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Abstract: Fatigue and drowsiness are among the main causes of traffic 

accidents, just behind excessive speed and alcoholism. This paper deals 

with the problem of road safety. It attempts to present a driver vigilance 

monitoring system based on a video approach. This work aims at creating 

an assistive driving application employing eyes closure duration and head 

posture estimation as performant signs for alertness control. The proposed 

system can be summarized in three main steps: Eyes' detection and tracking 

in a video, eyes' state classification and fusion of both sub-systems based 

on eyes' blinking and head position. To accomplish the previous tasks, we 

used the Viola and Jones algorithm for interest area detection thanks to its 

efficiency in real time applications. For the classification step, we used two 

novel architectures of transfer learning classifier based on fast wavelet 

transform and separator wavelet networks, which presents our main 

contribution of this paper. This novel architecture proves its performance 

compared to the classic version of the transfer learning based on SVM 

classifier and to our old classifier based only on fast wavelet networks 

without a deep learning structure. Different datasets with different 

classifiers are used to evaluate our new approach. Our second contribution 

is illustrated by the final system which uses the fuzzy logic and provides 

five different vigilance levels. Global rates given by experimental results 

show the effectiveness of our proposed classification system for eyes' state 

recognition and driver drowsiness detection. 

 

Keywords: Transfer Learning, Deep Learning, Wavelet Network, 

Vigilance, Fuzzy Logic  

 

Introduction 

Driving is a complex activity that involves many 

tasks: Finding the way, following the road, monitoring 

the speed, avoiding obstacles, respecting the rules of the 

road and controlling the vehicle, etc 14. Therefore, It is 

obvious that this activity requires a very high level of 

alertness in order to avoid accidents. Unfortunately, 

accidents related to the hypovigilance do not stop 

increasing.  

Volvo (2013) estimates that the number of deaths on 

roads of the world is about 1.2 million each year and that 

90\% of these accidents are mainly due to drivers' errors. 

Therefore It is essential to monitoring continuously the 

driver’s vigilance level to ameliorate their ability to 

maintain safe and efficient driving. This lack of vigilance 

may take many forms such as, drowsiness, fatigue and 

distraction. In this study, we propose a novel approach 

for driving assistance based on a multimodal system by 

fusing our cited systems. This new application allows us 

to detect five levels (alertness, distraction, fatigue, 

micro-sleep and full sleep) which are different to those 

cited in the literature.  

Our proposed system is composed of these main 

phases: Location and tracking of face and eyes' regions 

by the method of Viola and Jones (2001) thanks to its 

great reliability in object location, eyes' recognition by a 

novel architecture of transfer learning classifier and 

fusion task of both control systems to check the driver's 

alertness level. The focus will be on designing a 

classification system able to recognize the eyes' state 

(closed or opened) in real time. Our system uses the deep 

learning techniques and exactly the transfer learning 

method. We used a pre-trained Convolutional Neural 
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Network (CNN) called alexnet to classify the eyes' 

images. In addition to the alexnet model, we used the 

Separator Wavelet Network Classifier (SWNC) to 

minimize the application's computational time. 

According to the state of the art documentation, the 

alexnet model is generally used as a feature extractor 

with SVM or Softmax for classification. Because our 

system is made under real time constraint, we aim at 

reducing the processing time. For this reason we propose a 

novel architecture of the transfer learning. In fact, we keep 

the alexnet model for feature extraction and we replace the 

SVM by the Separator Wavelet Network (SWNC) thanks 

to its reduced time compared to the SVM. 

The structure of our paper is as follows: We begin by 

citing the related works. Then we present the general 

process of our system. The third part is devoted to 

explain our first contribution manifested by the novel 

eyes' classifier based on two novel architectures of 

transfer learning classifier. The principle of our fusion 

system allowing us to obtain five vigilance levels that is 

explained in the fourth part. It is the topic of our second 

contribution. Results and discussion of our eyes' 

classification system and hypovigilance detection are 

presented in the fifth section. Finally, we end up with a 

conclusion and perspectives. 

Related Works 

Various works have been carried out to develop 

systems for driver condition monitoring in order to emit 

visual or audible alarms when his behavior is deemed 

abnormal. They can be divided into three main categories. 

The first one is based on analysis of physiological signals. 

It consists on measuring the variation of biomedical 

signals such as cerebral waves or heart rates using special 

sensors like the Electroencephalography (EEG) or 

Electrocardiography (ECG) (Shin et al., 2010). Despite 

the precision of the cited signals, they do not seem 

suitable in case of a real driving condition because of the 

installed materials on the driver's body.  

