

© 2018 Rafael Leonardo Vivian, Elisa Hatsue Moriya Huzita, Renato Balancieri, Simone do Rocio Senger de Souza, Gislaine

Camila Lapasini Leal and Edwin Vladimir Galdamez. This open access article is distributed under a Creative Commons
Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Improving Coordination and Communication in Distributed

Software Development through Context-Based Software

Artifacts Awareness: A Controlled Experiment

1
Rafael Leonardo Vivian,

2
Elisa Hatsue Moriya Huzita,

2
Renato Balancieri,

3
Simone do Rocio Senger de Souza,

4
Gislaine Camila Lapasini Leal and

4
Edwin Vladimir Galdamez

1Federal Institute Catarinense, Fraiburgo, Brazil
2Department of Computer Science, State University of Maringá, Maringá, Brazil
3Department of Computer Science, University of São Paulo, São Carlos, Brazil
4Department of Production Engineering, State University of Maringá, Brazil

Article history

Received: 24-04-2018
Revised: 28-04-2018
Accepted: 06-08-2018

Corresponding Author:
Gislaine Camila Lapasini Leal
Department of Production
Engineering, State University
of Maringá, Brazil
Email: gclleal@uem.br

Abstract: Distributed Software Development (DSD) has brought many

competitive advantages, such as increased productivity, improved product

quality and cost reduction. However, the geographic and temporal distances

and sociocultural differences between distributed teams, expanded some

challenges and, above all, added new requirements with regard to

communication and coordination. This scenario has influenced on the

software artifacts that are produced and/or modified, because

inconsistencies and ambiguities can be generated on them. In this study, we

evaluate the applicability of an approach to support the context awareness

on software artifacts such as source code and class diagram in DSD. A

controlled laboratory experiment was conducted with 18 participants.

During the experimental study, participants used two approaches. The

results were collected and analyzed with statistical methods. It was found

that the proposed approach directly influences the time taken to carry out

the tasks of class diagrams and source code. Although, statistically, the

proposed approach has not increased the number of artifacts identified

correctly during activities, there was a reduction of effort compared to the

time spent in carrying out activities. Thus, the proposed approach offers

adequate support for context awareness on software artifacts, thereby

contributing for distributed software development mainly on coordination

and communication between distributed teams.

Keywords: Context Awareness, Software Artifacts, Distributed Teams,

Experiment

Introduction

Aiming to achieve competitive advantage and

cooperation, several organizations have distributed their

software development projects, adopting activities multisite,

multicultural and sometimes globally distributed. With this,

they seek to increase team productivity, improve product

quality and reduce costs. In this scenario, the software

development is carried out collaboratively by distributed

teams, featuring the Distributed Software Development

(DSD). However, this development strategy has brought

challenges related to communication, coordination and

cooperation for the software projects caused by the

geographical and temporal distance between the teams

(Herbsleb et al., 2000; Herbsleb and Moitra, 2001; Damian,

2002; Hargreaves and Damian, 2004; Layman et al., 2006;

Sangwan et al., 2006; Jiménez et al., 2010; Ivcek and

Galinac; Yacoub et al., 2016). According to Herbsleb

and Moitra (2001), in distributed environments, the

communication channels and the ability of developers to

work together are reduced. Thus, the reduction in

communication frequency directly impact in the

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1532

productivity and quality of the software development

(Jiménez et al., 2010).

Throughout software development, the members of

distributed teams work on several software artifacts, at

different times, with different individuals, in different

roles and set up different perspectives of their workspace

(Omoronyia et al., 2010).

The DSD has been studied by many researchers and
practitioners (Aversano et al., 2004; Hargreaves and
Damian, 2004; Sengupta et al., 2006; Whitehead, 2007;

Jiménez et al., 2009; Lanubile et al., 2010; Noll et al., 2010;
Prikladnicki et al., 2011; Silva et al., 2010; Leal et al.,
2012) and thus several methodologies and tools to support it
have been proposed and produced. An essential tool to
support software development with distributed teams is the
Version Control System (VCS), which allows developers to

contribute throughout the project development by sharing
resources and also code merging (Alwis and Sillito, 2009).
Another important tool for software projects is a Computer
Aided Software Engineering tool (CASE), which supports
the construction, manipulation and presentation of models
such as Unified Modeling Language diagrams (UML)

(Lahtinen and Peltonen, 2005).
The different kinds of software artifacts such as

source code and class diagram have structures and
distinct forms. In addition, both VCS and UML CASE
tools no have mechanisms to associate the software
artifacts of different kinds according to their internal

structure (Vivian et al., 2013). For example, when a
source code is changed, the individual has no knowledge
about the artifacts, both the source code as the class
diagram, which can be impacted or be related to its
activity. This makes it difficult for members of
distributed teams are aware of what is happening in the

source code and class diagram file, i.e., the perception
about software artifacts. Awareness was defined by
Dourish and Belloti (1992) as "an understanding of the
activities of others, which provides a context for the own
activity of the individual". The perception is essential for
the flow and naturalness of work helping to reduce

sensations of impersonal working and distance, common
in virtual environments (Fuks and Assis, 2001).

Another issue, relates to the circumstances involved

in the production or modification of software artifacts

(Vivian et al., 2013). Sometimes it is important know the

user that manipulated an artifact, the tool used or the date

when the event happened. These conditions define the

context information for a given situation. In Vieira

(2008), is distinguished the terms context and contextual

element and thus determined that "a contextual element

is any data or information to characterize an entity in a

domain", while "the context is a set of contextual

elements instantiated that are needed to support the

execution of a task".

