

© 2018 Suresh Baliram Rathod and Vuyyuru Krishna Reddy. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Decentralized Predictive Secure VS Placement in Cloud

Environment

Suresh Baliram Rathod and Vuyyuru Krishna Reddy

Department of Computer Science and Engineering,

Koneru Lakshmaiah Education Foundation, Vaddeswaram, India

Article history

Received: 25-12-2017

Revised: 05-03-2018

Accepted: 21-03-2018

Corresponding Author:

Suresh Baliram Rathod

Computer Science and

Engineering, Koneru

Lakshmaiah Education

Foundation, Vaddeswaram,

India
Email: sbrathod.sae@sinhgad.edu

Abstract: Hosts in distributed cloud environment configured with Local

Resource Monitors (LRM) that runs autonomously, monitors underlying

host’s resource usage and balances underlying host’s resource usage by

migrating Virtual Machine (VM) to other hosts. LRM takes decision for

VM migration at fixed interval considering own current CPU usage and

the other hosts CPU usage. The peer hosts unawares about the decision

taken by the other hosts LRM about VS migration. As a result of this,

there are chances that the same host selection from multiple hosts during

the VS placement. This results into destination host to over utilized or the

LRM at destination host initiates the VS migration. Several approaches

have been proposed for decentralized VS placement that includes two

threshold based VS placement, hypercube based VM placement, Ant

Colony based VS placement. These approaches does not considers future

behavior of the destination hosts after VS placement. This paper discusses

the decentralized peer to peer Virtual Server Placement Approach

(DPPVP) that considers host’s current as well future CPU utilization for

VS placement. The results shows that the proposed system avoids the

over utilization of the destination host and host identification by the

multiple hosts during VS placement.

Keywords: Cloud Computing (CC), Virtual Server (VS), Host Controller

(HC), Controller Host (CH), Data Center (DC)

Introduction

In today’s world, the Virtual Server (VS) is playing a

major role in providing uninterruptable service to the end

user. VS consume resources from underlying physical

hosts including storage CPU and network. These

resources gets deployed rapidly, provisioned and

released with minimal management effort available on

blog associated with Edwin Schouten. As per NIST,

virtualization is considered as default technology to

address VS’s varying resources requirement. This VS’s

resource requirement full filled from the host considering

partitioning, isolation and encapsulation. VS differ with

other on type of CPU architecture, operating system,

storage considered, network and the job it has assigned

for execution. As a result, the host in DC has various

VS’s running parallel on same physical host.
The VS’s varying resource demands raised by the

different running applications on VS get resolved by

migrating one of the VS instance from the current host.

The VS migration involves selecting VS from one the

host and migrating the selected VS to another host.

The VS migration is processed in such that the end-

user remains unaware about VS migration. This VS

migration is a critical task; hence the resources assigned

to the VS need to be efficiently managed. Hypervisors

like XEN, KVM, Hyper-v and VMware’s ESXi provide

services to manage VS.

VS migration from various hypervisor achieved though

static migration or Live migration. In static VS migration

the VS’s need to be stopped at host manually and need to be

resumed at destination host. For the Live migration, the

running VS instance migrated to the destination. Here, the

VS pauses its execution for a while and resumed after

migration at destination host. If unsuitable physical host or

VS instances selected for migration, causes unwarned

effects in the future. Hence, it is necessary to consider VS

selection and placement very carefully.

Suresh Baliram Rathod and Vuyyuru Krishna Reddy / Journal of Computer Science 2018, 14 (3): 396.407

DOI: 10.3844/jcssp.2018.396.407

397

Fig. 1: Centralized cloud controlling environment

Cloud computing on the structure of organizations

categorized as, centralized or a decentralized

architecture. The Live VS migration is done in both

centralized and decentralized cloud architecture. In the

centralized cloud, central host does the task for VS

selection and placement. Hosts in centralize cloud

configured as shown in Fig. 1, The central host has the

controller agent that communicates with all Local

Resource Monitor (LRM) deployed on each client

hosts. LRM collects underlying host’s information and

shares with the controller agent on request. The global

resource monitor retrieves all client information from

the controller agent. Upon receiving client details it do

check client details with the threshold resource limit. If

it finds violation in resource threshold limit raises

alarm and shares such host detail to the global resource

manager. The global resource manager then takes the

decision to migrate VS from one of the client host

depending on information received. All client hosts in

centralized architecture managed by the single host, this

can lead to single point of failure. This failure causes all

services from client hosts to be down. This single point

of host failure could be avoided by considering

decentralized cloud environment.