The second category is based on analysis of physical 

signals. This approach relies mainly on the treatment of the 

driver's video to measure the level of vigilance reflected by 

his facial features. It is observed that in the case of 

hypovigilance, the driver exhibits certain easily observable 

visual behaviors such as head nodding, prolonged eyes' 

closure, yawning, fixed gaze, etc (Momin and Abhyankar, 

2012). These behavioral signs are analyzed by non-

invasive techniques, which use purely visual indicators 

relating to the vigilance decline. On the practical level, 

the non-invasive techniques are easier to be exploited 

under real conditions as they have less constraints than 

the other techniques during deployment. 

The third approach is based on vehicles' behavior 

control (Klein et al., 1980). Here drowsiness may be 

detected via different measurements such as pressure on 

the acceleration pedal, analysis of the movement of the 

steering wheel and the angle value of the car movement 

compared to the lane position, etc. When the previously 

cited signs reach a specific value, it means that there is a 

low probability which signify that the person is sleepy 

(Renner and Mehring, 1997). This approach does not 

seem very efficient because it may depend on the way of 

driving, the shape and characteristics of the road. 

Most of the previous works provided a vigilance 
classification into two (Liang and Lee, 2015), three 
(Picot et al., 2012) or four levels (Akrout and Mahdi, 
2015). Their systems do not take into account all the 
hypovigilance levels which are distraction, fatigue and 
sleeping. We found systems oriented only to fatigue 
levels' detection (tired, little tired, so tired) (Picot et al., 
2012; Akrout and Mahdi, 2015) and others are 
interested in distraction detection (Céline et al., 2015). 
These examples of binary or general classification are 
founded in our previous work (Teyeb et al., 2014a; 
2014b; 2015a; 2015b) where two separated vigilance 
monitoring systems are based successively on eyes' 
blinking analysis and head pose. 

Overview of Our Hypovigilance Detection 

System 

Through this work, we aim at developing a multi-

modal system for vigilance control based on video 

approach. According to Caschera et al. (2007) a 

multimodal application combines visual information 

(involving images, text, sketches and so on) with voice, 

gestures and other modalities to provide flexible and 

powerful dialogue approaches, enabling users to choose 

one or more of the multiple interaction modalities. In our 

system, we combined two visual parameters which are 

the eyes closure duration and the head movement angle. 

The general process of our proposed system for vigilance 

control is illustrated in Fig. 1. 

After segmentation of the captured video into frames, 

the interest areas (head and eyes) are detected and 

tracked using Viola and Jones algorithm. Our system is 

based on a multi-variable approach. In fact, it is 

composed of two sub-systems which are the eyes 

blinking analysis and the head posture estimation. The 

first parameter of vigilance monitoring is the head 

movement angle. If the angle exceeds a specific value, 

that means that the driver is in an hypovigilant state. 

Also the frequency of head movement is an efficient 

sign for fatigue detection (Teyeb et al., 2014b). 

The second parameter is the eyes' closure duration 

which presents a significant sign for heavy eyelids' 

detection, where the driver has the desire to close his eyes 

for a moment because he feels drowsy. If the eyes' 

closure duration exceeds a predefined time T, that means 

that the driver is in a drowsiness state (Teyeb et al., 

2013; Jemai et al., 2013). 
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Fig. 1: Architecture of our proposed system 

 

Both parameters are merged by a Fuzzy Logic Support 

Decision System (FLSDS) to recognize the driver state. 

Development of a Multi-Modal Driving 

Assistance System 

In this section, we explain the principle of eyes 

classification system based on the Convolution Neural 

Network (CNN) and Wavelet Network Classifier (WNC) 

used in our system for eyes state recognition 

Eyes Classification System based on CNN Feature 

Extractor and WN Classifier 

CNN Architecture for Feature Extraction 

Deep learning refers to a set of automatic learning 

methods that are based on the artificial neural network. 

This new type of learning is used to model the data with 

high level of abstraction. Indeed, this technique provides 

a significant and rapid progress in fields of signal 

analysis, object recognition and computer vision. It is 

also based on the use of a set of non-linear processing 

layers for extracting and transforming features. Thus, 

each layer takes as input the output of the previous one.  

Deep learning is characterized by a multi-level 

learning of details or data representations, called levels 

of data abstraction. We found several architectures of 

deep learning. As an example, we cite the Convolution 

Neural Network (CNN) and the stacked auto-encoder, 

etc. Due to the difficulty of construction of a big dataset 

in many systems, researchers has proposed the transfer 

learning method which can be suitable in case of big or 

small datasets. In our classification system, we prefer 

using the transfer learning architecture since the used 

eyes' dataset is small and it is inefficient to build a 

convolution neural network from scratch. 