The geographic and temporal distances among teams

make difficult the spread of contextual information about

the production and/or modification of software artifacts

that result from a collaborative work. The reduction of

such understanding, generates impact both on production

as on modification of software artifacts, that may present

ambiguities and thus cause failures or uncertainties

during the lifecycle of a software project. The

coordination failures and communication problems

between distributed team members can generate software

integration matter (Cataldo et al., 2007). In addition,

coordination problems may lead to delays in the project

and also worsen the quality and increase the cost of the

product (Cataldo et al., 2006; Blincoe, 2012). One way

to detect the coordination failures and communication

problems can be by the presence of duplicate or

inconsistent work about the software artifacts that are

produced and/or modified. Therefore, individuals must

perceive the contextual information (e.g., who made

certain modifications in a software artifact, where, how

and when the actions happened) on the software artifacts

that are produced and/or modified in a software project

with distributed teams.

The above described scenario motivated the

development of an infrastructure able to support the

dissemination of information concerning software

artifacts. Thus, to support the context awareness of

software artifacts, Vivian et al. (2013) proposed an

approach that provides resources to capture contextual

information from shared repositories and, based on

contextual information captured and processed, it

generates relationships dependencies among software

artifacts, to then, be displayed. The proposed approach

aims to help distributed teams to develop activities

carried out by its members with respect to the software

artifacts that are produced and/or changed. With this, it is

hoped that communication, cooperation and coordination

problems are reduced and hence improve the clarity of

the information generated throughout the software

development. Thus, the expectation is to increase

productivity and the quality of the software product.

This paper presents an experimental study to evaluate
the feasibility of an approach developed by Vivian et al.
(2013) to support the context awareness about software

artifacts in distributed software development. During
the experimental study, participants used two
approaches. The results were collected and analyzed.
These results suggest that DiSEN-CollaborAR
approach can improve coordination and communication
in distributed software development.

Context Awareness on Software Artifacts

Distributed software development has characteristics

of a collaborative work and therefore requires an

infrastructure able to ensure the efficient information

exchange among those involved (Chaves et al., 2010).

To this end, perception techniques combined with

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1533

contextual information can improve communication

among individuals involved in a collaborative work

(Herbsleb et al., 2000). Thus, perception mechanisms are

essential to provide individuals, with contextual

information about the actions that occur on entities, such

as software artifacts (Vivian et al., 2011).

The lack awareness of context on the software

artifacts can lead to ambiguities throughout the

distributed software development, as well as failures or

uncertainties (Gutwin et al., 2005; Chaves et al., 2010;

Steinmacher et al., 2012). According to Gutwin et al.

(2004), the perception is essential for distributed teams

coordinate their efforts, add code without causing

problems, make changes that affect other parts of the

code and avoid rework.

According to Jiménez et al. (2009), studies and

literature related, combining DSD and awareness have

increased. A systematic review presented by Vivian et al.

(2011) aims to identify and analyze techniques for

capture and dissemination of contextual information that

have been proposed and used on creating artifacts in

distributed software development.

In this review were identified and analyzed the

following tools:

• Palantír: Supports the perception of artifacts for

developers using Configuration Management

Systems (CMS) (Sarma et al., 2003)

• Ariadne: Presents the socio-technical relationship

among the artifacts. It increases the perception of

developers about the social dependencies of their

work (de Souza et al., 2004)

• Augur: Provides information on artifacts structure

and their related activities in distributed software

development (Froehlich and Dourish, 2004)

• ADAMS - ADvanced Artefact Management

System: Supports traceability and change

management of artifacts during software

development (de Lucia et al., 2005)

• ProjectWatcher: supports the perception of the

activities in distributed software development

projects (Gutwin et al., 2005)

• EvolTrack: supports the perception of software

evolution throughout development cycle

(Cepêda et al., 2010)

The main aspects identified in these tools were:

• Information Source: Software artifacts can be

generated from several tools and stored in different

repositories. So, VCS, development environments,

change control system (bug tracking system) and

continuous integration are important sources. Thus,

the software artifacts carry important contextual

information

• Artifact type: Software artifacts have a variety of

formats, including source code, diagram and

documentation

• Information Type: Context information (e.g.,

historical of changes, relationships between artifacts

and artifact structure), awareness elements and

properties of software artifacts (e.g., traceability,

filter and search for information) are important to

raise awareness of distributed team members

• Information Analysis: The contextual information

captured can be represented and processed to detect

patterns or relationships, or can be inferred for new

information

• Information Presentation: Visual resources (e.g.,

graph, colors and timeline) can support the

presentation of contextual information and increase

awareness of individuals

• Presentation Location: The perception mechanism

can be integrated into the development environment

(e.g., Eclipse IDE) or may be an independent

application

Overview of the DiSEN-CollaborAR Approach

The DiSEN-CollaborAR approach was designed to
support context awareness on the software artifacts by
distributed teams. It presents an infrastructure for the
individual to visualize the contributions from other
developers regarding to information and dependencies
between software artifacts. With this approach contextual
information about the software artifacts, such as the
circumstances of the moment that a software artifact has
been produced and/or modified (e.g., contextual
information such as version, date, tool, author, staff,
location) can be managed and also allow that these
information flow between distributed teams. The
contextual information captured from software artifacts
are represented, stored, processed and presented for
individuals. This section briefly presents the approach,
whose details can be found in (Vivian et al., 2013).