The decentralized cloud architecture formed

considering distributed features like multi-tenant

architecture, distributed storage, virtualization, parallel

processing and multithreading. Unlike in centralized

controlling environment, the host in the decentralized

cloud has its own controller agent that runs autonomously

and does decisions for live VS migration considering

neighboring hosts details. In the decentralized cloud

architectures hosts shares its own resources information

with other peer host at fixed interval time.

Each host in decentralized cloud configured with

autonomous agent which undertakes its own decisions

for VS migration. This results in selecting same hosts for

VS placement by the multiple hosts. Such host selection

from multiple hosts causes the selected destination host

to be over utilized. To resolve this, the decentralized

architecture needs to be modified such that would do

decision for VS and host selection considering hosts

current and future utilization of the hosts.

The rest of the paper is organized as first we discuss

the previous work in decentralizing VS migration,

followed proposed work and at end results of the work.

Related Work

Various authors have proposed VS placement

approaches for the centralized and decentralized cloud

environment. These approaches built considering

linear programming, constraint programming, bin

packing, ant colony and genetic algorithms. CPU

utilization, no of the task, network bandwidth, disk

storage, No of I/O considered as the basic parameters

for the VS placement decision making.

The mechanism for host information sharing at the

fixed interval was proposed by Feller et al.(2012).The

authors have tested there approach onP2P network and

have considered CPU utilization as the parameter for

decision making.

Wen et al. (2015) discussed the mechanism for

decentralized controlling and monitoring virtual

Suresh Baliram Rathod and Vuyyuru Krishna Reddy / Journal of Computer Science 2018, 14 (3): 396.407

DOI: 10.3844/jcssp.2018.396.407

398

resources across hosts in DC. The authors have

discussed the mechanism for exchanging host

information at fixed interval of time. They have

considered the CPU utilization as the parameter for VS

selection and placement.

Energy based VS placement approach was

proposed by Grygorenko et al. (2016), where they

have discussed VS selection considering penalty cost

and energy consumption as the parameters. The

proposed approach by the authors has a limitation, if

the energy cost and penalty cost increased then overall

performance would be decreased.

Distributed load balancing using CPU utilization is

proposed by Pantazoglou et al. (2015), where they

considered hypercube based VS placement and

migration. The approach proposed by the authors did not

consider whether another host in hypercube has initiated

migration on the same destination host.

Benali et al. (2016) proposed optimum dynamic VS

placement policy using CPU consumption, but they have

not considered the network topology for VS placement.

Bagheri and Zamanifar (2014) discussed the

Maximum Processing Power (MPP) and Random

Selection (RS) approach, they have preserved same

firewall rule for VS from the originating host to the

destination host after migration.

Ferdaus et al. (2017) has proposed Hierarchical

Decentralized Dynamic VS Consolidation Framework,

where they discussed how the global controller does the

decision making for VS consolidation.

Nikzad (2016) has proposed adaptive VS selection,

where the authors have considered adaptive two-level

threshold and using this threshold they categorized the

hosts as troublemaker host. The authors categorized

the host as troublemaker (over utilized) host. This

host is categorized as trouble making at present

instance or in future. The author has considered the

host as input and predicted its future regarding

whether the host needs VS migration.

Wen et al. (2015) proposed ACO based scheduling

strategy; where they discussed ant colony based VS

migration. The author proposed ant colony based path

categorization. The authors considered positive path

for VS migration. The host whose threshold limit

crossed, it calls ACO to find the destination host. The

authors did not consider whether there is any other

host already initiated the process of migration and

selected the same host as the destination during path

finding. The author has considered present utilization

as the parameter for VS placement.

Zhao and Huang (2009) proposed distributed live VS

migration, in which the authors have considered the

probabilistic pair for host selection randomly and does

initiate migration between selected hosts. The random

pair results in skipping over utilized host.

Fu and Zhou (2015) proposed correlation based VS

placement. Here the authors has simulated there

proposed VS placement using coudsim. The author has

not considered the future utilization.

The next section 3 discusses the proposed DPPVP VS

placement.

Proposed Work

This section discusses Requirement of proposed

work, problem formulation, followed by decentralized

hybrid P2P architecture, Decentralized Hybrid Peer to

Peer Predictive VS placement using DES Time Series

Forecasting and at end the secure tunnel formation

during VS migration.

There are research works undertaken by Wang et al.

(2013) and Nikzad (2016) which are more related to our

work. Hence, before discussing our proposed methodology,

a brief over view of these works is presented.

The authors Wang et al. (2013) in their work

discussed, VM placement using unstructured P2P

network. The authors have considered (src, dest, util)

form to share their host utilization with other peer host.

Authors have considered homogeneous host

configuration and two threshold limit on resource usage.