As a pre-trained mode, we choose to apply the 

alexnet CNN for eyes classification (Fig. 2). In the 

literature there are other models which have a deep 

architectures like the Visual Geometry Group (Vgg) and 

the residual network. 

But here we choose the alexnet model thanks to its 
simple architecture which is clearer and simpler than 
others methods. In fact, the alexnet model is composed 
of 11 layers (five convolutional layers, three pooling 

layers and three fully connected layers). However, the 
Vgg network is composed of 21 layers (thirteen 
convolutional layers, five pooling layers and three fully 
connected layers). For the residual network it is 
characterized by 34 layers (thirty two convolutional 
layers, one average pooling layer and one fully 

connected layer). 

Video capture Segmentation into frames 
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Fig. 2: Alexnet model architecture 
 

Our objective is to provide an application which 
takes into account the real time constraint. So, it is the 
simplest architecture which can provide, the less 
processing time that system takes. Besides, the alexnet 
model provides promoting results in terms of eye 
classification rate and classification of vigilance levels 
which are tested on many bases. So through this choice 
we try to satisfy the time/performance constraint. 
Because we try to minimize the processing time as 
possible to satisfy the real time criterion.  

Like other CNN architectures, alexnet includes a set 
of independent processing layers which are:  

A Convolution Layer 

It is composed of a set of neurons that are connected 
to a sub-region of the preceding layer, called receptive 
field. In fact, the convolution layer C

i
 (layer i of the 

network) which is characterized by its number N of 
convolution maps M

i
j(j∈1,…,N), also known as feature 

maps and the size k of the convolution kernels (filters) 
which are often square. 

A Pooling Layer 

After the convolution layer in a CNN, we usually 
find a layer of pooling, called also a sub-sampling layer. 
The image in this layer is split into a series of rectangles 
of a non-overlapping side pixels. In fact, pooling or sub-
sampling is used to reduce the spatial size of an image 
which makes it possible to reduce the amount of 
parameters and calculation in the network.  

A Correlation Layer 

The activation layer is located between the 

convolutional layer and the sub-sampling layer to 

improve the processing efficiency. This layer applies 

mathematical functions, called activation functions, to 

the output signals of the convolution layer  

A Fully Connected Layer 

Connected layer is the last layer of the convolutive 

neural network. In fact, one or more fully connected 

layers can be added at the end of the network to 

ameliorate the classification performance. 

This network comprises in total 60 million parameters 

and approximately 650,000 neurons. The learning of 

alexnet was done using a part of the ImageNet database 

(Krizhevsky et al., 2012). This part contains about 1.2 

million annotated images, composed of 1000 categories.. 

So, we applied the transfer learning based on the principle 

of the automatic feature extraction. This technique is based 

on the exploitation only of the convolutional part of the pre-

trained network without using the fully connected layers. 

Each input image is transformed into a feature vector thanks 

to the convolutional part of the pre-trained network. These 

extracted feature vectors will constitute a learning dataset 

for the classifier. The extracted features are used to train a 

classifier which will be used to recognize the eyes' states. 
The standard architecture of the alexnet mode based on 

the SVM classifier is cited in Fig. 3. Several types of 
classifiers can be used to classify the eyes' images using 
the feature vectors which are generated by the 
convolutional part of the pre-trained model, such as linear 
Support Vector Machine (SVM) or softmax. 

Indeed, the user has the freedom to replace the SVM 

classifier. In our system, we have used two classifier 

based on the Wavelet Network (WN) architecture. The 

first one is based on the WN classifier learnt by the Fats 

Wavelet Transform (FWT). The second one use the 

Separator Wavelet Network Classifier (SWNC). 

Eyes Classification using WN Classifiers 

Architecture of the Transfer Learning based on 

FWT Classifier 

The architecture of this system is illustrated by Fig. 4. 

The combination of wavelet theory and neural networks 

has led to the development of wavelet networks. Wavelet 

network presents a version of neural networks which 

uses wavelets as activation functions.  

First of all we must prepare a candidate wavelets and 

scaling functions library used as activation functions of the 

wavelet network. The second step consists of computing the 

coefficients corresponding to the scaling and the wavelets 

by multiplying each function with its weight. 

Finally, the functions of the mentioned library by 

applying a FWT to the signal f to be learned using a 

C1 

227×227×3 

P

1 

P

1 
P

5 C2 C3 C4 C5 
FC6 FC7 FC8 

Input layer Convolutional layer Max pooling layer Fully connected layer 



Ines Teyeb et al. / Journal of Computer Science 2018, 14 (11): 1546.1564 

DOI: 10.3844/jcssp.2018.1546.1564 

 

1550 

dual set of scaling and wavelet function filters. Then, 

we calculated all the possible contributions of activation 

functions of the library and this network will be built by 

incrementally adding of a transfer function (wavelet or 

scaling function) at the hidden layer. 

