

© 2018 Ghada Elkabbany, Mohamed Rasslan and Heba Aslan. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Accelerating Digital Forensics through Parallel Computing

Ghada Elkabbany, Mohamed Rasslan and Heba Aslan

Electronics Research Institute, Ministry of Higher Education and Scientific Research, Cairo, Egypt

Article history

Received: 24-12-2017
Revised: 25-01-2018
Accepted: 14-02-2018

Corresponding Author:
Ghada Elkabbany
Electronics Research Institute,
Ministry of Higher Education
and Scientific Research, Cairo,
Egypt
Email: gelkabbany@eri.sci.eg
 ghada_kabbany@yahoo.com

Abstract: Digital crimes in the era of big data and cloud computing

imposes significant challenges in digital forensics. Cloud environment

provides low cost, easy management and reasonable solutions. Moreover, it

supports big data structures and solutions (i.e., security, privacy and digital

forensics). In order to achieve a secure digital forensics analysis in cloud

environment, researchers have proposed solutions with expensive

communication cost and computation overheads. Among these solutions

Nasereldin et al. proposed a protocol which solves the problem of

authenticity and integrity of evidence using signcryption technique. This

leads to low communication and implementation overheads. Furthermore,

identity-based cryptography is used to solve Public Key Infrastructure

(PKI) problems. In addition, it is characterized by the ability to divide the

message into small messages which is suitable for pipelining techniques.

Nasreldin et al.'s signcryption protocol is based on Elliptic Curve

Cryptography (ECC) which is implemented by using different

mathematical operations. In this protocol, ECC mathematical operations

take huge time during the execution of the algorithm. ECC consists of

point doubling and point addition operations. These operations require the

execution of many Montgomery modular multiplications that consume

time. In this study, we introduce a technique to speed up ECC operations

in order to enhance the efficiency of Nasreldin et al. protocol. In

particular, we propose a multi-stage parallel design which consists of

three stages. First, we speed up the point doubling and point addition

operation. Secondly, we enhance the execution time of Montgomery

multiplications. Finally, pipelining is used to obtain a better performance.

The results show that the proposed design enhances Nasreldin et al.

protocol’s execution time by 47.1, 64.7, 73.5 and 79.4%, assuming that

the number of nodes is 2, 4, 6 and 12, respectively.

Keywords: Digital Forensics, Evidence Collecting, Signcryption, Elliptic

Curve Cryptography, Parallel Computing

Introduction

Big data and cloud computing are hot topics that

shape the future of both academia and industry. It is hard

to acquire, handle, manage and process datasets in big

data using legacy methods. Hence, big data requires

optimal processing power and analytics capabilities. On

the other hand, cloud computing offers a class of

distributed data storage and processing platforms that

provides on demand scalable and easy to use online

resources in cost effective way. The extensive

implementation raises the security and privacy anxieties.

Cloud environment afford countless chances to criminals

that allow them to misuse these new technologies by

initiating attacks, capturing impeaching evidences and

cracking encryption keys. The distributed computing

power of big data in cloud environment makes the job of

digital investigators more difficult in acquiring evidences

for digital forensics purposes. Moreover, the amount of

data generated through evidence acquisition is huge,

complex and needs efficient analysis approaches in order

to deal with its characteristics considering velocity and

variety. Another problem could be raised while evidence

collection, where the cloud administrator send the

required data to the investigator. Therefore, it is crucial

to protect the privacy of both uninvolved users and the

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

239

investigation itself (Wall, 2007; Taylor et al., 2011;

Fernandes et al., 2014; Lillis et al., 2016; Nasreldin et al.,

2017; Hraiz, 2017; Samy et al., 2017).

In order to achieve a secure digital forensics analysis

in cloud environment, researchers have proposed

solutions with expensive communication cost and

computation overheads (Hou et al., 2011; 2013a; 2013b;

Zawoad and Hasan 2013; Zawoad et al., 2015; 2016).

These solutions suffer from the lack of authenticity and

integrity of evidence collected. To solve this problem

Nasreldin et al. (2015a) proposed a solution which is

based on using three blocks Sign-Encrypt-Sign. This

solution suffers from computation, implementation and

communication overheads. Signcryption techniques are

used to solve this problem. In literature, many

signcryption techniques which are based on Elliptic

Curve Cryptography (ECC) are proposed (Zheng, 1997;

Zheng and Imai, 1998; Deng and Bao, 1998; Jung et al.,

2001; Han et al., 2004; Hwang et al., 2005b; Yuan and

Hung, 2008; Toorani and Beheshti, 2009; Mohapatra, 2010;

Ashraf et al., 2015; Nasreldin et al., 2015b; Singh, 2016).

ECC implies a set of point operations such as, point

addition, point subtraction, point multiplication, point

division and point doubling (Anoop, 2001). In these

operations, the time complexity of point multiplication is

higher than any other point operations. It is necessary to

find out optimized implementations for point

multiplication. Therefore, by using parallel computing, the

implementation of point multiplication can be recovered

to improve the performance of ECC (Sakthivel and

Nedunchezhian, 2014). In literature, many solutions are

proposed to improve the system performance. These

solutions are divided into two categories: The first

solution is based on parallelizing the different point

operations, while, the second one is based on parallelizing

the Montgomery modular multiplication operations.

Among the aforementioned solutions (Zheng, 1997;

Zheng and Imai, 1998; Deng and Bao, 1998; Jung et al.,

2001; Han et al., 2004; Hwang et al., 2005b; Yuan and

Hung, 2008; Toorani and Beheshti, 2009; Mohapatra,

2010; Ashraf et al., 2015; Singh, 2016), Nasreldin et al.

(2015b) proposed a protocol which solves the problem of

authenticity and integrity of evidence with low

communication and implementation overheads.

Furthermore, it makes use of identity-based

cryptography to solve Public Key Infrastructure (PKI)

problems (such as: High storage cost, large bandwidth

requirement, non-transparency to users and the need for

Certificate Revocation Lists (CRLs)). In addition, it

allows the message division into small messages which

is suitable for pipelining techniques. In this protocol,

ECC mathematical operations take huge time during

the execution of the algorithm. In this study, we

propose a multi-level parallel design in order to speed

up Nasreldin et al.'s protocol execution time. The first

level is based on parallelizing the operations required to

perform the ECC point doubling and point addition,

while the second one is used to enhance the execution

time of Montgomery multiplications. Finally, pipelining

is used to get a better performance. The results show that

the proposed design enhances the execution time by

47.05, 69.12, 79.41, 86.03, 86.23 and 91.176% at the

sender side assuming that the number of

processors/nodes ‘M’ = 2, 4, 6, 12, 18 and 36,

respectively. Moreover, in the receiver side, the degree

of improvement is 47.1, 64.7, 73.5 and 79.4%, assuming

that the number of nodes ‘M’ = 2, 4, 6, 12.