The authors have considered current host utilization as

the criteria for the decision making. The VS’s from the

current host selected, if the VS has its current utilization

greater than the (upper threshold-current utilization) of

the host. Author has considered static threshold limit on

each host. For the dynamic cloud environment

considering static threshold is not the feasible solution.

In its work the author has considered random number of

neighbor host to share host information. The neighboring

host changes after fixed interval.

Nikzad (2016) has proposed adaptive VS selection,
wherein the authors have considered adaptive two-level

threshold and uses this threshold to categorize the hosts
as troublemaker host. They categorized host as the
troublemaker (over utilized) at present instance or in
future. The VS migration from the host initiated if the
host utilization crosses the upper threshold limit.
Authors has considered the host name as input and

predicted its future usage. The author in their research
work considered dynamic threshold computed using
Mean Absolute Deviation (MAD). The author has
considered 0.9 as the upper threshold for the hosts CPU
utilization. Here the author has discussed hosts
identification on fixed set of input.

Requirement of Proposed System

The hosts in P2P has are heterogeneous

configuration shares their own information with other

host. This creates extra network traffic that consumes

more bandwidth towards each host and this also

consumes more CPU power of the host. Each host’s in

Suresh Baliram Rathod and Vuyyuru Krishna Reddy / Journal of Computer Science 2018, 14 (3): 396.407

DOI: 10.3844/jcssp.2018.396.407

399

P2P takes decision for VS migration by own

considering its neighboring hosts current utilization

details and its threshold limit. For the heterogeneous

host’s configuration static limit on each host is not the

feasible solution. This independent decision making

with static threshold leads to chances of selecting

same destination host by the multiple hosts. This

results in over utilization of destination host. Because

of this the destination host might initiate VS migration

by own or requires shut down because of over

utilization. In order to resolve this a new framework

need to be established that will considers host’s

current CPU utilization of source host’s and future

CPU utilization of destination of the hosts before VS

migration gets initiated.

Problem Formulation

The mapping of VS to the physical host gives the

solution to the VS placement. Let C be the set of

physical host represented as C = {CH1, CH2, ……

CHm} and V be the set of virtual servers deployed on

each physical server denoted as V = {VS1, VS2,

VS3….,VSm}. Vi,j be the virtual server i deployed on the

physical server j, such that (1<i<n) and (1<j<m). Xi,j be

the binary decision variable representing whether the

VSi selected from the host Cj. This requires VS

placement to the host from the set of host Cj to be

placed on one of the host from C hosts.

The mapping of Vi to the Cj such that the energy

consumption of Cj at t is minimum:

,1
1

m

i jj
X

=

∀ =∑ (1)

, ,1
,

j i j cpu ji

m

VScpu iX C
=

∀ ≤∑ (2)

, ,1
,

j i j mem ji

m

VSmem iX C
=

∀ ≤∑ (3)

where, i is the virtual server and j is the physical host.

Equation 2 and 3 discusses the virtual server should not

exceed the physical hosts resources while placing VS on

the destination host Cj.

Decentralized Hybrid P2P Architecture

The initial step for framework formation is to

categorize the hosts into Controller Host (CH) or host

controller HC. The host is termed as CH if it has

multiple VS running simultaneously and provides

services to end user. The HC works as of CH with VS

decision making.

The decentralized hybrid P2P architecture is shown

in Fig. 2 and its host component details described in

Fig. 3. The functional detail of each host components

is described below:

HC Resource Manager (HCRM)

This component is available towards each CH. It gets

activated only when the CH acts as the decision maker. It

performs following tasks:

• Collecting other hosts detail

• Analyzing the client hosts resource usage

• Providing host information to the VSM

• Storing CH detail to present and past utilization tables

Local Resource Monitor (LRM)

This component is available towards each CH. This

module interacts with hypervisor and provides this

collected information to HCRM after fixed interval.

Virtual Server Manager (VSM)

Unlike HCRM each host has VS manager that get

activated only when the CH acts HC.

This component does following tasks:

• Finding the suitable source and destination host for

VS migration

• Initiating VS migration

• Finding future CPU utilization of CH participated in

migration

• Finding MAD values of each CH

• Finding next HC that does decision making

• Broadcasting the next HC address to all peer hosts

Fig. 2: Decentralized hybrid P2P architecture

Suresh Baliram Rathod and Vuyyuru Krishna Reddy / Journal of Computer Science 2018, 14 (3): 396.407

DOI: 10.3844/jcssp.2018.396.407

400

Fig. 3: CH’s component diagram

Decentralized Hybrid Peer to Peer Predictive VS

Placement Using DES Time Series Forecasting

Initially all CH starts connecting to the central
host. Once all CH get connected, the central host
selects one of the CH from the connected CH’s
randomly and marks as HC. This selected HC address
given to the all connected CH. After receiving HC
address, each CH stores this address and uses
whenever it starts sharing its local detail with the HC
after fixed interval.