This process will be repeated until reaching a stop 

criterion. This algorithm is well explained with more 

details in (Ben Amar and Jemai, 2007; Ejbali et al., 

2010; Bouchrika et al., 2012; Said et al., 2009; Zaied et al., 

2011; 2008; 2005; Guedri et al., 2011; Ejbeli et al., 

2015; Jemai et al., 2011; 2010). 

In the test phase, a new coefficients are obtained after 

projection of each test image on the wavelet networks of 

the previous stage. Finally, coefficients of both stages 

are compared by computing Euclidian distances. The 

learning image having the closest parameters to the test 

image, gives us to which class the test image belongs. 

 

 
 

Fig. 3: CNN architecture 
 

 
 

Fig. 4: Principle of wavelet network classifier learnt by fast wavelet transform 
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Architecture of the Transfer Learning based on 

SWN Classifier 

The increase in the training images makes it possible 

to improve the performance of the wavelet networks 

based on the fast wavelet transform, but the speed of 

these networks is reduced, since each learning sample is 

represented by its own network of wavelets. To solve 

this problem, we used a classifier based on the 

advantages of the fast wavelet transform and the 

adaboost algorithm. It is the separator wavelet network.  

The use of the Separator Wavelet Networks Classifier 

(SWNC) with the alexnet model represents our second 

contribution. It is a different classification method 

compared to those of the literature. Indeed, this classifier 

(Bouchrika et al., 2014) combines the wavelet network 

learnt by Fast Wavelet Transform (FWT) and the 

adaboost algorithm advantages (Zhou et al., 2006). 

Our proposed classifier uses n-1 wavelet networks to 

represent n classes instead of using a wavelet network 

for each sample in the learning base and since we have 

two classes (opened eyes and closed eyes) then we will 

use a single wavelet network which is considered as a 

separator between both classes. 

The SWNC is also based on the adaboost algorithm 

which allows the selection of the best characteristics 

used to improve the performance of the classifier. 

The training of this classifier is similar in its 

beginning to the training of the classifier based on the 

wavelet networks, used in our previous section. In fact, 

after the extraction of the characteristic vector of each 

image in the learning base using the last convolutional 

layer of the Alexnet model, a decomposition of this 

vector is performed using the Fast Wavelet Transform 

(FWT). Then, we move to select the best characteristics 

using the adaboost algorithm which is based on a 

combination of a set of weak classifiers to construct a 

single strong classifier to obtain 1 SWNC.  

Indeed, to classify an image, we project it on only this 

SWNC to find new weights' vector. In fact, the formula 

below is used to predict the class of the test example: 

 

( ) ( )
1

K

k k

k

D x sigm h xδ

=

 
=  

 
∑  (1) 

 

With: D(x) is the predicted decision about the test 

example x which represents the feature vector of the 

query image generated by the alexnet model, K 

represents the number of the weights, hk is the classifier 

which was trained for a kth weight and δk is a threshold 

calculated, for the kth kernel, in the training phase. 

If D(x) >0, then the test sample is correctly classified. 

Else if D(x) <0, then the test sample is negatively 

classified.  

 

 
 

Fig. 5: Principle of viola and Jones algorithm 
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Fig. 6: Principle of head movement angle computing 

 

Head Movement Angle Detection System 

The head movement angle is measured by applying 

the Pythagorean theorem in the triangle which is formed 

by both eyes bounding rectangle after detecting them 

using the Viola and Jones algorithm (Fig. 5). 

After face and eyes detection using Viola and Jones 

algorithm, we check if the head is in a movement state or 

not by comparing the extracted coordinates of the corners 

of bounding rectangle face (Fig 6). The first frame of the 

captured video is considered a reference image, the 

following frame is considered a non reference image. If 

the head is in movement state, we calculate its angle value 

using the Pythagorean theorem as it was mentioned in Fig. 

2. More details can be found in (Teyeb et al., 2014b). 

Figure 5 illustrates the principle of Viola and Jones 

algorithm which is used for face and eyes detection. 

It is characterized by three steps:  
 
• Haar-like feature: Theses features are computed by 

the integral image, an image structure which 
accelerates the computing process 

• Boosting algorithm: It is the algorithm of training 
used by Viola and Jones detector. It is based on 
combining weak classifiers to obtain a final strong 
one called the boosted classifier 

 

Fuzzy Logic Decision Support System for 

Hypovigilance Detection 

As we have already said in the introduction section, 
our objective is the conception of a multi-variable system 
for alertness level control through eyes blinking analysis 
and head position estimation. To achieve this task, we 
used the fuzzy logic. Its principle is mentioned in Fig. 7. 