The remainder of this paper is organized as follows.

In the next section, we give a review of digital forensics

in cloud computing, Elliptic Curve Cryptography (ECC)

and Nasereldin et al.’s protocol. Then, The proposed

parallelization design of Nasereldin et al.’s protocol and

its performance evaluation are presented. Finally, the

conclusions are provided.

Background

Digital Forensics in Cloud Computing

Digital forensics is a particular form of auditing that

has emerged in recent years to fight cybercrime

(Fernandes et al., 2014). The development of this field

has been motivated by the interest of organizations in

audit tasks. It has the objective of determining potential

digital evidence by means of analysis techniques. When

applied to clouds, digital forensics face a complex

scenario because data is pushed further back into the

network and servers and is more spread out across them,

rather than purely being on a physical computing device.

Forensics also faces the data locality issues, making it

hard to isolate particular resources. Zawoad et al. (2015;

2016; Zawoad and Hasan, 2013) proposed solutions

which are based on the identification of the desired

properties to support trustworthy forensics in the cloud.

They proposed a Forensics Enabled Cloud (FECloud)

architecture to maintain and afford required evidence.

Unfortunately, they do not solve the authenticity and

integrity of evidence problem.

Criminal investigation need to have the following

characteristics: Protecting the privacy of involved users

and keeping the administrator away from the

investigation process. Hou et al. (2011; 2013a; 2013b)

proposed several solutions which are based on

administrator cooperation. Although, the administrator is

responsible for protecting the data collection, he/she is

not allowed to disclose this data. This solution's

drawback is that the administrator cannot judge the

relevance of data to the crimes under investigation. In

addition, there is no guarantee that the data is not

exposed to alteration or that it comes from the server

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

240

(authenticity and integrity problems). To solve this

problem, in (Hou et al., 2013b), they proposed an

“encryption-then-blind signature with designated

verifier” algorithm. They allow the administrator to

search, retrieve and send the relevant data to the

investigator in a secure manner. Nasreldin et al. (2015a),

show that Hou et al. (2013b)’s scheme does not preserve

its claimed integrity and authenticity. The common

approach to achieve both evidence confidentiality and

authenticity is to sign the evidence and encrypt it with its

signature. The sender would sign the evidence using a

digital signature scheme and then encrypt it with an

appropriate encryption algorithm. The signature would

use a private key encryption algorithm, under a randomly

chosen message encryption key. The random evidence

encryption key would then be encrypted using the

recipient’s public key. These are “sign-then-encrypt” or

"encrypt-then-sign" techniques. Encrypt-then-sign is

subject to the plaintext-subsection and text stealing

attacks. The composition of the sign-then-encrypt

approach suffers from a forwarding attack (Zheng and

Imai, 1998). To mitigate these security breaches, Sign-

Encrypt-Sign and Encrypt-Sign-Encrypt techniques are

used. Sign-Encrypt-Sign and Encrypt-Sign-Encrypt

suffers from computation, implementation and

communication overheads. The term signcryption was

originally introduced and studied by Zheng (1997) with

the primary goal of reaching greater efficiency than can

be accomplished when performing the signature and

encryption operations separately. In spite of proposing

some security arguments, most of the work on

signcryption (Zheng, 1997) missed formal definitions

and analysis. Moreover, signcryption schemes must

achieve non-repudiation, which guarantees that the

sender of a message cannot later repudiate that he/she

has sent the message. Namely, the recipient of a message

can convince a third party that the sender indeed sent the

message. It is worth noting that typical signature

schemes provide non-repudiation, since anyone, who

knows only the sender’s public key, can verify the

signature. This is not the case for signcryption, because

the confidentiality property entails that only the recipient

can comprehend the contents of a signcrypted message

sent to him/her. Nevertheless, it is feasible to accomplish

non-repudiation by other means. Instead of using

encryption/signing process, signcryption can be applied

in place of separate encryption and signing to reduce

both communication bandwidth and computational time

overheads. Any authentication scheme for big data

streams should verify the received packets without

assuming the availability of the entire original stream.
Zheng (1997) proposed the first signcryption scheme

based on discrete logarithmic problem. It saved about

50% computational cost and about 85% communication

cost than the traditional signature-then-encryption

scheme, but it fails the forward secrecy of message

confidentiality. Deng and Bao (1998) improved Zheng's

scheme such that the judge can verify signature without

the recipient's private key. But a key exchange protocol was

required in the process of verification. At, Zheng and Imai

(1998) suggested an ECC based signcryption scheme

that provided all the basic security features and saved

about 58% computational cost and 40% communication

cost than signature-then-encryption. As it is based on

ECC the key size used was smaller as compared to the

other schemes. This was one of the advantages of this

scheme but it still needs forward secrecy (Jung et al.,

2001). Hwang et al. (2005b) proposed a signcryption

scheme based on elliptic curve with forward secrecy and

publicly verifiable. This scheme satisfied the message

confidentiality of previous encrypted message even if the

sender divulged his private key inattentively with a cost

comparable to the existing schemes. Toorani and

Beheshti (2009) suggested a signcryption scheme based

on elliptic curve which provide all the security attributes.

But this scheme required more computational cost as

compared to existing schemes. Singh (2016) proposed a

signcryption scheme which provides encrypted message

authentication, forward secrecy and public verification.

The disadvantage of this scheme is that it still requires a

comparable computational and communication costs.

Nasreldin et al. (2015b) propose an identity-based

signcryption protocol to reduce the computation,

communication and implementation overheads in

evidence collection in cloud forensics. Their proposed

protocol is more efficient than all the previously

presented protocols. It allows the receiver (verifier) to

restore the message blocks upon receiving their

corresponding signature blocks. In addition, it is perfect

for some application requirements and fits packet

switched networks. This protocol has two stages of

verification to ensure that the message has been

recovered efficiently and correctly. The first verification

step is to ensure the integrity and authenticity of the

message (e.g., no modification or substitution in the

ciphertext ‘ri’). The second verification step is to ensure

that the i
th

 message is reconstructed successfully. This

stage is useful for public verification in the case of a

dispute takes place. It guarantees that Nasereldin et al.

protocol satisfies the non-repudiation property.