As presented on Fig. 1, the DiSEN-CollaborAR

approach can be analyzed from four structures (Vivian et

al., 2013): (i) Workspace: is the workspace of the

individual who is part of a distributed team, consisting of

Version Control System and UML CASE tool; (ii)

Shared Repository: it includes the shared repository of

software artifacts such as Code Repository and Model

Repository. In addition, the context repository which is

responsible for storing contextual information; (iii)

Mechanism: Includes Support to Capture, Representation

of Context, Support to the Processing, Tracking and

Perception Mechanism; and (iv) Visual Component: is

the visual component to the perception in the workspace

of the individual through a software artifacts network

with their contextual information and relationships of

dependencies among artifacts.

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1534

Fig. 1: Conceptual model of DiSEN-CollaborAR (Vivian et al., 2013)

Thus, DiSEN-CollaborAR approach has the

following execution stages, as shown on Fig. 1. (1) The

source code is stored in the Code Repository and the class

diagram is exported in XMI format and stored in the

Model Repository. (2) Changes occurring on the software

artifacts that are in the repositories are captured by

Capture Support. (3) The contextual information captured

are mapped by Context Representation for a formal

representation model based on ontology. (4a) The

contextual information represented should be stored in the

Context Repository, creating a historical of context

information. In addition, (4b) contextual information can

be sent for Processing Support to infer implicit contexts.

(5a) The Processing Support can send the processed

information for Context Repository or retrieve the

information stored in it. (5b) The contextual information

are sent for Tracking to generate dependencies

relationship between software artifacts. (6) The contextual

information about the software artifacts are made

available for Perception Mechanism. (7) The contextual

information about the software artifacts are presented by a

graph. Finally, (8a and 8b) members of distributed teams

realize the contextual information and the relationships

dependencies between software artifacts.

The DiSEN-CollaborAR approach combines some

positive aspects of other approaches and tools Sarma et al.

(2003), de Souza et al. (2004), Froehlich and Dourish

(2004), de Lucia et al. (2005), Vivian et al. (2011) and

Cepêda et al. (2010) to support the context awareness

about software artifacts, such as capturing contextual

information from Version Control System and UML

CASE Tool and the presentation by graphs. However,

DiSEN-CollaborAR approach explores also other

challenges such as the combination of traceability links

between different types of software artifacts - source

code and class diagram. Furthermore, this approach

explores the semantic representation of contextual

information about the software artifacts by means of an

ontology (Chaves et al., (2011). This allows the

automatic generation of dependency relationships

between software artifacts, according to the structural

information and semantic found in own artifacts. So the

DiSEN-CollaborAR offers an infrastructure for that the

members of distributed software projects, can be aware

of the contributions made for others developers on the

source code and class diagram from contextual

information related to them.

In order to verify the viability of DiSEN-CollaborAR

approach, a prototype called ACAS (Artifact

Collaborative Awareness System) was implemented

(Vivian et al., 2013). It helps individuals in carrying out

tasks, providing resources to support the context

awareness on the software artifacts. Figure 2 shows the

user interface of ACAS prototype.

Workspace

1

Version
control system

Source
code

Code

repository

Shared
repository

UML case
tool

XMI Model
repository

Context

repository

2
8a

Contextual

information

Capture

support

Context

representation

Disseminating
information

3

7

8b
4b

4a Awareness

mechanism

Processing

support

5a
6

5b

Visual

component

Tracking

Mechanism

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1535

Fig. 2: User interface on ACAS (Lahtinen and Peltonen, 2005)

The ACAS tool has integration with the Mercurial

version control system. When an event occurs, such as

commit or push, a hook script is run and information

about the event are captured. Regarding UML CASE

Tool, ACAS has integration with ArgoUML. When an

event occurs, like saving a XMI file, the information is

captured via a shell script that monitors such event. The

parser in the code that represents the class diagram in

XMI, is performed by API SAX. The framework DiSEN

Agency provides support for the processing of

contextual information in the ACAS (Monte-Alto et al.,

2012). The DiSEN Agency is a framework to support the

development of knowledge-based multi-agent systems.

For handling graphs in ACAS, the JUNG framework

was used - Java Universal Network/Graph that provides

an API for the creation, manipulation and visualization

of data represented as graphs or networks.

Experimental Study

A controlled experiment that considers the proposal

and, an evaluation of the approach regarding to the

viability of its application in distributed software

development environments was performed in a

laboratory. It is noteworthy that the ACAS prototype,

was used in this experimental study to support

implementation of activities and therefore be possible to

evaluate the DiSEN-CollaborAR approach. The

experimental study was conducted in four phases: (1)

Definition, (2) planning, (3) operation and (4) analysis

and interpretation (Wohlin et al., 2000).

Definition

Thus, to assess whether approach supports the

context awareness of software artifacts in distributed

teams, it is necessary to analyze the information of the

structure of software artifacts together with the

information of activities performed by human at

distributed software development process. Thus, several

aspects of approach can be evaluated: (1) Efficacy, (2)

ability to visual presentation, (3) performance and (4)

usability. In this experimental study was evaluated only

the aspects "1" and "2": Effectiveness because it should

provide insight into the actions taken on the software

artifacts; and ability to visual presentation because the

information related to software artifacts should be

presented visually to facilitate the context awareness on

the software artifacts by individuals.