At this level, our technique can check the position of 
the head (normal or inclined). But to judge the driver's 

alertness level, we need other parameters like the 
inclination degree. If the value of head inclination angle 
exceeds a predefined value X, we conclude that the 
driver' s vigilance level is down. 

We are now developing another system by adding 
a third parameter which is the head movement 
duration to made a more precise constraint for the 
head movement angle. 

In the fuzzification step, we have used the trapezoidal 
shape in this study. 

For the inference task, we will merge both input 
variables, the eyes' closure duration and the head movement 
angle to find the alertness level of the output variable. Here 
we cite the fuzzy rules used for decision making: 

 

• If ECD = low And A = small Then vigilance level 

= Alertness  

• If ECD = low And A = big Then vigilance level = 

Distraction  

• If ECD = middle And A = small Then vigilance 

level = Fatigue  

• If ECD = middle And A = big Then vigilance level 

= Micro-sleep  

• If ECD = large And A = small Then vigilance level 

= Full-sleep  

• If ECD = large And A = big Then vigilance level = 

Full-sleep 
 

The most widely used method in the literature in the 
inference task is the max-min method, also known as the 
"Mamdani" method (Mamdani and Assilian, 1975). This 
method, like the other methods, goes through three 
stages, which are: 
 

• Step 1: Activation of the rules 

• Step 2: Calculation of the implication 
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• Step 3: Aggregation 

 

An example of this method is cited in Fig. 9. The last 

step is defuzzification task, which converts a fuzzy value 

obtained from the inference step to a real value. to 

perform defuzzication, several methods can be used: 

• First maximum 
• Center of gravity 
• Last minimum 
• Center maximum 
• Weighted averages an example is mentioned in 

Fig. 10 

 

 
 

Fig. 7: Fusion Task principle 
 

 
 

Fig. 8: Membership function 
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Figure 8 explain the fuzzification task which is the first 

step in the fuzzy inference process. This involves a 

domain transformation where crisp inputs are transformed 

into fuzzy inputs. In other words, the fuzzification is the 

process of transforming a real scalar value into a fuzzy 

value, called also linguistic value. So, we have 

transformed the real values of the head movement angle 

into linguistic values which are Small and Big, so for 

example when the value of the angle is 10°, it means that 

it is a small angle. And we have done the same operation 

to our second input which is the eyes closure duration and 

our output which is the vigilance levels. 

The Inference is the process by which fuzzy actions 

or operations are applied to input variables according to 

the rules defining the system. In our case, the inference 

will merge the two input variables, namely, the eyes 

closure duration and the head movement angle, to find in 

the output the driver level of vigilance. 
For example, as cited in figure 9,  if we have as 

inputs, ECD = 2.5s and the Angle = 20°, so in the first 
rule where the ECD is low, the 2.5s of the ECD will give 
us 0.5 as fuzzy value and the 20° will give us 0.2 when 
the Angle is small. So according to the Mamdani 
principle, we will take the min of 0.5 and 0.2 since we 
have the operator “AND” between the two conditions. 
And, then we do the same operation for the second rule 

which will give us 0.5 for the ECD and 1 for the Angle 
and since we have “AND” between the two conditions, 
we will take the 0.5. And the last step is the aggregation 
between the two rules which will be performed using the 
operator “max". 

We used the method based on the center of gravity 
which is the most used method. For a resulting 
membership function µR (y), the center of gravity (y *) 
can be calculated by the following equation:  
 

( )

( )

1

* 0

1

0

y R y dy
y

R y dy

µ

µ

=

∫

∫
 (2) 

 

Its principle is mentioned in Fig. 10  by making the 

union of fuzzy output subsets and calculating a global 

center of gravity. The threshold value of angle (A) is 

fixed experimentally to 16°. We propose to check an 

approximate value of this parameter. We found 16 as the 

minimum value in which the driver may be still vigilant 

and his gaze direction is still well fixed in the road. 

Because each head movement will be accompanied by a 

change in the gaze direction of the driver. 
Figure 11 mentions examples of our experimental task 

to fix an approximate value of the head movement angle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Inference example by the Mamdani method 
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Fig. 10: Example of the gravity center method for the deffuzification step 

 

 
 

Fig. 11: Experimental task to fix the minimum value of head movement angle 

 

Concerning the duration of eye closure, Sarbjit and 

Nikolaos (1999) considered that the person is in a 

state of full sleep if he keeps his eyes closed for 5 to 6 

sec. But, if this duration is between 2 and 3 sec, the 

person is in a micro-sleep state. However, Horng et al. 