Nasreldin et al. (2015b) show that the security of their

protocol is based on the intractability of reversing the

secure cryptographic hash function and the Elliptic

Curve Discrete Logarithm (ECDL) problem. Moreover,

they analyzed the security of their protocol in terms of

authenticity, unforgeability, confidentiality, non-

repudiation and forward secrecy. As mentioned

previously, the signcryption protocols (Zheng, 1997;

Zheng and Imai, 1998; Deng and Bao, 1998; Jung et al.,

2001; Han et al., 2004; Hwang et al., 2005b; Yuan and

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

241

Hung, 2008; Toorani and Beheshti, 2009; Mohapatra,

2010; Ashraf et al., 2015; Nasreldin et al., 2015b; Singh

2016) are based on ECC that will be described in details

in the next subsection.

Elliptic Curve Cryptography ECC

Public key cryptography achieves evidence

confidentiality, authenticity, non-repudiation and

integrity. ECC is a better choice than RSA as it

provides the same security level for shorter keys. For

the last decade, ECC has gained increasing acceptance

in the industry and the academic community and has

been the subject of several standards. This interest is

mainly due to the high level of security with relatively

small keys, low cost and smaller hardware realization

provided by ECC (Hwang et al., 2005a; Meurice de

Dormale and Quisquater, 2007; Lo et al., 2010; Li et al.,

2013). It was first proposed independently by Koblitz

(1987) and Miller (1985). The security of a public key

system using elliptic curves is based on the difficulty of

computing discrete logarithm in a group of points on an

elliptic curve defined over a finite field (FOSIT, 2000).

ECC is used in many applications such as smart cards,

set top box, low power portable devices (cell phone),

etc. In all these applications, the main operation in ECC

is the scalar multiplication in authentication and

certification (Thomas et al., 2014). The Elliptic Curve

Discrete Logarithm Problem (ECDLP) is currently

believed to be asymptotically harder than the

factorization of integers. ECC provides more security

per key bit compared to other public key standards

(Rao et al., 2017; Parmar and Verma, 2017). Table 1

shows the key sizes of AES, ECC and RSA for the

same security level. Private keys are 12-times larger for

RSA compared to ECC at the 128-bit security level; as

shown in Table 1.

ECC could work in GF(2
m

) or GF(p), while GF(2
m

)

is suitable for hardware implementation, GF(p) is

suitable for software implementation (Miller, 1985;

FOSIT, 2000; Sakthivel and Nedunchezhian, 2014). In

our work, we concentrate on parallelizing GF(p).

Cryptographic schemes based on ECC rely on scalar

multiplication of elliptic curve points. Given an

integer ‘k’ and a point “P∈E(F(p))”, scalar

multiplication is the process of adding ‘P’ to itself ‘k’

times. The result of this scalar multiplication is

denoted by ‘kP’. Scalar multiplication of ECC can be

computed efficiently using the double-and-add

algorithm as given in the following:

 N = P; and R = O; //point at infinity

 for(i = 0; i < k-bit-length; i++)

 {If(k[i] == 1)

 R = R + N;

 N = N + N;}

In this algorithm, ‘O’ represents point at infinity

and k-bit-length represents the number of bits of ‘k’.

Scalar multiplication is used for the computation of

the public key, the signature, encryption and key

agreement in the ECC system. The mathematical

operations of the ECC are defined over the elliptic

curve are as follows:

()2 3
. y x a x b mod p≡ + + (1)

where:

()3 2
4. 27. 0 .a b mod p+ ≠

The change of the parameters ‘a’ and ‘b’ gives

different elliptic curves (Certicom Corp., 2000a;

2000b; Tawalbeh et al., 2010; Srivastava and Mathur,

2013). One of the crucial decisions when implementing

an efficient ECC over GF(p) is deciding which point

coordinates system to use. In (Tawalbeh et al., 2010),

details of three different projective coordinate systems

are given. The first one is the affine coordinate where

a point is represented as (XA,YA). The other two forms

of the projective coordinates are: (X,Y) where XA =

X/Z and YA = Y/Z and (X,Y) where XA = X/Z
2
 and YA =

Y/Z
3
. Table 2 shows a comparison of these three

projective coordinate systems. As shown in the table,

the affine coordinate system uses inversion operation

in both point addition and point doubling, which is

costly in terms of computation time and makes it an

inefficient choice. The other coordinate systems do not

use modular inversions in point addition and doubling.

As mentioned in (Tawalbeh et al., 2010), the projection

(X, Y) where XA = X/Z
2
 and YA = Y/Z

3
 has the minimum

number of modular multiplication operations.

Table 1: Keys sizes of ECC Vs RSA and AES (Malik, 2010)

AES (bits) ECC (bits) RSA (bits)

80 160 1024
128 256 3024
192 384 7680
256 512 16360

Table 2: Comparison between the three coordinates systems

Coordinates system Adding Doubling

Affine 6 Add +3 Mul + Inv 4 Add +4 Mul + Inv
Projective(x,y) ⇒ (X/Z2,Y/Z3) 6 Add +16 Mul 4 Add +10 Mul

Projective(x,y) ⇒ (X/Z, Y/Z) 6 Add +15 Mul 4 Add +12 Mul

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

242

For the projective coordinate system (x,y)⇒(X/Z
2
,

Y/Z
3
), point addition of P + Q in projective coordinates

(x, y) ⇒ (X/Z
2
, Y/Z

3
) is computed as:

P = (X1, Y1, Z1), Q = (X2, Y2, Z2), P + Q = (X3, Y3, Z3),

where P ≠ ± Q

(x, y) = (X/Z
2
, Y/Z

3
) → (X, Y, Z)

λ1 =X1Z2
2
 λ2 = X2Z1

2
 λ3 = λ1 - λ2

λ4 = Y1Z2
3
 λ5 = Y2Z1

3
 λ6 = λ4 - λ5

λ7 = λ1 + λ2 λ8 = λ4 + λ5

Z3 = Z1Z2 λ3 X3 = λ6
2
 λ3

2
 λ9 = λ7 λ3

2
-2X

3

Y3 = (λ9 λ6 - λ8 λ3
3
)/2

The doubling of a point (P + P) is computed as:

P = (X1, Y1, Z1); P + P = (X3, Y3, Z3)

(x, y) = (X/Z
2
, Y/Z

3
) → (X, Y, Z)

λ1 = 3X1
2
 + aZ1

4
Z3 = 2Y1Z1 λ2 = 4X1Y1

2

X3 = λ1
2
 − 2 λ2 λ3 = 8Y1

4
 λ4 = λ2 − X3

Y3 = λ1 λ4 − X3

In next sub-section, we give a detailed description of

(Nasreldin et al., 2015b) evidence acquisition protocol.