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1536

In accordance with the principles of GQM

(Basili et al., 1994), this experimental study was defined

as follows:

Analyze the DiSEN-CollaborAR approach

compared to an ad hoc approach.

In order to assess/characterize.

With respect to understanding and knowledge by

individuals on the software artifacts that are

produced and/or modified during the distributed

development.

From the viewpoint of the researcher.

In the context of academics.

The following research questions are posed to aim to

achieve the presented research global:

Q1: The adoption of DiSEN-CollaborAR approach

increases the perception of software engineers on

the software artifacts that are produced or modified

when compared to ad hoc approach?

Q2: The adoption of DiSEN-CollaborAR approach

reduces the effort during activities of software

development with distributed teams compared to ad

hoc approach?

Q3: The adoption of DiSEN-CollaborAR approach

increases the amount of artifacts correctly identified

during software development activities with

distributed teams compared to ad hoc approach?

Q4: The adoption of DiSEN-CollaborAR approach

reduces the complexity in the tasks during software

development with distributed teams when compared

to ad hoc approach?

Q5: The contextual information about the software

artifacts presented by DiSEN-CollaborAR approach

is sufficient for the individual's perception?

Q6: The traceability among software artifacts presented

by DiSEN-CollaborAR approach is useful for the

context awareness?

Planning

This phase describes the plan to conduct out the

experiment and consists of the following elements:

definition of hypotheses, instrumentation description,

context selection, selection of subjects, variable

selection, experimental design and validity.

Definition of Hypotheses

The null and alternative hypotheses formulated for

this experimental study were:

Null hypothesis (H0): The adoption of DiSEN-

CollaborAR approach does not increase the context

awareness on the software artifacts by members of

distributed teams when compared to an ad hoc approach

adoption. This means that:

(H01): There is no effort difference to perform the

activities using DiSEN-CollaborAR when

compared to ad hoc approach.

 (H02): There is no difference of amount of artifacts

correctly identified adopting DiSEN-

CollaborAR when compared to ad hoc approach

Alternative hypothesis (H1): The adoption of

DiSEN-CollaborAR reduces effort during software

development activities with distributed teams when

compared to an ad hoc approach adoption.

Alternative hypothesis (H2): The adoption of

DiSEN-CollaborAR increases the amount of artifacts

correctly identified during software development

activities with distributed teams if compared to an ad hoc

approach adoption.

Description of Instrumentation

To perform this experimental study, the

instrumentation included a scenario of distributed

development of a Hotel Management system. So, for

such scenario, the teams adopted the DiSEN-

CollaborAR approach and also ad hoc approach. In

addition, the experiment presented the following

instruments: (i) A consent form to experimental study;

(ii) participant's characterization questionnaire; (iii)

document describing the system scenario to be

developed; (iv) class diagram of the scenario used in

the experiment; (v) task lists to be performed by the

participants; (vi) assessment questionnaire for

qualitative analysis.

Context Selection

This experimental study assumes the offline process

because the activities were carried out in the laboratory

and in a day predetermined for its accomplishment.

Participants were undergraduate and graduate students of

Computer Science of Computer Department at State

University of Maringá (DIN-UEM) and of Mathematics

and Computer Science Institute at University of São

Paulo (ICMC-USP). The generality of the study is

specific because the experimental results are valid for

distributed software development context.

In the experiment, participants were responsible for

the production and modification of software artifacts

related to a hotel management system. Such kind

system provides functionalities to streamline the

activities in hotels such as reception desk, reservations,

guests control, rooms, daily and payments. Somehow,

this type of system does not require advanced

knowledge for its understanding and development,

requiring only basic knowledge about object-oriented

design and implementation. The UML and Java

languages were adopted respectively for modeling and

implementation in this scenario.

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1537

Selection of Objects

Undergraduates and graduate students in Computer

Science from the DIN-UEM and ICMC-USP were

selected as participants for this experimental study. It was

assumed that these individuals were available for the study

and had knowledge of software development. Participants

completed a questionnaire that aimed to characterize their

training from an academic viewpoint, experience and

expertise to analyze the data and reducing the bias.

Furthermore, participants were prepared by a training

carried out before the experimentation.

Variable Selection

The independent variables identified for this study

were: (i) the DiSEN-CollaborAR approach; (ii) an ad

hoc approach; (iii) experience and knowledge of the

participants; characterization of the application domain

(Hotel Management System). As dependent variables

were: (i) time taken to perform the activities; (ii) number

of artifacts identified correctly; (iii) number of

indications concerning to reduce the degree of

complexity of the tasks; (iii) number of indications in

regard to the adequacy of contextual information; (iv)

number of indications with respect to the usefulness of

traceability among software artifacts.

Experimental Design

The design of this experimental study involved two

factors: (1) Context awareness of software artifacts and

(2) application domain.

This experimental study compared a distributed

software development scenario "with" and "without" the

adoption of DiSEN-CollaborAR approach. Thus, the

context awareness factor on software artifacts presented

two treatments:

• Context awareness of software artifacts adopting

DiSEN-CollaborAR approach: The participants

adopted the approach, consisting of Version Control

System, UML CASE Tool and ACAS prototype

• Context awareness of software artifacts adopting

an ad hoc approach: The participants adopted only

Version Control System and UML CASE tool

The domain factor had the following scenario:

• Development of a Hotel Management system: The

participants produced and modified software

artifacts related to the classes of a system that

provides resources for activity management in hotels

The selection of participants was not randomly within

the universe of candidates. The groups were made up

according to their location, in this case Maringa - at

Paraná state - and São Carlos - at São Paulo state. Thus,

this experiment consisted of a group of 8 people in

Maringa and a group of 10 people in São Carlos, which

were observed by a moderator.