(2004) affirmed that the driver is drowsy if he closes 

his eyes for 5 successive frames. According to the 

research activities of Sharabaty et al. (2008), the 

maximum period of eyes' normal blinking is equal to 

0.5 sec. If the closing time exceeds this value, then we 

are talking about a state of prolonged closure. 

At the output of the fuzzy inference, the result is 

always a fuzzy set. In order to be used in the real world, 

the fuzzy output needs to be transformed to the crisp 
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domain by the defuzzifier. This needs the use of a 

suitable membership functions. In this study, we have 

used the center of gravity method. 

In the inference phase, we used the max-min method, 

which was called also the Mamdani method. It is well 

used in the literature thanks to its simplicity and 

efficiency in the fusion task.  

According to these studies, we have categorized the 

duration of eye closure into three sub-intervals: 

 

• low = [0, 2s]; middle = [2s, 4s]; large = [5s, 6s]  

• small (A<= 16°) ; big (A>16°  

 

Results and Discussion 

Datasets Presentation 

Figure 12 summarizes the different bases used in the 

experimental task to evaluate both systems of eyes state 

classification and hypovigilance detection. 

To test the performance of Viola and Jones algorithm 

used for face and eyes tracking, we used the Yaw DD 

base. Once eyes are detected, we pass to the second step 

which is the eyes state recognition. This task is evaluated 

in four different basis (BioID, CEW, ZJU and our 

private one). The last task is the vigilance level 

classification. Our system is tested on our appropriate 

video base.  

Experimental Results 

Eyes Tracking by Viola and Jones Algorithm  

The position of the camera may influence the 

quality of eyes' detection and tracking. We check the 

good eyes' tracking rate using the Viola and Jones 

algorithm in our appropriate basis and Yaw DD 

(Abtahi et al., 2014) dataset which is extracted from 

the labeled faces in the wild (LFW) dataset 

(https://www.bioid.com/About/BioID-Face-Database; 

http://parnec.nuaa.edu.cn/xtan/data/ClosedEyeDatabases.

html). Composed of 322 videos captured with different 

camera positions (Dash and mirror position). 

When the camera is placed in parallel position to 

the eyes' axis of the driver, the correct tracking rate is 

more efficient than the case of dash or mirror position 

(Fig. 14). 

 

 
 

Fig. 12: Basis of the experimental part 
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For performance evaluation of our proposed 

approach, we used the Correct Detection Rate (CDR) to 

check the reliability of Viola and Jones technique for 

eyes detection. The cited metric is calculated as follows:  

 

Number of imageswithcorrect detection
CDR

sizeof thedataset
=  (3) 

Table 1 summarizes the results of correct detection 

rates for each dataset. 

In Fig. 13, we mention examples of some typical 

success and failure cases of Viola and Jones algorithm 

for eyes detection in both bases CEW ((a) and (b)) and 

BioID dataset ((c) and (d)).  

 

 
 

 
 

Fig. 13: Examples of failure and success cases of eyes location in BioId and CEW dataset 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14: Different camera positions in Yaw DD datasets and our appropriate basis 
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Fig. 15: Samples of different basis 

 
Table 1: Correct eyes' detection rates on different databases 

using Viola and Jones algorithm  

Dataset  CDR  

CEW (opened eyes)  96%  
CEW (closed eyes)  83%  
BioID  97.5%  

 

Eyes State Classification 

Figure 15 mentions samples of different datasets used 

for performance evaluation of our different eyes classifiers. 

BioId Datasets 

This image basis is made up of 1521 gray scale 

images, characterized by a resolution of 384×286 

(Bhler, 1993). It contains a variety of capture 

conditions. It keeps persons with and without glasses 

and with different head poses and eyes' states (opened 

and closed eyes). 

ZJU Datasets 

It is collected from the ZJU Eye blink Database 

(Song et al., 2014). It is composed of 80 video clips 

produced by 20 participants and every person recorded 

four clips.  

CEW Basis 

The Closed Eyes in the Wild basis is composed of 

2243 subjects, where 1192 faces with closed eyes are 

collected directly from the web and 1231 faces are tried 

to find examples of eye images of some persons put in 

the same conditions of driver 

Our Appropriate Datasets  

We built our appropriate dataset composed of 90 

images with uniform size, among which 2/3 are used for 

the learning stage and the 1/3 is kept for the test one. 

Tried to find examples of eye images of some persons 

put in the same conditions of a driver. 