Nasreldin et al.'s Evidence Acquisition Protocol

Nasreldin et al. (2015b), in their work, proposed an

identity-based signcryption protocol to solve the problem

of authenticity and integrity of collected evidences.

Nasereldin et al.’s protocol makes use of identity-based

cryptography to overcome PKI problems mentioned

previously. Although this protocol needs larger number

of Elliptic Curve Point Multiplication (ECPM)

operations than other protocols (Zheng and Imai, 1998;

Han et al., 2004; Hwang et al., 2005b; Toorani and

Beheshti, 2009; Mohapatra, 2010; Singh, 2016) (as

shown in Fig. 1), Nasreldin et al.'s (2015b) protocol

allows message to be divided into small messages which

is suitable for pipelining techniques. Moreover, it allows

the recipient to restore the message blocks upon

receiving their corresponding signature blocks. It

consists of two stages of verification: The first stage is to

ensure the integrity and authenticity of the message. The

second stage is to make sure that the message is

reconstructed successfully. This leads to guarantee that

the protocol satisfies the non-repudiation property.

In order to perform Nasreldin et al.'s protocol, the

following steps must be performed.

Setup

The Private Key Generation center (PKG) chooses a

Gap Diffie-Hellman group ‘G1’ of prime order ‘q’, a

multiplicative group ‘G2’ of the same order and a bilinear

map “e: G1 × G1→G2”, together with an arbitrary

generator P∈G1. Then it chooses a random value “s∈Zq
*

as the master secret key and computes the corresponding

public key “Ppub = sP.H1” and ‘H2’ are two secure

cryptographic hash functions, such that “H1: 0, 1* → G1”

and “H2: 0, 1* → Zq
*
”. The system parameters (G1, G2, P,

Ppub, H1, H2, e, q) and the master secret key is ‘s’.

Fig. 1: Comparative analysis of computational cost of different signcryption schemes; ECPA: Elliptic Curve Point Addition; ECPS:

Elliptic Curve Point Subtraction; ECPM: Elliptic Curve Point Multiplication operations

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

243

KeyExtract

Given identity ID, PKG computes “SID = sH1(ID” and

sends it to the user with identity ID. Nasreldin et al.'s

protocol defines ‘QID’ as the public key of the user with

identity ID. In addition, it assumes that the sender ‘A’

(with secret key ‘SA’ and public key ‘QA’) wants to send

a message ‘Mess’ to the receiver ‘B’ (with public key

‘QB’ and secret key ‘SB’), it divides the stream into

blocks, ‘Messi’, where *

i q
Mess Z∈ .

Signcrypt Operation (Sender Side)

The sender ‘A’ chooses a random number *

q
k Z∈ and

lets r0 = 0. The following steps must be done at the

sender side before sending the signcrypted message:

()()2 1
, , 1,2,3, ,

k

i i i B
r Mess H r e P Q for i n

−

= ⋅ ⊕ = … (2)

()()2 1
, , , ,

k

n B
H r r e P Qα = … (3)

()()2 1
, , , , ,

k

n
H Mess Mess e P Pβ α= … (4)

 Pγ β= ⋅ (5)

B
Qθ β= ⋅ (6)

1 1

A
S k P Sβ β− −

= ⋅ ⋅ − ⋅ (7)

‘A’ sends (S, α, γ, θ, r1,…, rn) to ‘B’ over a non-

secure channel.

Unsigncrypt Operation (Receiver Side):

• Verifies:
?

α = H2 (r1,…,rn,e(S,θ)·e(SB,QA))

• Recovers Mess:

() ()()2

1

1
. .,θ ,

i i i B A
Mess r H r e S e S Q

−

−

= ⊕ (8)

• Checks:

() ()()?

2 1 2
, ,..., , , , . , .n pub AH Mess Mess Mess e S e P Q Pγ α λ= (9)

Upon receiving the message, the receiver verifies the

signature by making the comparison between: ‘α’ and

“Messi·H2 (ri-1 ⊕e (P, QB)
k
)”. In case of they are not

equal, this implies that the received packets are altered

and must be ignored. On the other hand, if they are

equal, then the receiver retrieves the message blocks

Messi = ri[H2(ri-1⊕[e(S,θ).e(SB,QA)])]
−1

. Lastly, the

recipient checks the correctness of the message

reconstruction by comparing ‘γ’ to H2(Messi,…, Messn,

α,e(S,γ).e(Ppub,QA)).P. For public verification, the

receiver ‘B’ only needs to make the following public

(Mess, S, α, γ, θ). Next, any verifier can check the

message authenticity by comparing ‘γ’ to H2(Messi,…,

Messn, α,e(S,γ).e(Ppub,QA)).P.

In the next section a parallel implementation of

Nasreldin et al. protocol (2015b) is presented.

Methods

The Proposed Parallel Design of Nasreldin et al.'s

Protocol

Nasreldin et al.'s protocol is based on ECC which is

characterized by different mathematical point

operations that take huge time during its execution.

Among these operations, the time complexity of ECPM

is higher than any other point operations on elliptic

curve (Tawalbeh et al., 2010). Therefore, by using

parallel computation, the implementation of EPCM can

be accelerated to improve the performance of ECC.

Therefore, in order to accelerate Nasreldin et al.'s

protocol, a multi-level parallel model is presented. Our

proposed design consists of three levels: The first level is

based on computing different point doubling and point

addition operations of each ECPM operation in parallel,

while the second one is used to enhance the execution

time of Montgomery multiplications. Finally, different

message blocks are pipelined.

Parallel Elliptic Curve Cryptography

Parallelizing ECC algorithms is a promising approach

that can be used to reduce its computation time. Several

research studies in the literature concerning parallelizing

ECC over prime field GF(p) are given. These solutions

are divided into two categories: The first solution is

based on parallelizing the different point operations

(Srivastava and Mathur, 2013; Anagreh et al., 2014;

Chung et al., 2012; Gutub et al., 2007). The other

research direction is based on partitioning the

Montgomery modular multiplication (Fan et al., 2008;

Guillermin, 2010). In this study, a hybrid parallel

solution that makes use of the advantages of both

categories is proposed. First, different operations of each

ECMP (consists of point doubling and point addition

operations) are computed in parallel. Then, the

Montgomery modular multiplication operations are

executed in parallel in order to enhance the execution time.
As mentioned at a previous section, the projection

(X,Y) where XA = X/Z
2
 and YA = Y/Z

3
 has the minimum

number of modular multiplication operations. The

dataflow graphs for point adding and point doubling are

shown in Fig. 2 and 3 respectively.