The experimental procedure presented two sessions.

First, in Session 1 the two groups performed the

activities using an ad hoc approach. Then, in Session 2

the two groups performed the same activities, but

adopting the DiSEN-CollaborAR approach.

At first, people were given the consent form and, if

they agreed to participate in the experiment, responded

Participant characterization questionnaire. The data

gathered were used to interpret the results obtained by

individuals. Then the research topic was introduced and

a short training section conducted. The objective of this

training was to present the DiSEN-CollaborAR and ad

hoc approaches for the groups aiming to familiarize

themselves with their features. In addition, teams were

given a document outlining the scenario featuring the

development of a hotel management system.

During the experiment, the teams received the Tasks

List and some software artifacts. Individuals in both

treatments - DiSEN-CollaborAR and ad hoc- received

diagrams and source code of some system classes and

then held changes and new software artifacts produced.

Participants recorded the start and end time, of the job

tasks, in the Tasks List. In addition, participants recorded

in the Tasks List the artifacts produced and / or changed

in carrying out activities.

At the end of the simulation, an evaluation

questionnaire about the experiment with the DiSEN-

CollaborAR approach and the perception during the

software development was applied. In both

approaches, ad hoc and DiSEN-CollaborAR, teams

were given the same scenario and set of modeling and

implementation activities.

It is important to note that prior to the actual

execution of the experiment, a "pilot experiment" was

undertaken to assess the instrumentation used in this

experimental study. For this end, three individuals -

graduate students DIN-UEM who were not aware of the

research questions - were invited, including the same

instruments of the experimental study. The data

obtained by the pilot experiment were not used to

supplement this study.

Validity

The threats of validity identified in this experimental

study were (Wohlin et al., 2000):

Internal validity: For the selection of individuals, this

experimental study used students from the Computer

Science course, which usually tend to develop software in

academic level. Students are an important mechanism to

conducting pilot studies in software engineering (Salman

et al., 2015). To reduce the influence of threats to internal

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1538

validity, such as the fact that one group has more

knowledge and experience and therefore perform better,

regardless of the approach taken, participants from both

groups performed the tasks adopting both approaches in

different sessions. However, the order of application of

approaches can influence the results because the

participants after performing the Session 1, may present a

greater learning for holding the Session 2. In the

experimental study consent form was included the

confidentiality of relevant information on the experiment.

External validity: The study participants, generally,

were considered representative for the population of

software developers in academic level. Although this is a

controlled laboratory experiment, in this study the

environment and the characteristics were simulated to be

as closely as possible with the industrial practice.

However, the external validity may be compromised

because the experiment was conducted on a specific

scenario and using students, that could threaten to

generalize the results to other case studies and the

industry. However studies like this have the potential to

increment build knowledge and contribute to the body of

evidence (Salman et al., 2015). Other threats to external

validity are: The adoption of the Java programming

language and geographical location.

Construct validity: Construct validity was achieved,

since the DiSEN-CollaborAR approach and the scenario

used in the experiment, at the level where it was applied,

did not require substantial experience of the participants.

However, the validity of construction could be

undermined if a participant had experience in

developing such systems. With the use of two groups of

participants, we attempted to generalize the results to a

real scenario, although the results cannot be generalized

as they are influenced by groups of participants and the

chosen study. This validity was achieved, since the

DiSEN-CollaborAR approach and the scenario used in

the experiment, the level in which was applied, did not

require extensive experience of the participants.

However, note that the validity of construction could be

undermined if a participant had experience in

developing such systems.

Conclusion validity: This validity is reached

because the data analysis was performed using

descriptive statistics and hypothesis testing with

nonparametric statistical method to determine the

completion of the study. However, the amount of

individuals - 18 persons - who participated in the study

was low. Furthermore, only 10 individuals with DSD

knowledge can also be considered a low number.

Operation

This phase presents the experiment application and

consists of the following elements: Preparation,

implementation and validation.

Preparation

The subjects were eighteen students of Computer

Science course of DIN-UEM and ICMC-USP, as follows:

6 undergraduate, 8 graduate students, one master and three

doctoral students. Students were informed that would

investigated the result of applying an approach in

distributed software development. However, they were not

aware about which aspects would be studied nor

knowledge of what were the stated assumptions. All

students had the guarantee of anonymity. All instruments

of experiment were ready and were therefore provided to

participants before experiment.

Implementation

The experiment was conducted at the Distributed

Software Development Laboratory (LDDS) DIN-

UEM and Software Engineering Laboratory (LABES)

the ICMC-USP. The participants signed a consent

form that explained about the overall purpose of the

study and authorized that the artifacts produced were

used in this experimental study. In addition,

participants filled out a characterization form to assess

their knowledge and experience levels in DSD, Java,

UML, VCS and Case Tool UML.

All students had expertise in systems modeling and

implementation. However, only seven of them had

experience in industrial projects. Table 1 summarizes the

participants profile.

