 
refers to the number of patients with thyroid cancer who 
are classified as patients with thyroid cancer.  

ROC curve is a graph plotting the model performance 

at all classification thresholds. It plots the following 

parameters: 

 

True positive rate = TP / TP + FN 

False positive rate = FP / FP + TN 

 

To calculate the points in the ROC curve, the area under 

the ROC curve (AUC) measurement is utilized. This is a 

sorting-based algorithm that aggregates the performance 

measurements of all possible classification thresholds. 

Results and Discussion 

This part of the study presents performance results of 

the models showing the discussion of the outcomes. The 

authors first compare the performance of the 

classification models with and without the sampling 

technique. Next, they present a comparison of the 

classification model performance using different 

parameters. Finally, the authors compute the evaluation 

metrics using cross-validation score, accuracy, precision, 

recall and F-score for the best classifiers. 

As mentioned, the PLCO dataset has high 

imbalanced data because 99.83% of its data is the “No 

Cancer” class. This leads to inaccurate prediction 

training. In fact, the training process will rely on the 

majority of the class. To overcome this issue, the authors 

applied the under-sampling technique. They evaluate 

prediction models with and without applying the 

sampling approach.  

Figure 4 shows the performance of the classification 

models, including ROC and AUC, without data 

sampling. Figure 5 shows the performance of the 

classification models, including ROC and AUC, with 

data sampling. In general, DT, AdaB and GB achieve the 

best performance (100%) with and without sampling.  
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Fig. 4: Performance of the classification models without applying the sampling approach 
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Fig. 5: Performance of the classification models with applying the sampling approach 
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Table 2: Comparing multiple models with different parameters 

Models Parameters  Performance:5_fold Cross-validation 

DT criterion = entropy, max_depth = 3, max_features = 'auto' 0.985 

 criterion = gini, max_depth = 3, max_features = 'sqrt' 0.994 

 criterion = 'entropy,' max_depth = 5, max_features = 'auto' 0.994 

 criterion = 'gini,' max_depth = 5, max_features = 'sqrt' 0.997 

 criterion = 'entropy,' max_depth = 7, max_features = 'auto' 0.988 

 criterion = 'gini,' max_depth = 7, max_features = 'sqrt' 0.982 

SVC kernel = linear, C = 100 0.994 

 kernel = linear, C = 10 0.994 

 kernel = linear, C = 1 0.994 

 kernel = rbf, gamma = 0.1, C = 10, epsilon = 0.4 0.532 

 kernel = rbf, gamma = 0.01, C = 1, epsilon = 0.3 0.744 

 kernel = rbf, gamma = 0.001, C = .1, epsilon = 0.2 0.949 

 kernel = poly, gamma = 0.1, C = 10, epsilon = 0.4 0.994 

 kernel = poly, gamma = 0.01, C = 1, epsilon = 0.4 0.994 

 kernel = poly, gamma = 0.01, C = 1, epsilon = 0.4 0.994 

RF max_depth = None, random_state = 0, n_estimators = 200' 1.000 

 max_depth = 3, random_state = 0, n_estimators = 200' 1.000 

 max_depth = 5, random_state = 0, n_estimators = 200' 1.000 

AdaB n_estimators = 100, learning_rate = 10' 1.000 

 n_estimators = 100, learning_rate = 1' 0.997 

 n_estimators = 250, learning_rate = 10' 1.000 

 n_estimators = 250, learning_rate = 1' 0.997 

GB n_estimators = 50, learning_rate = 1' 0.997 

 n_estimators = 50, learning_rate = 0.1' 1.000 

 n_estimators = 50, learning_rate = 0.01' 1.000 

 n_estimators = 100, learning_rate = 1' 1.000 

 n_estimators = 100, learning_rate = 0.1' 1.000 

 n_estimators = 100, learning_rate = 0.01' 1.000 

 n_estimators = 150, learning_rate = 1' 1.000 

 n_estimators = 150, learning_rate = 0.1' 1.000 

 n_estimators = 150, learning_rate = 0.01' 1.000 

LR penalty = 'l1,' solver = 'liblinear' 0.994 

 penalty = 'l2,' solver = 'newton-cg' 0.991 

 penalty = 'l2,' solver = 'lbfgs' 0.991 

 penalty = 'l2', solver = 'liblinear' 0.991 

KN n_neighbors = 2, algorithm = 'auto' 0.985 

 n_neighbors = 2, algorithm = 'ball_tree' 0.985 

 n_neighbors = 2, algorithm = 'kd_tree' 0.985 

 n_neighbors = 2, algorithm = 'brute' 0.985 

  

The worst performance is gained by LR without 
sampling (53%). Yet a significant improvement is 
noticed with the model after data sampling (98%). The 
sampling technique improves the performance of all 
classification models except KN, RF and GNB. Their 
performance is reduced after the sampling process. In 
fact, the reduction of the performance is not that 
significant. The authors implement the classification 
models using Python. They change the models’ 
parameters and compare performance based on the cross-
validation scores (Table 2). 