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

244

As mentioned in Table 2, each point addition

operation needs sixteen modular multiplications and

six modular additions. On the other hand, each

doubling operation needs ten modular multiplications

and four modular additions. Assuming that, ‘TM’ is the

time needed to execute one modular multiplication

operation and ‘TA’ is the time needed to compute one

modular addition operation respectively (for

simplicity, we assume that the time needed to execute

modular subtraction operation equals to that needed

for modular addition operation). Then, the total

execution time needed to execute each point addition

operation ‘TS-add’ is given by:

16 6
S add M A

T T T
−

= + (10)

On the other hand, the total execution time ‘TS-doub’

that is needed to compute each point doubling operation

is given by:

10 4
S doub M A

T T T
−

= + (11)

As mentioned in (Miller, 1985), field

multiplication is the basic elliptic curve operation

used in computing the point ‘kP’ from ‘P’. Assuming

that ‘n’ is the number of bits of ‘k’ which indicates the

exact number of point doublings, but not point

additions. Assuming that the bits of ‘k’ are half ones

and half zeros (an average estimation for comparison

reason), then the elliptic curve arithmetic operations

required are ‘n’ point doublings and approximately

‘n/2’ point additions. Then, the total sequential time

of the elliptic curve point multiplication arithmetic

operation ‘TS-ECPM’ is calculated as follows:

() () ()

() () ()

() ()

* / 2 *

16 6 * / 2 10 4 *

18 7

S ECPM S add S doub

M A M A

M A

T T n T n

T T n T T n

n T n T

− − −

= +

= + + +

= +

 (12)

Fig. 2: Projective coordinate (x, y)⇒(X/Z2, Y/Z3): Point Addition

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

245

Fig. 3: Projective coordinate (x, y)⇒(X/Z2, Y/Z3): Point Doubling

For the first level of parallelization, different point

doubling and point addition operations (for each

ECMP) operation, are computed in parallel. As shown

in Fig. 2 and 3, there is some dependency in calculating

both point doubling and point addition. Therefore, the

maximum number of nodes that can be used to execute

each ECPM is four.

Both point addition and point doubling operations

require the execution of many Montgomery

multiplications which consume time. This led us to

propose the next level of our parallel model that is

concerned of enhancing the execution time of

Montgomery multiplications. Each modular

multiplication operation can be represented by three

simple multiplication operations and one simple addition

operation (GroBschadl, 2000); therefore each modular

multiplication operation can be executed in parallel. The

optimal number of nodes to execute one modular

multiplication is three. This level of parallelism enhances

the ECC performance, since it solves the problem of load

imbalance (Elkabbany et al., 2014). Then, to achieve

load balancing, each ECPM operation can be computed

by at most twelve nodes.

Assuming that, the time needed to compute a

simple multiplication operation equals to ‘tm’ and the

time needed for computing simple addition operation

equals to ‘ta’. Then, a modular multiplication

operation can be calculated as:

3
M m a

T t t= + (13)

In addition, the modular addition could be calculated as

the summation of addition and modulo operations. Using

Barret algorithm (Barret, 1987), modulo operation needs

one simple multiplication, one simple division and one

simple subtraction. Then, the time needed to compute

modular addition operation can be calculated as follows:

2
A m a div

T t t t= + + (14)

where, ‘tdiv’ is the time needed to compute one simple

division.

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

246

 (a)

 (b)

Fig. 4: (a) Nasreldin et al.'s protocol steps for signcryption; (b) Nasreldin et al.'s protocol steps for unsigncryption

Since, the addition operation considerably needs less

time than the multiplication operation, it can be neglected

and assuming that and “tdiv = tm”, therefore, the time

needed to execute each modular multiplication is ‘3tm’ and

the time needed to execute one modular addition is ‘2tm’.

Then, from Equation 12 to 14, the sequential time for each

ECPM ‘TS-ECPM’ is calculated as follows:

()68
S ECPM m

T nt
−

= (15)

Due to the nature of Nasreldin et al. (2015b)

protocol, the proposed parallel design assumes that the

data stream is divided into ‘N’ messages, which can be

executed in a pipelined manner. For simplicity, we

assume that the number of pipeline stages equals to the

number of steps to be executed and the output is shifted

from step ‘i’ to step ‘I +1’for all steps. As mentioned

previously, Nasreldin et al. (2015b) requires four ECPM,

in case of signcryption and only one ECPM in case of

unsigncryption. Figure 4, presented different Steps of

both sender and receiver sides. From this figure, we can

noticed that: At the sender side, parallelization can be

done within Step 1 that has one ECPM. In addition,

Steps 4, 5 and 6 can be done in parallel (each has one

ECPM). While at the receiver side, parallelization can be

done only at Step 3 that has only one ECPM. Since, the

maximum number of nodes that can be used for each

ECPM is twelve. Then, for the signcryption operation (at

the sender side), thirty six nodes are needed, while at the

receiver side only twelve nodes are needed.

In order to simplify the calculations, we assume that the

time needed for Add, Sub, Mul, Div and Hash operations

will be neglected as they are very small compared to the

time required for the ECPM operations and from Equation

15, the total sequential time at both sender and receiver side

‘Ts-sender’ and ‘Ts-receiver’ can be calculated as:

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

247

() ()

4*

4* 68 272

s sender s

m m

T T

nt nt

−

=

= =

 (16)

() ()

1*

68 68

s receiver s

m m

T T

nt nt

−

=

= =

 (17)

Results and Discussion

To evaluate the performance of the proposed parallel

model, different metrics such as: Execution time, speed up,

efficiency and the improvement degree are used

(Borisenko, 2010; Zaghloul et al., 2017). Parallel execution

time ‘Tpar’ can be defined as the time period between the

starting of parallel computation and the time since the last

processor/node finishes execution. Furthermore, the

speedup can be defined as the ration between the sequential

and parallel times “Ts/Tpar”. Moreover, degree of

improvement is determined by: “(Ts-Tpar)/Ts”.

Table 3 illustrates the parallel execution time for both

point addition and point doubling operations at each

ECMP operation. In order to simplify the calculations, we

will neglect the communication time as it is small compared

to the time required to compute modular operations and

then, Table 4 presents the parallel time of each ECPM

operation ‘TECPM-par’, for different number of nodes ‘M’ =

2, 4, 6 and 12. Finally, Table 5 shows the total parallel

execution time of the proposed parallel design of

Nasereldin et al.'s protocol at both sender and receiver

sides for ‘M’= 1, 2, 4, 6, 12, 18 and 36. On the other hand,

Fig. 5 and 6 present the system performance: Execution

time, speed up, efficiency and the improvement degree at

the sender and the receiver respectively.