Initially, participants received training on the

concepts and approaches would be adopted. Participants

were clustered into two groups (A and B) according to

their location (Maringá and São Carlos). During the

Session 1, the groups accomplished the activities with

the ad hoc approach. Then, during Session 2, the groups

adopted the DiSEN-CollaborAR approach.

During operation, the participants performed a

sequence of tasks, recorded the start and end time and

the name of the artifacts produced and/or changed.

Validation

Data were collected from the characterization

questionnaire, task lists and evaluation questionnaire

from 18 students. These data were not considered as

invalid or questionable. Thus, none data of participants

was removed. Therefore, all participants were considered

for statistical analysis and interpretation of results.

Analysis and Interpretation

After the operation of the experiment, data were

collected and analyzed following the procedures defined

in the study planning. The data were analyzed in a

computational environment for statistical analysis, called

R. This section presents descriptive statistics, hypothesis

testing and qualitative analysis.

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1539

Table 1: Participants profile

 Group A Group B
 -- --
Question 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10

1 Knowledge In DSD 1 1 0 1 0 1 0 2 0 1 1 0 0 0 2 0 0 0
2 (0 = none, In Java 3 1 2 2 1 1 2 3 1 2 2 3 3 2 1 2 1 1
3 1 = basic, In UML 2 1 2 2 1 2 1 2 1 1 1 1 2 1 1 1 2 1
 2 = intermediate,
 3 = advanced)
4 Experience With Version Control System 3 1 0 1 0 1 0 2 1 1 1 1 1 1 3 2 0 0
 (0 = none,
 1 = basic,
5 2 = intermediate, With UML CASE Tool 2 1 1 2 1 2 1 2 1 1 1 1 2 1 0 1 1 1
 3 = advanced)

Fig. 3: Knowledge of participants

Fig. 4: Time spent to carry out the tasks per participant and approach

DSD Java Version control system

None 56%
Basic 39%

None 28%

Basic 50%
Intermediate 11%

Intermediate 39%

Intermediate 11%

Advance 11%

Advance 22%

Basic 33%
UML

Basic 61%
UML case tool

Basic 67%

None 6%

Intermediate 28%
Intermediate 39%

Time (min) 25

20

15

10

5

0

A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Participant

Spent time (ad hoc) Spent time (DiSEN-collaborAR)

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1540

Descriptive Statistics

Descriptive statistic was used to improve the

understanding and visualization of data collected. Figure

3 shows the percentage of occurrence of data, in this

case, about the participants knowledge.

The time taken to perform the tasks and the amount

of artifacts identified correctly by the participants are

shown on Fig. 4. One can visualize that in order to

perform the tasks, the adoption of ad hoc approach

consumed a longer time when compared to the adoption

of DiSEN-CollaborAR approach.

Descriptive statistics provided an overview of the

data, in terms of what could be expected from the

hypothesis testing.

Hypothesis Testing

First of all, was performed the test of normality

using the Shapiro-Wilk test. The Shapiro-Wilk test is

the most suitable to be used for identifying normality

in variables with less than 50 values (Araújo and

Travassos, 2009). In the case of this experimental

study are 36 values. Table 2 presents the test results

for these variables.

For the variable time spent, it was found that the

data distribution was not normal, because a value of p-

value 0.006509 is less than the value indicated for

normal distribution of this method is 0.05. Thus, for

this variable in the hypothesis test the nonparametric

Kruskal-Wallis method was used. For the variable

number of artifacts, it was found that the data

distribution was not normal, because the p-value

0.000000000002090 is less than the value indicated for

normal distribution of this method is 0.05. Thus, for

this variable in the hypothesis test the nonparametric

Kruskal-Wallis method was used too.

Applying the Kruskal-Wallis nonparametric

statistical method, one can realizes that there is a

statistical difference in the adoption of DiSEN-

CollaborAR approach when compared to the ad hoc

approach, as shown by the p-value which stood at

0.000004626, lower than the value 0.05 (Table 3).

The null hypothesis is that the approach time per are

identical population. Applying the Kruskal-Wallis

method to compare the independent data, the p-value is

almost zero (p-value = 0.000004626) (i.e., p-value

<0.05). Thus, at the 0.05 significance level, reject the

null hypothesis and can conclude that the approach time

per population are not identical.

Applying the Kruskal-Wallis nonparametric

statistical method one can observes that there is no

statistical difference in the adoption of DiSEN-

CollaborAR approach if compared to the ad hoc

approach, as can be seen by the p-value was at 0.1513,

higher than the value 0.05 (Table 4).

The null hypothesis is that the number of artifacts

per approach are population identical. Applying the

Kruskal-Wallis method to compare the independent

data, the p-value is 0.1513 (e.g., p-value >0.05). Thus,

the 0.05 significance level, accepts the null hypothesis

and one may conclude that the number of artifacts per

approach are population identical.

Qualitative Analysis

The issues Q4, Q5 and Q6 do not exhibit the

respective hypotheses and therefore have no hypothesis

testing. This is due to the fact that such questions have

answers based on the opinion of the participants of the

experiment. Thus, these issues must be evaluated

through a qualitative analysis of the DiSEN-

CollaborAR approach. Thus, the purpose of this

analysis is to identify whether the adoption of DiSEN-

CollaborAR approach has: (1) Indications that the

degree of complexity in carrying out tasks is reduced,

(2) indications that contextual information shown on

are sufficient and (3) indications that the traceability

among software artifacts is useful to support the

context awareness.