Results of Classification Rate 

We have used the Global Classification Rate (GCR) 

calculated as follows to measure our classification 

system performances: 

 

Good classificationimagesnumber
GCR

Total images number
=   (4) 

 

Here, we compared three different eyes classifiers 

based on Wavelet Network (WNC) learnt by the Fast 

Wavelet Network (FWT), the classic architecture of 

transfer learning based on Alexnet model and SVM 

(ASVM) and our first proposed classifier based on 

alexnet Architecture and the Fast Wavelet Network 

(AFWT) and our second proposed classifier based on 

Alexnet and the Separator Wavelet Network (ASWNC). 

This evaluation is released from the previous datasets 

already cited in the previous parts (BioID, CEW, ZJU 

and our private basis). Table 2 shows the classification 

results given by the three systems. 

We always notice that the classification by a 

convolutional neural network pre-trained by the alexnet 

model performs better than that by the Fast Wavelet 

Network (FWT). Indeed, this is related to the deep 

architecture of alexnet which allows it to take into 

consideration the smallest details of the image to generate 

a characteristic vector that precisely describes the image. 

The second step in the evaluation process is to compare 

our proposed classification system to other popular 

classifiers studied in the literature. Diverse classifiers and 

features such as the nearest neighbor (NN), the support 

vector machine (SVM) and the adaboost classifiers were 

used. More details about these approaches were cited in 

(Song et al., 2014). Results are cited in Table 3. 

Computational Time 

We are now interested in comparing their 

computational time, which is a primordial criterion since 

BioID dataset CEW dataset ZJU dataset Our private dataset 

Training samples 

Test samples 

Training samples 

Test samples Training samples Test samples 

Training images Test images 
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our application is in real-time. We measured the 

computational time of testing an image from the video 

sequence with the different methods, adopting the same 

hardware configuration. Table 4 represents the 

computational time for each method. 

We notice, from these results, that the use of a classifier 

based on a separator wavelet network with the alexnet 

model for the eyes classification serves to reduce the 

application's computational time and that is related to the 

fact that this method is inspired by the method of boosting 

to reduce considerably the number of operations used in the 

test phase. In other words, instead of calculating a distance 

between the wavelet network of the query image and that 

associated with each examples of the base, a separator 

wavelet network is used between two classes in order to 

perform only N-1 comparisons if N is the number of classes, 

which allows a decrease in the computational time of the 

algorithms, at the cost, however, of a degradation of the 

performance of the algorithm. The processing time of the 

entire system is cited in Table 5.  

The global processing time of our system is equal to 

0.30 sec when using the alexnet combined with the 

separator wavelet network and it is equal to 0.42 sec with 

the alexnet combined with the Fast wavelet transform.   

 
Table 2: Results of classification rate using different classifiers on various datasets  

Dataset classifier  BioID  CEW  ZJU  Our basis  

FWT  92.27%  82.88  61.75%  90.91%  
ASVM  90.32%  86.88%  82.93%  100%  
AFWT (our first approach)  95.09%  86.88%  65.67%  100\%  
ASWNC (our second approach)  97.99%  91.03%  89.21%  100%  

 
Table 3: Results of classification rates on CEW and ZJU datasets  

Dataset  CEW  ZJU  

NN  74.31%  84.74%  
SVM  82.85%  89.62%  
Adaboost  87.09%  92.06%  
FWN  82.88%  61.75%  
ASWNC  91.03%  89.21%  

 
Table 4: Comparison of the computational time of each classification method  

Method  Computational time  

FWT   0.007 s  
ASVM  0.045 s  
AFWT  0.12 s  
ASWNC  0.0015 s  

 
Table 5: Processing time of our driving monitoring system  

  Classification   Global time 
 Eyes and ----------------------------  ------------------------------------------ 
Process face detection ASWNC  AFWT Fusion task   with ASWNC  with AFWT  

Processing time (s/frame)  0.16  0.0015  0.12  0.14  0.30  0.42  

 

 
 

Fig. 16: Examples of our private video base 
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Hypovigilance Detection System 

To test the efficiency of our hypovigilance detection 

system, we built our appropriate dataset composed of 45 

videos (9 recorded videos for each vigilance level), 

under different light conditions. The recorded 

participants are students, workers and volunteers. They 

are of different sex and aged between 20 to 60 years old. 

Our videos are recorded in MP4 format with a 

resolution of 640×480 and frequency of 30 frames/sec. 

Examples are cites in figure 16. 

Our built dataset contains five vigilance levels which 

are alertness state, distraction, fatigue, micro-sleeping and 

full sleeping. Results of correct hypovigilance detection 

rates on our dataset using different architectures of 

transfer learning classifiers are summarized in Fig. 17.  