(a)

(b)

(c)

1 2 4 6 12 18 36

Number of processing elements

E
x

ec
u

ti
o
n

 t
im

e
n
tm

250

200

150

100

50

0

1 2 4 6 12 18 36

Number of processing elements

12

8

4

0

S
p

ee
d
u
p

1 2 4 6 12 18 36

Number of processing elements

1.5

1

0.5

0

E
ff

ic
ie

n
cy

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

248

(d)

Fig. 5: System performance of the proposed parallel model (sender side)

(a)

(b)

(c)

Number of processing elements

1

0.5

0

1 2 4 6 12 18 24

D
eg

re
e

o
f

im
p

ro
v

em
en

t
(%

)

1

Number of processing elements

1 2 4 6 12

60

40

20

0

E
x

ec
u

ti
o
n

 t
im

e
n

tm

Number of processing elements

1 2 4 6 12

6

4

2

0

S
p
ee

d
u
p

Number of processing elements

1 2 4 6 12

1

0.5

0

E
ff

ic
ie

n
cy

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

249

(d)

Fig. 6: System performance the proposed parallel model (receiver side)

Table 3: The parallel time for both point addition and point

doubling operations when using M = 2 and 4

M Ta-par (point-addition) Td-par (point-doubling)

2 Ta-par = 8TM + 3TA + Tcomm Td-par = 5TM +3TA + Tcomm

4 Ta-par = 4TM + 3TA + Tcomm Td-par = 3TM + 3TA + Tcomm

Table 4: The parallel time of each ECPM using different

number of nodes (M = 2, 4, 6 and 12)

M TECPM-pa r = (Ta-par)*n/2 + (Td-par)*n

2 TECPM-pa r = n*(9TM +4.5TA) = 36 (ntm)

4 TECPM-pa r = n*(5TM +4.5TA) = 24 (ntm)

6 TECPM-pa r = n*(9tm +4.5TA) = 18(ntm)

12 TECPM-pa r = n*(5tm +4.5TA) = 14(ntm)

Table 5: The total parallel time of the proposed parallel model of

Nasreldin et al.'s protocol at both sender and receiver

M Sender side Receiver side

1 272(ntm) 68(ntm)

2 144(ntm) 36(ntm)

4 84(ntm) 24(ntm)

6 54(ntm) 18(ntm)

12 38(ntm) 14(ntm)

18 32(ntm) 14(ntm)

36 24(ntm) 14(ntm)

As shown in the above tables and figures, it is clear

that the use of parallel system decreases significantly the

execution time of Nasreldin et al.'s protocol. Figure 5a

and 6a show that, as the number of nodes increases, the

total execution/ parallel time decreases. Moreover, as the

number of nodes increases, the speedup increases as

shown in Fig. 5b and 6b. Figure 5c and 6c present the

efficiency of the proposed parallel design. Parallel

efficiency is the ratio between speedup and the number

of nodes. It estimates how well the nodes are used in

solving the problem. These figures illustrate an overall

decrease in parallel efficiency achieved by the parallel

model as the number of nodes increases. Figure 5d and

6d describe the improvement of the proposed parallel

design compared to the performance prior to

parallelization. As shown in these figures, as the number

of nodes increases, the improvement degree increases.

The degree of improvement at the sender side is 47.05,

69.12, 79.41, 86.03, 86.23 and 91.176% assuming that

‘M’ = 2, 4, 6, 12,18 and 36 respectively. Moreover, in

the receiver side, the degree of improvement is 47.1,

64.7, 73.5 and 79.4%, for 2, 4, 6 and 12 nodes

respectively. Increasing the number of processors/nodes

leads to the decrease in the system's efficiency.

Therefore, the number of nodes must not exceed a

certain number which is called system's saturation. As

shown in Fig. 5 and 6, the saturation occurs when the

number of processors equals 36 and 12 at sender and

receiver sides respectively.

Conclusion

Nasreldin et al. proposed a protocol for securing the

digital evidence collection in cloud environments. This

protocol solves the problem of authenticity and integrity

of evidence with the following characteristics: It has low

communication and implementation overheads.

Furthermore, it makes use of identity-based cryptography

to solve PKI problems such as: High storage cost, large

bandwidth requirement, non-transparency to users and the

need for CRLs. In addition, it allows the message division

into small messages which is suitable for pipelining

techniques. In this study, a multi-level parallelism model

is presented in order to accelerate Nasreldin et al.’s

protocol. In their protocol, ECC mathematical operations

take a huge time during the execution of the protocol.

ECC is implemented by using a set of point operations, in

these operations, the time complexity of ECPM is higher

than any other point operations on elliptic curve.

Therefore, by using parallel computation the

implementation of EPCM can be accelerated to improve

the performance of ECC. Since the ECPM is the most

Number of processing elements

1 2 4 6 12

1

0.5

0

D
eg

re
e

o
f

im
p

ro
v
em

en
t

(%
)

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

250

consuming time, then reducing its time will improve the

Montgomery multiplication’s performance.
Our design consists of three levels of parallelization:

The first level is based on computing different point

doubling and point addition operations in parallel, while

the second one is used to enhance the execution time of

Montgomery multiplications. Finally, pipelining

different message blocks is used to get a better

performance. The analysis shows that the use of parallel

system will enhance its performance. The experimental

results show that the maximum number of nodes that can

be used for each ECPM is twelve. Then, for the

signcryption operation (at the sender side), thirty-six

nodes are needed. While, for unsigncryption operation

(receiver side) only twelve nodes are needed. At the

sender side, the degree of improvement of the proposed

parallel design, compared to the performance prior to

parallelization is 47.05, 69.12, 79.41, 86.03, 86.23 and

91.176% assuming that ‘M’ = 2, 4, 6, 12, 18 and 36

respectively. On the other hand, at the receiver side, the

degree of improvement is 47.1, 64.7, 73.5 and 79.4%,

assuming that the number of nodes ‘M’ = 2, 4, 6 and 12.

Author’s Contributions

The author prepared the study, elaborated the

methodology, performed the analysis and wrote the

manuscript.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that no

ethical issues involved.

References

Anagreh, M., A. Samsudin and M. Omar, 2014. Parallel

method for computing elliptic curve scalar

multiplication based on MOF. Int. Arab J. Inform.

Technol., 11: 521-525.

Anoop, M.S., 2001. Elliptic curve cryptography an

implementation tutorial. Technical Report, Tata

Elxsi Ltd, Thiruvananthapuram, India.