Table 2: Normality Test Results Shapiro-Wilk

Variable W p-value

Time spent 0.9101 0.006509 Non-normal distribution (p-value < 0.05)

Number of artifacts 0.2455 0.000000000002090 Non-normal distribution (p-value < 0.05)

Table 3: Results of Kruskal-Wallis hypothesis test

Date Degrees of freedom (df) p-value

Time-based approach 1 0.000004626

Table 4: Results of Kruskal-Wallis hypothesis test

Data Degrees of freedom (df) p-value

Number of artifacts for approach 1 0.1513

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1541

Regarding the complexity to perform tasks adopting

ad hoc approach (Q4), 11.1% of participants considered

very complex, 22.2% considered complex, 55.6%

considered simple and 11.1% considered very simple.

When they were asked about the complexity in carrying

out the tasks adopting DiSEN-CollaborAR approach,

none considered very complex, 5.5% considered

complex, 61.2% considered simple and 33.3%

considered very simple. By generalizing, 94.5% of

participants considered simple or very simple the degree

of complexity to perform tasks adopting DiSEN-

CollaborAR approach. Thus is verified that the adoption

of DiSEN-CollaborAR approach reduces the degree of

complexity in carrying out tasks by the participants.

When asked if the contextual information about the

software artifacts adopting DiSEN-CollaborAR approach

were sufficient (Q5), 88.9% indicated yes and 11.1%

indicated partially. Thus, it can be evidenced that the

contextual information about the software artifacts

presented by DiSEN-CollaborAR approach are

sufficient. Regarding the traceability utility of software

artifacts by adopting DiSEN-CollaborAR approach (Q6),

100% indicated yes. Thus, it is noted that, with the

adoption of DiSEN-CollaborAR, the traceability among

software artifacts is useful to support the perception of

context on them.

Discussion

Regarding the hypothesis presented the null

hypothesis (H0) was rejected, the alternative Hypothesis

(H1) was accepted and the alternative Hypothesis (H2)

was refuted. According to hypothesis testing, the

adoption of DiSEN-CollaborAR approach reduces the

time taken to carry out the activities, but does not

increase the number of artifacts identified correctly.

The results suggest that DiSEN-CollaborAR

approach does not influence in the number of artifacts

identified correctly in relation to the adoption of the ad

hoc approach. From the data analysis, it turns out that

adopting DiSEN-CollaborAR approach the average

number of artifacts identified correctly is higher.

However, statistically there is no difference when

comparing the two approaches.

In analyzing the results in respect to hypothesis, can

be identified that when DiSEN-CollaborAR approach is

adopted it results in an increase of context awareness on

software artifacts. As mentioned earlier, the qualitative

analysis sought to identify if the adoption of DiSEN-

CollaborAR approach provides: (1) Indications that the

degree of complexity in carrying out the tasks is reduced,

(2) indications that the contextual information shown on

are sufficient and (3) indications that the traceability

between software artifacts is useful to support the

perception of context. Analyzing the answers to the

questions, it is observed that there are positive

indications for such qualitative analysis.

With the adoption of DiSEN-CollaborAR approach,

the complexity in carrying out the tasks, both in

production and in the modification of software artifacts

(diagram classes and source code) are reduced. This is

due to the fact that the approach, through the ACAS

prototype tool, presents for the individual the contextual

information about the software artifacts.

The contextual information provided by DiSEN-

CollaborAR approach showed to be enough to support the

context awareness on software artifacts during its

production and/or modification by distributed teams. The

approach offers support to understanding and knowledge,

by individuals, of the circumstances involved in a

particular situation about the software artifact.

Through the experiment, it was found that the

traceability between software artifacts, provided by

DiSEN-CollaborAR approach also showed useful to

support the context awareness in the DSD. Traceability

links provide support for software engineers understand

the relationships and dependencies between software

artifacts generated during the software development

process (Zhang et al., 2008). Thus, when two people are

working on two different classes, joined by some type of

relationship, for example, there is the possibility that the

activities of these individuals are also related, as their

software artifacts are. In addition, the visuals resources

have an important role, because they present information

on the software artifacts, aiming to raise awareness of

individuals. To do this, from the traceability between

software artifacts, the approach uses a network of

software artifacts associated to present the contextual

information. This presentation is based on a graph, with

vertices representing software artifacts - source code

and class diagram - and edges representing the

dependencies that exist between these software

artifacts. For example, when a source code is sent to a

code repository or a class diagram is stored in model

repository for an individual, such actions are reflected

on the graph presentation. Thus, the software artifacts

network is shared among all team members, allowing

the context awareness on the software artifacts.

The feedback received from the participants of the

experiment indicates that this is an interesting approach.

In addition, some suggestions for improving the

approach and prototype tools were made. Among the

suggestions we can mention: (i) Add a filter to select the

software artifacts according to some criterion; (ii)

automatically update the graph in real time; (iii) open the

software artifact from a click on the vertex of the graph;

(iv) use the own development environment, such as IDE

and UML CASE tool to present the information; (v) add a

mechanism which automatically change the source code

based on the associated class diagram and vice versa.

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1542

Some limitations on technology related to Ontology

and restrictions on access to internal network of

universities (UEM and USP), hindered some resources

that could be used. For example, the groups - A and B -

were unable to simultaneously perform activities

because of restrictions on the ontology affecting the

operation of the ACAS prototype. At the time of

implementation of ACAS, there was not also a

consolidated mechanism for concurrency control the

ontologies, such as a Database Management System.