Each CH has the running daemon threads those get
wakes up whenever CH acts as HC. The HC stores all
connected CHs address in active connection list. This
active connection list would be referred by HC daemon
threads for further processing.

The VS manager thread performs check whether
the current CH acting as HC by looking out its own

message structure that is shared by its LRM with HC.
The CH shares its address, No. of. VS, CPU
utilization and status with HC.

The HCRM at HC stores this collected CH’s

information in CURRUTIL that is used store the CH’s

current utilization and PAST_UTIL table is to stores past

CPU utilization of CH.

This CURRUTIL gets referred by the HC daemon

thread store; it will store all CHs detail received at

fixed interval from CH’s and provide this to VSM for

further references. The VSM after receiving message

from the HCRM makes call to the migration thread

that intern gives call to the DPPVP algorithm. VSM

makes the decision for VS migration by calling

DPPVP algorithm shown in algorithm 1.

The HOST has all active CH connection list. This

list referred by the DPPVP to find the host addresses

Suresh Baliram Rathod and Vuyyuru Krishna Reddy / Journal of Computer Science 2018, 14 (3): 396.407

DOI: 10.3844/jcssp.2018.396.407

401

during host identification and VS placement phase.

Here, hosts has heterogeneous configuration. Equation

4 used to compute hosts upper threshold limit and get

stored in MED:

1UpperThreshold MAD= − (4)

Equation 5 shows the active hosts Mean Absolute

Deviation (MAD):

ˆ

n

t yt
y

MAD
n

−

=

∑
 (5)

Here, yt represent actual server utilization and n

represent a number of observation and ŷ represent fitted

value at time t.

Once CHs CURRUTIL received towards HCRM

then DPPVP at HC initiates the procedure to identify

CHs that has maximum CPU utilization and minimum

CPU utilization. This CH’s detail retrieved using

GETMAX and GETMIN. The GETMAX provides CH

that has maximum CPU utilization. GETMIN provides

CH that as minimum CPU utilization.

Equation 6 used to compute the CH’s CPU utilization:

0

n

U ii
H VS

=

=∑ (6)

Here HU is the host utilization of server u. It is the

sum of all virtual servers VSi running on the host u at

time interval t.

DPPVP on finding maximum and minimum

utilized host addresses, it initiates the procedure for

VS migration.

In this study VS placed on the destination host if its

F_UTIL is less than upper threshold. Equation 9 used to

compute destination CH’s F_UTIL. The past CPU

details fetched by referring CH’s detail stored in

PAST_UTIL table:

()()1 1
1 ,0

t t t t
S y s bα α α

− −

= + − + ≤ (7)

()1 1
(1 ,) 0

t t t t
b s s b γγ γ

− −

= − + − ≤ (8)

t m t t
f s mb
+

= + (9)

Here St represent smooth values at time t, the yt

represents observed values over a time period t. bt

represent trend factor over time period t values for the

previous period bt-1. ft + m is objective function represents

smoothed values.

Once F_UTIL value of CH get computed, the DPPVP

initiates the process of VS identification at source CH and

VS placement towards destination CH. The maximum

upper threshold limit on CPU utilization is 0.9. CH said to

be functioning smooth, if its utilization is less than 0.7. It

said to be CH is over utilized, if utilization is greater than

0.7 Here we are considering max threshold value as 0.9

for each CH as of the CH’s configuration.

DPPVP during the process of VS identification from

the source CH do selects single or multiple VS instance.

Algorithm 1 DPPVP

1: procedure DPPVP(HOSTLIST)

2: HOST = GETCONNECTIONDETAIL()

3: MED = MED [length (HOST)]

4: for each host i in HOSTLIST do

5: MED[i]= FINDMEDIAN (HOST[i])

6: CUR_UTIL[i] = HOSTLIST [i]

7: F_UTIL[i] = FINDFUTURE (i)

8: end for

9: src=GETMAX (CUR RUTIL)

10: if CUR RUTIL[src] >= 0:7 then

11: dest = GETMIN (CUR RUTIL)

12: putil= CUR RUTIL [dest]

13: CUR_RUTIL[src]=CUR RUTIL[src]-

 Find(Min util VS)

14: else if CUR RUTIL[src] > 0.7 then

15: for each V S on src do

16: dest= GETMIN (CUR RUTIL)