Ashraf, S., N. Uddin, M. Sher, A. Ghani and H.

Naqvi et al., 2015. An efficient signcryption

scheme with forward secrecy and public

verifiability based on hyper elliptic curve

cryptography. Multimed. Tools Applied, 74:

1711-1723. DOI: 10.1007/s11042-014-2283-9

Barret, P., 1987. Implementing the rivest shamir and

adleman public key encryption algorithm on

standard digital signal processor. Proceedings of the

Advances in Cryptolgy, (AC’ 87), Springer, Santa

Barbara, California, pp: 311-323.

 DOI: 10.1007/3-540-47721-7_24

Borisenko, A., 2010. Performance evaluation in parallel

systems. ACM Sigplan Notes, 17: 150-155.

Certicom Corp., 2000a. SEC1: Elliptic curve

cryptography standards for efficient cryptography.

Technical Report, Ontario, Canada.

Certicom Corp., 2000b. SEC2: Recommended elliptic

curve domain parameters standards for efficient

cryptography. Technical Report, Ontario, Canada.

Chung, S., J. Lee, H. Chang and C. Lee, 2012. A high-

performance elliptic curve cryptographic processor

over GF(p) with SPA resistance. Proceedings of the

IEEE International Symposium on Circuits and

Systems, May 20-23, IEEE Xplore Press, Seoul,

South Korea, pp: 1456-1459.

 DOI: 10.1109/ISCAS.2012.6271521

Deng, R. and F. Bao, 1988. A signcryption scheme with

signature directly verifiable by public key.

Proceedings of the 1st International Workshop on

Public Key Cryptography, Feb. 5-6, Springer,

Pacifico Yokohama, Japan, pp: 55-59.

 DOI: 10.1007/BFb0054014

ElKabbany, G., H. Aslan and M. Rasslan, 2014. A

design of a fast parallel-pipelined implementation of

AES: Advanced Encryption Standard. Int. J.

Comput. Sci. Inform. Technol., 6: 39-35.

 DOI: 10.5121/ijcsit.2014.6603

Fan, J., K. Sakiyama and I. Verbauwhede, 2008. Elliptic

curve cryptography on embedded multicore systems.

Design Automat. Embedded Syst., 12: 231-242.

DOI: 10.1007/s10617-008-9021-3

FOSIT, 2000. Elliptic curve cryptography version 2.0.

Federal Office for Security in Information Technology,

Technical Guideline TR-03111, Bonn, Germany.

Fernandes, A., F. Soares, V. Gomes, M. Freire and R.

Inácio, 2014. Security issues in cloud environments:

A survey. Int. J. Informat. Security, 13: 113-170.

DOI: 10.1007/s10207-013-0208-7

GroBschadl, J., 2000. High-speed RSA hardware based

on barret's modular reduction method. Proceedings

of the 2nd International Workshop on Cryptographic

Hardware and Embedded Systems, Aug. 17-18,

Springer, London, pp: 91-203.

 DOI: 10.1007/3-540-44499-8_14

Guillermin, N., 2010. A high speed coprocessor for

elliptic curve scalar multiplications over Fp.

Proceedings of the 12th International Conference on

Cryptographic Hardware and Embedded Systems,

(HES’ 10), Berlin, Heidelberg, pp: 48-64.

Gutub, A., M. Ibrahim and T. Al-Somani, 2007.

Parallelizing GF(P) elliptic curve cryptography

computations for security and speed. Proceedings of

the 9th International Symposium on Signal

Processing and its Applications, Feb. 12-15, IEEE

Xplore Press, Sharjah, UAE, pp: 1-4.

DOI: 10.1109/ISSPA.2007.4555449

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

251

Han, Y., X. Yang and Y. Hu, 2004. Signcryption based

on elliptic curve and its multi-party schemes.

Proceedings of the 3rd ACM International

Conference on Information Security, Nov. 14-16,
ACM, Shanghai, China, pp: 216-217.

 DOI: 10.1145/1046290.1046336

Hou, S., T. Uehara, S. Yiu, L. Hui and K. Chow,

2011. Privacy preserving confidential forensic

investigation for shared or remote servers.

Proceedings of the 7th International Conference

on Intelligent Information Hiding and Multimedia

Signal Processing, Oct. 14-16, IEEE Xplore

Press, Dalian, China, pp: 378-383.

 DOI: 10.1109/IIHMSP.2011.28

Hou, S., R. Sasaki, T. Uehara and S. Yiu, 2013a.

Verifying data authenticity and integrity in server-

aided confidential forensic investigation.

Proceedings of the International Conference on

Information and Communication Technology,

Mar. 25-29, Springer, Yogyakarta, Indonesia, pp:

312-317. DOI: 10.1007/978-3-642-36818-9_33

Hou, S., Y. Siu-Ming, U. Tetsutaro and S. Ryoichi,

2013b. A privacy-preserving approach for collecting

evidence in forensic investigation. Int. J. Cyber-

Security Digital Forens., 2: 70-78.

Hraiz, S., 2017. Challenges of digital forensic investigation

in cloud computing. Proceedings of the 8th

International Conference on Information Technology,

May 17-18, IEEE Xplore Press, Amman, Jordan,

pp: 568-571. DOI: 10.1109/ICITECH.2017.8080060

Hwang, M.S., C.C. Lee, J.Z. Lee and C.C. Yang, 2005a.

A secure protocol for bluetooth piconets using

elliptic curve cryptography. Telecommun. Syst., 29:

165-183. DOI: 10.1007/s11235-005-1689-0

Hwang, R., C.H. Lai and FF. Su, 2005b. An efficient

signcryption scheme with forward secrecy based on

elliptic curve. Applied Math Comput., 167: 870-881.

DOI: 10.1016/j.amc.2004.06.124
Jung, H., K. Chang, D. Lee and J. Lim, 2001.

Signcryption schemes with forward secrecy.
Proceeding of the Information Security Application,
Sept. 13-14, Seoul, Korea.

Koblitz, N., 1987. Elliptic curve cryptosystems.

Mathmat. Comput., 48: 203-209. DOI:

10.1090/S0025-5718-1987-0866109-5
Li, C.T., C.C. Lee and C.W. Lee, 2013. An improved

two-factor user authentication protocol for
wireless sensor networks using elliptic curve
cryptography. Sensor Lett., 11: 958-965.
DOI: 10.1166/sl.2013.2669

Lillis, D., B. Becker, T. O’Sullivan and M. Scanlon,

2016. Current challenges and future research

areas for digital forensic investigation.

Proceedings of the 11th ADFSL Conference on

Digital Forensics, Security and Law, (FSL’ 16),

Daytona Beach, Florida, USA.