For DT model, they used two metrics for splitting a 
tree “gini” and “entropy.” They found the former 
algorithm outperforms the latter except when the 
maximum depth is increased (for example, the case of 
“max_depth” is seven).  

The results of SVC are based on different kernels, 

including “linear,” “poly,” “rbf,” and other complexity 

parameters. The first two kernels achieve the best 

performance (“0.994”). It can be noticed that the 

changing of coefficient parameter C when using these 

two kernels does not influence performance. On the 

other hand, the empirical results of implementing 

SVC with the kernel “rbf” reveal that the optimal 

choice of epsilon with the changing of coefficient 

parameter C has a clear improvement on the 

performance of the model.  

In the model RF, the accuracy performance is high if 

the authors fix the number of trees with variant depth.  

AdaB performs well in all cases when changing the 

number of estimators of the boosting process, as well 

as when changing the learning rate. However, there is 

a slight performance improvement when the learning 

rate is increased.  
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Table 3: Best classifiers after comparing multiple models with different parameters 

Method Cross Validation Score Accuracy Precision Recall F_Score 

DT 0.994 0.8462 1.00000 0.6923 0.81820 

SVC (linear) 0.994 0.9936 0.98730 1.0000 0.99360 

SVC (rbf) 0.532 0.5000 0.00000 0.0000 0.00000 

SVC (poly) 0.994 0.9936 0.98734 1.0000 0.99363 

GNB 0.997 0.9936 1.00000 0.9872 0.99350 

RF 1.000 0.6474 1.00000 0.2949 0.45540 

AdaB 1.000 1.0000 1.00000 1.0000 1.00000 

GB 1.000 1.0000 1.00000 1.0000 1.00000 

LR (liblinear) 0.994 1.0000 1.00000 1.0000 1.00000 

LR (newton-cg) 0.991 0.9870 0.97400 1.0000 0.98700 

KN 0.985 0.4870 0.00000 0.0000 0.00000 

 
The model GB accomplishes the best performance 

for all cases of changing the number of gradient boosting 
process and learning rate.  

The authors noted that LR performs worst without 

sampling. It records a significant improvement with 

sampling. Based on this observation, they apply the LR 

model with balanced data and test different optimizers 

including “blinear,” “newton-cg,” and “lbfgs.” 

Implementing “blinear” optimizer achieves the highest 

performance with penalty L1. The variation in 

performances among the applied optimizers is not big. 

The implementations of LR perform well even with the 

changing of the solvers and the penalties.  

Regarding the model KN, the authors use two 

neighbors and different algorithms to compute the 

nearest neighbors. The authors found that the model 

performs the same with other searching algorithms 

because the number of neighbors is fixed. 

After evaluating the classifiers using different 

parameters, the authors select the best classifiers and 

compute the following evaluation metrics: cross-

validation score, accuracy, precision, recall and F-score 

for the best classifiers (see Table 3). High accuracy 

indicates the high ratio of correct predictions of the 

classification models. RF, AdaB and GB achieve the best 

performance regarding accuracy (accuracy = 1.0). On the 

other hand, SVC using the kernel “rbf” suffers from 

generating wrong predictions. Thus, the accuracy is 

affected negatively. By using other kernels, such as 

“linear” and “poly,” the accuracy performance is 

significantly improved for SVC. The RF and DT 

classifiers perform well by identifying TP cases 

correctly. This achieves high precision (see precision = 

1.0 for both in Table 3). However, they miss several 

positive cases leading to low recall (see RF-recall = 

0.295 and DT-recall = 0.692 in Table 3). KN and SVC 

(rbf) classifiers have zero precision, which indicates a 

large number of FP. They also have zero recall, which 

indicates many FN. AdaB and GB record the best 

performance among other classifiers by achieving high 

precision and recall (equal to one). 

Conclusion 

In different domains (i.e., economy, education, 
healthcare and medicine), ML methods approve their 
ability of prediction. In this article, the authors evaluate 
the performance of ML classification models for 
predicting mortality rates of patients with thyroid cancer 
using PLCO data. The result revealed that: 
 
• The performance of the classification models varies 

when evaluating different metrics.  
• The chosen parameters for classifiers will affect 

their performance. It is important to explore and 
evaluate them before final implementation. 

• When designing an efficient predictive model, the 
domain problem and its dataset must be carefully 
investigated, evaluated and modelled.  

 
The authors conclude that the result of this study 

meets with the nature of the ML process, which requires 
variant experiments and exploration to identify the best 
design of the classification model. 
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