17: putil= CUR_RUTIL [dest]

18: CUR_RUTIL[src]=CUR RUTIL[src]-

Find(Min util VS)

19: GO TO STEP 22

20: end for

21: end if

22: for each host i in HOSTLIST do

23: if HOSTLIST[i] = =dest then

24: if MED[i] >= 0.9 then

25: MED[id] = 0.9

26: else if MED [i] _ F HOST[i] then

27: address= FINDNEXT (dest, src,

CUR RUTIL)

28: EstablishSSHTunnel(src,address)

29: INITMIGRATION(src, address)

30: return

31: else if MED [i] _ F HOST[i] then

32: EstablishSSHTunnel(src,address)

33: INITMIGRATION(src, dest)

34: return

35: end if

36: end if

37: end for

38: end procedure

Suresh Baliram Rathod and Vuyyuru Krishna Reddy / Journal of Computer Science 2018, 14 (3): 396.407

DOI: 10.3844/jcssp.2018.396.407

402

If during the decision making, the source CH has

maximum CPU utilization compared with other CHs and

its CURRUTIL is less than 0.7 then a single VS instance

that has minimum CPU utilization compared with other

VS instances, such VS marked for migration. Multiple VS

instances get selected from the source CH if the utilization

is greater than 0.7. VS instances get migrated to the CHs

until its CURRUTIL is less than or equal to 0.7. This is

shown in step 10~14.

Algorithm 2: FINDNEXT

1: procedure

FINDNEXT(destAddres,srcAddres,HOSTLIST)

2: for each host i in HOSTLIST do

3: for each host j in HOSTLIST do

4: if HOSTLIST[j] >= HOSTLIST[j + 1] then

5: temp = HOSTLIST[j]

6: HOSTLIST[j]= HOSTLIST[j+1]

7: HOSTLIST[j + 1]= temp

8: end if

9: end for

10: end for

11: for each host i in HOSTLIST do

12: if HOSTLIST[j] != destAddres then

13: return HOSTLIST[i]

14: end if

15: end for

16: end procedure

DPPVP after VS identification over computes the

future utilization of identified destination CH using

Equation 9. This destination CH’s computed value

compared with the MED. If the MED > F_UTIL then the

selected destination CH would be discarded and new CH

identified that has less utilization as of current CH. The

new destination CH identification done by FINDNEXT.

The address received from the FINDNEXT considered

as the new destination CH address.

After finding the new host, the next step is to initiate

migration between newly identified destination CH and

the source CH. If the newly CH has MED < F_UTIL

then the selected VS from the source CH gets placed to

the destination CH.

Decentralized Secure Tunnel Formation in VS

Migration

The hypervisors like XEN, VMware, KVM and
Hyper-V supports live VS migration. Umesh and
Keahey (2015) has discussed in their work that, in the
normal VS migration the CH’s in DCs hares common
storages by interfacing with NAS discussed. In Live
VS migration VS’s processor state, its allocated RAM
content and the data stream associated for each
task running migrated to the destination host.

Fig. 4: SSH setup in CHs

The data stream might contain sensitive and confidential

user data. In order to protect this the secure tunnel need

to be established in between the CHs involves in

migration. The tunnel formation in Linux/Unix platform

achieved using SSH.

The network administrator configures each CH’s

public keys with all participant CHs. This keys would be

shared by each CH’s before initiating VS migration.

Figure 4 shows the SSH setup in CHs:

• The CH1 shares its credentials with CH2 to establish

the secure tunnel

• CH2 on verifying CH1’scredentials, acknowledges

with ok message confirming establishing secure

tunnel

• On receiving ok message the VS from CH1 get

migrated to the CH2

• On successfully receiving VS, CH2 acknowledges

with ok message to CH1

• CH1 on receiving ok gives request to close the tunnel

The next section gives detail about the result obtained

from the proposed DPPVP algorithm.

Results and Discussion

The overall hardware configuration for the hosts as of in

Table 1 and the VS configuration on hosts are as of in Table

2 considered while setting the proposed environment.

The CH configured with KVM/QEMU hypervisor,

OpenJDK 1.6, Libvirt, JNA, python and python-panda,

Network File Share (NFS) client used to share the guest

image with another CH.

The central server configured with NFS server and

OpenJDK 1.6. NFS in migrating helps to avoid

requirement of instantiating image on the destination

host. NFS keeps VS disk on NFS server and VS state

migrated to the destination CH. NFS helps in reducing

migration time near to zero.

The hybrid peer to peer network formed setting one of
the hosts as HC. The central host identifies HC from the
connected CH’s. After receiving HC address from the
central server, CH’s starts sharing its detail after fix interval.