Lo, J.W., C.C. Lee, M.S. Hwang and Y.P. Chu, 2010. A

secure and efficient ECC-based AKA protocol for

wireless mobile communications. Int. J. Innovative

Comput. Inform. Control, 6: 1-9.

Malik, M., 2010. Efficient implementation of elliptic

curve cryptography using low-power digital signal

processor. Proceedings of the 12th International

Conference on Advanced Communications

Technology, Feb.7-10, IEEE Xplore Press, Phoenix

Park, South Korea, pp: 1464-1468.

Meurice de Dormale, G. and J. Quisquater, 2007. High-

speed hardware implementations of elliptic curve

cryptography: A survey. J. Syst. Architecture, 53:

72-84. DOI: 10.1016/j.sysarc.2006.09.002

Miller, V., 1985. Use of elliptic curves in cryptography.

Proceedings of the Advances in Cryptology, Aug.

18-22, Springer-Verlag, London, pp: 417-426.

Mohapatra, R.K., 2010. Signcryption schemes with

forward secrecy based on elliptic curve

cryptography. MSc Thesis, Department of Computer

Science and Engineering, National Institute of

Technology, India.

Nasreldin, M., H. Aslan, M. El-Hennawy and A.

El-Hennawy, 2015a. New secure communication

design for digital forensics in cloud computing. Int.

J. Comput. Sci. Inform. Security, 13: 8-17.

Nasreldin, M., M. El-Hennawy, H. Aslan and A.

El-Hennawy, 2015b. Digital forensics evidence

acquisition and chain of custody in cloud

computing. Int. J. Comput. Sci. Issues, 12: 153-160.

Nasreldin, M., H. Aslan, M. Rasslan and G. Weir, 2017.

Evidence acquisition in cloud forensics. Proceedings

of the IEEE 4th International Conference on New

Paradigms in Electronics and Information

Technology, Nov. 5-8, Alexandria, Egypt.

Parmar, N. and V. Verma, 2017. A comparative

evaluation of algorithms in the implementation of an

ultra-secure router-to-router key exchange system.

Security Commun. Netw., 2017: 1467614.

 DOI: 10.1155/2017/1467614

Rao, A., K. Sujatha, A. Deepthi and L. Rajesh, 2017.

Survey paper comparing ECC with RSA, AES and

Blowfish Algorithms. Int. J. Recent Innovat. Trends

Comput. Commun., 5: 44-47.

Sakthivel, A. and R. Nedunchezhian, 2014. Analyzing the

point multiplication operation of elliptic curve

cryptosystem over prime field for parallel processing.

Int. Arab J. Inform. Technol., 11: 322-328.

Samy, G., B. Shanmugam, N. Maarop, P. Magalingam

and S. Perumal et al., 2017. Digital forensic

challenges in the cloud computing environment.

Proceedings of the International Conference of

Reliable Information and Communication

Technology, Apr. 23-24, Johor-Bahru, Malysia,

pp: 669-679. DOI: 10.1007/978-3-319-59427-9_69

Ghada Elkabbany et al. / Journal of Computer Science 2018, 14 (2): 238.252

DOI: 10.3844/jcssp.2018.238.252

252

Singh, A., 2016. A modified signcryption scheme using

elliptic curve cryptography. Proceedings of the

National Conference on Recent Innovations in

Science, Technology and Management, Feb. 26-27,

Gurgaon Institute of Technology and Management,

Gurgaon, pp: 12-16.

Srivastava, A. and A. Mathur, 2013. The Rabin

cryptosystem and analysis in measure of Chinese

reminder theorem. Int. J. Scientific Res. Public.,

3: 1-4.

Tawalbeh, L., A. Mohammad and A. Gutub, 2010.

Efficient FPGA implementation of a programmable

architecture for GF(p) elliptic curve crypto

computations. J. Signal Process. Syst., 59: 233-244.

DOI: 10.1007/s11265-009-0376-x

Taylor, M., J. Haggerty, D. Gresty and D. Lamb, 2011.

Forensic investigation of cloud computing systems.

Netw. Security, 2011: 4-10.

 DOI: 10.1016/S1353-4858(11)70024-1

Thomas, C., G. Sheela and S. Krishnan, 2014. A survey

on various algorithms used for elliptic curve

cryptography. Int. J. Comput. Sci. Inform. Technol.,

5: 7296-7301.

Toorani, M. and A.A. Beheshti, 2009. An elliptic

curve-based signcryption scheme with forward

secrecy. J. Applied Sci., 9: 1025-1035.

 DOI: 10.3923/jas.2009.1025.1035

Wall, D., 2007. Cybercrime: The Transformation of Crime

in the Information Age. 1st Edn., Willy, Polity Press,
Cambridge, ISBN-10: 0745627358, pp: 276.

Yuan, J. and C. Hung, 2008. Elixir: High-throughput

cost-effective dual-field processors and the design

framework for elliptic curve cryptography. IEEE

Trans. Very Large Scale Integrat. Syst., 16: 1567-

1580. DOI: 10.1109/TVLSI.2008.2001239

Zaghloul, S., L. AlShehri, M. AlJouie, N. AlEissa and N.

Al-Mogheerah, 2017. Analytical and experimental

performance evaluation of parallel merge sort on

multicore system. Int. J. Eng. Comput. Sci., 6:

21764-21773. DOI: 10.18535/ijecs/v6i6.36

Zawoad, S. and R. Hasan, 2013. Digital forensics in the

cloud. J. Defense Software Eng., 26: 17-20.

Zawoad, S., R. Hasan and J. Grimes, 2015. LINCS:

Towards building a trustworthy litigation hold

enabled cloud storage system. Digital Invest., 14:

S55-S67. DOI: 10.1016/j.diin.2015.05.014

Zawoad, S., A. Dutta and R. Hasan, 2016. Towards

building forensics enabled cloud through secure

logging-as-a-service. IEEE Trans. Dependable

Secure Comput., 13: 148-162.

 DOI: 10.1109/TDSC.2015.2482484

Zheng, Y., 1997. Digital signcryption or how to achieve

cost(signature and encryption) << cost(signature) +

cost(encryption). Proceedings of the 17th Annual

International Cryptology Conference on Advances

in Cryptology, Aug. 17-21, Springer, London,

pp: 165-179. DOI: 10.1007/BFb0052234

Zheng, Y. and H. Imai, 1998. How to construct efficient

signcryption schemes on elliptic curves. Inform.

Process. Lett., 68: 227-233.

 DOI: 10.1016/S0020-0190(98)00167-7