We aim to show the efficiency of our system based 

on the two proposed techniques which are (Alexnet + 

WNC and alexent + SWNC) compared to the standard 

architecture of alexnet based on the SVM classifier.  
Results prove that using the Wavelet Network 

Classifier (WNC) learnt by FWT and the Separator 

Wavelet Network Classifier (SWNC) with the alexnet 
model gives us more precise results. The different 
classification methods are all based on the alexnet 
model. The results are generally promising. But, we 
notice a small degradation in the results given by the 
system based on the wavelet separator network 
compared to the alexnet with the SVM classifier and 
the WN classifier especially in the two important 
cases; micro-sleep and full-sleep. Here the advantage 
of the SWNC resides on the minimization of the time 
response compared to the two other classifiers as 
shown in Table 5. The time response is a primordial 
criterion for our system to satisfy the real time 
constraint. Also, the alexnet model with the WN 
classifier (FWT) performs better than the standard 
architecture of the alexnet (SVM) in case of 
distraction. Generally these both classifiers have a 
closest performance (Snoun et al., 2017). 

Table 6 shows a comparison between our 

hypovigilance detection system and four other 

approaches. This comparison argues in favor of our 

system in term of number of detected vigilance levels. 

 
Table 6: Comparison of our system with those of the literature  

Authors  Results  Data  Method  Level 

Our approach Alexnet + SWNC (2017)  86%  Video  Fuzzy logic  5 
Our approach Alexnet + FWT (2017)  91%  Video  Fuzzy logic  5 
Akrout and Mahdi (2015)  87.75%  Video  Expert system  4 
Céline et al. (2015)  98.4%  Video, audio and mechanic  Bayesian network  2 
Liang and Lee (2015)  90%  Video and driving performance data  hybrid Bayesian Network  2 
Picot et al. (2012)  81.7%  Video and ECG  Fuzzy logic  3 

 

 
 

Fig. 17: Results of vigilance levels classification rate on our basis using different eyes classifiers 
 

The cited authors in Table 6 do not have the same test 

bases since each one has specific inputs in his system. 

Even those who have worked on the same type of data, 

they do not have the same parameters of analysis. For this 

reason, they build their own base. In other words, 

practically there is not a standard basis for testing the 

hypovigilance approach. Basis of test depends on the 

parameters and characteristics of the approach developed. 
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Fig. 18: Comparison of our system with those of the literature per level 

 

Table 6 mentions a comparison in term of global 

classification rate of vigilance levels. To obtain a more 

precise comparison, we add Fig. 18 to illustrate a more 

detailed comparison of vigilance control per level.  

According to Fig. 18, our system seems well performant 

compared to those of other researchers. In fact we have a 

good detection rate equal to 88,88% for awakening, fatigue 

and distraction state. These rates are more accurate than the 

results provided by Picot et al. (2012) (82,1% for 

awakening state and 72,6% for fatigue level). 

We have approximately the same rate as Akrout and 

Mahdi (2015) for awakening state (87,1%) and more 

precise result in the fatigue level (84,6%). Concerning 

the system of Céline et al. (2015) it is more performant 

than our system in the detection of fatigue state (97,85%) 

and less efficient in the other states (awakening 60,88% 

and Distraction 63,6%). 

Our driving assistance system is simulated by using 

a webcam. The distance between the driver's face and 

the camera is set by measuring the real distance inside 

the car between the driver and the dash mirror to be in 

the real driving conditions. Also, we are now 

interesting into the phase of the system 

implementation as an embedded system by using a 

specific electronic cards that can be useful for 

different means of transport (car, plane or other). 

Finaly we aim to extend our driving assistance system 

by combining it with our smart seat for biomechanical 

distraction state (Teyeb et al., 2016). 

Conclusion 

In this study, we have proposed a multi-modal 

vigilance monitoring system based on eyes blinking 

analysis and head posture estimation. 

Our first contribution is manifested by both new 

versions of the eyes state classifiers based on a novel 

architecture of transfer learning by integrating the fast 

wavelet transform and the separator wavelet network 

instead of the SVM classifier with the alexnet model. 

Different proposed classifiers are evaluated in terms of 

classification rate and computational time. Results are in 

favor of the transfer learning classifier based on 

separator wavelet network. 

The second contribution is the conception of the fuzzy 

decision support system based on fuzzy logic which 

provide the detection of five vigilance. This classification 

is different from the work carried out in the literature 

allowing the detection of a less number of levels. 

Our system was tested on various datasets and 

provides good results in terms of eyes classification rates 

and vigilance detection levels. 

In our future works, we aim at extend our driving 

control system by adding other inputs like yawning 

analysis and frequency of head movement.  
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