CH2 CH1

1. Establish SSH

2. OK

3. Initiate Vs migration

4. OK

5. Close SSH

6. OK

Suresh Baliram Rathod and Vuyyuru Krishna Reddy / Journal of Computer Science 2018, 14 (3): 396.407

DOI: 10.3844/jcssp.2018.396.407

403

Table 1: Hardware configuration of Host’s

Address Core RAM Operating system

10.0.0.1 I5 1st gen. 4GB DDR3,RAM Ubuntu 14.04

10.0.0.2 I5 1st gen. 4GB DDR3,RAM Ubuntu 14.04

10.0.0.3 I5, 6th gen 4GB DDR3,RAM Ubuntu 14.04

10.0.0.4 I3, 5th gen. 4GB DDR3,RAM Ubuntu 14.04

10.0.0.4 I3, 5th gen. 4GB DDR3,RAM Ubuntu 14.04

Table 2: VS configuration

Network mode RAM Storage No.CPU cores

Bridge 512 1 GB 1

 1024 2 GB 1

Fig. 5: CH output Window

Fig. 6: Output screen when CH does makes a call for VS migration

CH shares its information in src address, CPU utilization

and status from to the HC. The status flag used to

distinguish CH message from HC message. Figure 5

shows the CH’s output window.

Upon receiving details from CH’s, HC starts

storing CH’s detail. This stored information will be

used by the HC to do further processing. The HC

crates two copies of the received information and

stores in current utilization table and past table. The

first table is available on local storage associated at CH and

get used to identify next source and destination host during

VM placement. It also used to identify next HC. The

Suresh Baliram Rathod and Vuyyuru Krishna Reddy / Journal of Computer Science 2018, 14 (3): 396.407

DOI: 10.3844/jcssp.2018.396.407

404

second, past utilization table is used to predict the future

utilization of the hosts and is get shared among the HC.

This past utilization table is stored on the NFS server.
The VSM at HC make a call to the DPPVP after 3

minutes to identify the source and destination host
address for VM placement. The Fig. 6 shows the
output window at HC. From Fig. 6 it found that the
host 10.0.0.4 has minimum CPU utilization at current
instant of time and the host 10.0.0.2 has the maximum
CPU utilization. The DPPVP gives the call to find the
future CPU utilization of 10.0.0.4. DPPVP also
performs check whether 10.0.0.4 is suitable CH as the
destination host. This check is performed by adding
the VS’s current CPU utilization selected for
migration from 10.0.0.2 with the 10.0.0.4’scurrent
CPU utilization. Upon adding VS current utilization,
the 10.0.0.4’sfuture CPU utilization and upper
threshold usage limit computed. In Fig. 6 the CH with
address 10.0.0.4 has its future CPU utilization is 0.17
that is lesser than the median of 10.0.0.4 computed as
0.8828. As the future utilization is less than the
median, the CH 10.0.0.4 marked as the destination
host for VS placement. Once the source and
destination CH identified the link is established in CH
10.0.0.2 and 10.0.0.4. The VS with namesc1gets
migrated to the host 10.0.0.4. Table 3 shows
comparative analysis of various VS placement
approaches compared with DPPVP.

The proposed framework is tested considering

predictive and non-predictive VS placement. In non-

predictive VS placement, it found that the destination

host gets over utilized or sometimes it would be under

loaded. Figure 7 shows non predictive VS placement.

Figure 8 shows predictive VS placement. Comparing

proposed algorithm with other decentralized algorithm it

found that, the proposed algorithm not only maintains

source utilization at normal but at the same time it

maintains the destination CH utilization at normal level.

This helps in avoiding unnecessary migration from

destination CH. This approach also reduce network

bottleneck towards each CH by considering hybrid P2P

topology and dynamic HC selection. This results

reduction in bandwidth consumption to exchange host

information in peer CH. As the CHs communicates with

single HC, the decision for VS placement done by the

single host. This helps in reducing the problem of same

destination host identification by multiple host. The shared

storage by NFS server and NFS client helps in reducing

migration time. The proposed DPPVP approach also helps

in balancing load by migrating VS between CH’s in DC.

Advantages and Disadvantages

The following are the advantages of this technique:

• Destination host does not get over-utilized due to

future utilization

• Peer nodes come to know which one is making the

decision for VS migration

• Network bottleneck will be minimized towards each

peer nodes

The following are the disadvantages of this technique:

• The decision making consumes more CPU power if

the no of record is increased

Future Scope

This approach can be applied to cloud computing

environment where their infrastructure is decentralized.

Hence all the networks which employ decentralized

approach can implement this idea. Also, various machine

learning algorithms can also be applied to this idea for

achieving better results. This technique can also be

utilized in Software Defined Networks (SDN).

Fig. 7: Non predictive VS placement

Suresh Baliram Rathod and Vuyyuru Krishna Reddy / Journal of Computer Science 2018, 14 (3): 396.407

DOI: 10.3844/jcssp.2018.396.407

405

Fig. 8: Predictive secure VS placement using DES

Table 3: Comparative Analysis of Predictive VS Placement

 Parameters considered while VS placement

 Predictive Destination

 Architecture Decision Decision host information
Author name Approach considered type Making Making sharing

Wang et al. (2010) Intel vPro Central Central No No

 technology to provide trust service
 to software program
Tavakoli et al. (2012) Role based access control policies to Central Central No No

 protect against unauthorized usage of
 migration privileges

Anala et al. (2013) Threat based security enforcement Central Central No No
 model using cryptography

Mukhtarov (2012) Hypercube based VM placement, migration Distributed Peer Host No No
Feller et al. (2012) Considered P2P VM migration. Distributed Peer Host No No

Wan et al. (2012) Proposed an improved secure vTPM Central Central No No
 migration protocol

Zhang and Chen (2013) Uses Firewall rule for source host and Central Central No No
 destination host authentication
Benali et al. (2016) Proposed optimum dynamic VS Placement Distributed Peer Host Yes No

 policy using CPU consumption
Bagheri and Zamanifar Discussed the maximum processing Distributed Peer Host Yes No

(2014) power (MPP) and random selection (RS).
Ferdaus et al. (2017) The global controller based decision Distributed Peer Host Yes No

 making for VS consolidation.
Nikzad (2016) They proposed OMDD adaptive Distributed Peer Host Yes No

 VS selection
Wen et al. (2015) ACO based scheduling strategy; where they Distributed Peer Host Yes No
 discussed ant colony based VS migration.

Fu et al. (2015) Correlation based VS placement. Distributed Peer Host Yes No
Pantazoglou et al. (2015) hypercube based VM placement, migration Distributed Peer Host Yes No

Conclusion

This paper provides the solution for VS placement in

decentralized hybrid architecture. In this study the

decentralized decision making policy is proposed for

P2P network. Here current utilization considered for

hosts identification and future CPU utilization for VS

placement. The future CPU utilization consideration

helps in reducing over utilization of destination host. An

experimental result shows that the proposed solution

maintains utilization of source and destination below

threshold limit. Proposed solution also balances load

across host in DC.

Acknowledgement

We would like express our thanks and gratitude

towards the Head of Department Computer Science and

Engineering and all the staff members of Koneru

Lakshmaiah Education Foundation who have been a

Suresh Baliram Rathod and Vuyyuru Krishna Reddy / Journal of Computer Science 2018, 14 (3): 396.407

DOI: 10.3844/jcssp.2018.396.407

406

source of inspiration in doing this research work. Also

we would like to thanks Sinhgad Academy of

Engineering to support this work.

Author’s Contributions

Here, in this study authors have done following

contribution:

• Hosts categorization as per the role specified
• The centralized host for confirming authorized access

the CHs detail information and VS’s disk storage
• Restricting VS migration decision making

towards HC
• Host identification considering current CU

utilization
• VS placement at destination host considering

destination host’s upper threshold and future CPU
utilization

• VS selection considering host’s upper threshold limit

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and there are no ethical issues involved.

References

Anala, M.R, J. Shetty and G.A. Shobha, 2013. Framework
for Secure Live Migration of Virtual Machines.
Proceedings of the International Conference on
Advances in Computing, Communications and
Informatics (ICACCI), pp: 243-248.

 DOI: 10.1109/ICACCI.2013.6637178
Bagheri, Z. and K. Zamanifar, 2014. Enhancing energy

efficiency in resource allocation for real-time cloud
services. Proceedings of the 7th International
Symposium on Telecommunications, Sept. 9-11,
IEEE Xplore Press, Tehran, Iran, pp: 701-706.

 DOI: 10.1109/ISTEL.2014.7000793
Benali, R., H. Teyeb, A. Balma, S. Tata and N. Ben

Hadj-Alouane, 2016. Evaluation of traffic-aware
VM placement policies in distributed cloud using
CloudSim. Proceedings of the 25th IEEE
International Conference on Enabling
Technologies: Infrastructure for Collaborative
Enterprises, Jun. 13-15, IEEE Xplore Press, Paris,
France, pp: 95-100.

 DOI: 10.1109/WETICE.2016.29
Feller, E., C. Morin and A. Esnault, 2012. A case for

fully decentralized dynamic VM consolidation in
clouds. Proceedings of the 4th IEEE International
Conference on Cloud Computing Technology and
Science, Dec. 3-6, IEEE Xplore Press, Taipei,
Taiwan, pp: 26-33.

 DOI: 10.1109/CloudCom.2012.6427585

Ferdaus, M.H., M. Murshed, R.N. Calheiros and R.

Buyya, 2017. An algorithm for network and data-

aware placement of multi-tier applications in cloud

data centers. J. Netw. Comput. Applic., 98: 65-83.

DOI: 10.1016/j.jnca.2017.09.009

Fu, X. and C. Zhou, 2015. Virtual machine selection

and placement for dynamic consolidation in

Cloud computing environment. Frontiers Comput.

Sci., 9: 2095-2236.

 DOI: 10.1007/s11704-015-4286-8

Grygorenko, D., S. Farokhi and I. Brandic, 2016. Cost-

aware VM placement across distributed DCs using

Bayesian networks. Proceedings of the International

Conference on Grid Economics and Business

Models, (EBM’ 16), Springer, pp: 32-48.

 DOI: 10.1007/978-3-319-43177-2_3
Mukhtarov, M., 2012. Cloud network security

monitoring and response system. Proceedings of the
3rd International Conference on Cloud Computing,
GRIDs and Virtualization, (CGV’ 12), Nice, France,
pp: 181-185.

Nikzad, S., 2016. An approach for energy efficient dynamic
virtual machine consolidation in cloud environment.
Int. J. Adv. Comput. Sci. Applic., 7: 1-9.

 DOI: 10.14569/IJACSA.2016.070901
Pantazoglou, M., G. Tzortzakis and A. Delis, 2015.

Decentralized and energy-efficient workload

management in enterprise clouds. IEEE Trans.

Cloud Comput., 4: 196-209.

 DOI: 10.1109/TCC.2015.2464817

Tavakoli, Z., S. Meier and A. Vensmer, 2012. A

framework for security context migration in a

firewall secured virtual machine environment. 18th

European Conference on Information and

Communications Technologies, (ICT’ 12), Springer,

Budapest, Hungary, pp: 41-51.
 DOI: 10.1007/978-3-642-32808-4_5
Wan, X., X. Zhang, L. Chen and J. Zhu, 2012. An

improved vTPM migration protocol based trusted

channel. Proceedings of the International

Conference on Systems and Informatics, May 19-20,

IEEE Xplore Press, Yantai, pp: 870-875.
 DOI: 10.1109/ICSAI.2012.6223146
Wang, W., Y. Zhang, B. Lin, X. Wu and K. Miao, 2010.

Secured and reliable VM migration in personal
cloud. Proceedings of the 2nd International
Conference on Computer Engineering and
Technology, Apr. 16-18, IEEE Xplore Press,
Chengdu, China, pp: 705-709.

 DOI: 10.1109/ICCET.2010.5485376

Wang, X.Y., X.J. Liu, L.H. Fan and X.H. Jia, 2013. A

Decentralized virtual machine migration approach

of data centers for cloud computing. Math. Problems

Eng., 2013: 1024123X-1024123X.

 DOI: 10.1155/2013/878542

Suresh Baliram Rathod and Vuyyuru Krishna Reddy / Journal of Computer Science 2018, 14 (3): 396.407

DOI: 10.3844/jcssp.2018.396.407

407

Wen, W.T., C.D. Wang, D.S. Wu and Y.Y. Xie, 2015.

An ACO-based scheduling strategy on load

balancing in cloud computing environment.

Proceedings of the 9th International Conference on

Frontier of Computer Science and Technology, Aug.
26-28, IEEE Xplore Press, Dalian, China, pp: 364-

369. DOI: 10.1109/FCST.2015.41

Zhang, F. and H. Chen, 2013. Security-preserving live

migration of virtual machines in the cloud. J. Netw.

Syst. Manage., 21: 562-587.

 DOI: 10.1007/s10922-012-9253-1

Zhao, Y. and W. Huang, 2009. Adaptive distributed load

balancing algorithm based on live migration of

virtual machines in cloud. Proceedings of the 5th

International Joint Conference on INC, IMS and

IDC, Aug. 25-27, IEEE Xplore Press, Seoul, South

Korea, pp: 170-175. DOI: 10.1109/NCM.2009.350

Umesh, D. and K. Keahey, 2015. Traffic-sensitive live

migration of virtual machines. Proceedings of the

15th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, May4-7, IEEE

Xplore Press, Shenzhen, China, pp: 51-60.

 DOI: 10.1109/CCGrid.2015.163