Technologies about this are in development, including

works by other members of the Research Group on

Distributed Software Engineering DIN-UEM, to offer

support to such issue. Thus, this does affect the

operation of processing the contextual information to

the deployed prototype, the same used as a mechanism

for extending the framework DiSEN Agency proposed

by Monte-Alto et al. (2012) for performing the process

of inference. Thus, such a mechanism has limitations

on the concurrent access and, at present, does not offer

full support to the above mentioned issue. This is an

important factor to be considered in a scenario with

distributed teams, since many individuals perform

activities simultaneously. It is therefore necessary to

control access and concurrent updates to the knowledge

base, so as not to lead to inconsistencies. Thus, members

of a group might not see the artifacts produced and/or

modified by the other group and also carry out direct

communication with other participants through ACAS

prototype. So, the increased context awareness about

software artifacts by participants, checked through the

experiment, has evidence that this approach can improve

also the collaboration, communication and coordination.

This experimental study was a first step towards a
more complete assessment of the DiSEN-CollaborAR
approach (Vivian et al., 2013). The experiment is

limited in some respects, as described above, restricting
the generalization of the results. Therefore, the
approach and the prototype can be improved in several
points, like describe earlier. It can be concluded that the
DiSEN-CollaborAR approach has direct influence on
the time taken to carry out the tasks, specifically, in

class diagrams and source code. Thus, it is an approach
that helps the distributed software development, with
support for the context awareness of such software
artifacts. This approach contributes to improve the
coordination and communication between distributed
teams. Furthermore, the approach offers features that can

increase the productivity and quality of software
developed by distributed teams.

Conclusion

In this study was presented DiSEN-CollaborAR, an

approach that supports the dissemination of information

about the software artifacts (Lahtinen and Peltonen,

2005). This approach helps to improve communication

and coordination among distributed teams and thus

reduce ambiguities in software artifacts.

An assessment of DiSEN-CollaborAR approach is

presented, using ACAS prototype tool by Lahtinen and

Peltonen (2005), which help individuals in carrying out

tasks, by providing resources to support the context

awareness on software artifacts. Thus, it was possible to

realize a controlled experiment in the laboratory and then

collect and analyze the data.

The experimental study, although limited, indicated

that DiSEN-CollaborAR increases the context

awareness on software artifacts by individuals while

carrying out their activities. Although, statistically, this

approach has not increased the number of artifacts

identified correctly during activities, there was a

reduction of effort during activities.

Therefore, one can highlight as contributions of

DiSEN-CollaborAR approach: the construction of an

infrastructure to support distributed software

development so that context information may

contribute to the perception of individuals and thus

promote communication and coordination between

distributed teams. So, it can avoid ambiguity in the

distributed software development, as well as failures or

uncertainties that affect the team work as a whole.

Thus, by adopting this approach can be avoided

problems of coordination, which may cause delays in

the project and also worsen the quality and increase the

cost of the product, as cited by Cataldo et al. (2007). In

addition, the storage of all information about the

software artifacts that are produced and/or modified by

distributed teams produce a memory of group that can

be consulted at any time by other individuals. This

information can help, for example, the transfer of skills,

competencies and knowledge to others. Also, this

approach becomes useful in allowing individuals to

make decisions and develop their artifacts based on

artifacts already analyzed, commented and stored by

other individuals in the DSD.

Another contribution is the possibility of holding new

findings about the domain from the software artifacts

produced and/or modified. Moreover, can better exploit

the reuse of software artifacts, in which individuals can

post comments about their experiences on their use.

Also, from the DiSEN-CollaborAR approach, it is

possible to promote further integration between

individuals, as well as the way to act of each of them and

thereby lead to a more active and participatory vision of

this individual in the workplace.

As future work can be highlighted: (i) Explore other

information sources since several tools can generate

artifacts during the software development cycle; (ii)

consider other types of software artifacts such as use

case diagram, sequence and package diagram,

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1543

requirements and validation documents and description

of the system architecture and also offer support for

other programming languages; (iii) incorporate an

information filter mechanism in the prototype; (iv)

identify socio-technical networks from software

artifacts. Team members of distributed software project

are connected by inter-related software artifacts,

constituting a social network of developers. These

networks can reveal patterns of collaboration and

communication that influence the perception of

individuals. Socio-technical networks have been

explored by de Souza et al. (2004) from only one type

of software artifact - source code. However, it would be

interesting the generation of socio-technical networks

based on various types of software artifacts.

Finally, it is necessary to reflect on the use of

DiSEN-CollaborAR approach for business purposes. It is

believed that this approach is suitable for the industry,

since it can assist in the coordination and

communication, it can also be used in real projects to

reduce the difficulties caused by the DSD geographical

and temporal distances. However, it is necessary and

important carry out a case study in the industry to

determine the feasibility of the approach in a real

scenario of a project with distributed teams.

Acknowledgement

The authors thank for Brazil’s National Council of

Scientific Development (CNPq) and Araucaria

Foundation for funding the research project.

Authors Contribution

Rafael Leonardo Vivian: Designed the experimental

study, executed the experimental study, elaborated the

discussion of the work, article writing, conducted the

analysis and interpretation of data.

Elisa Hatsue Moriya Huzita: Designed the

experimental study, elaborated the discussion of the

work, article writing, conducted the analysis and

interpretation of data.

Renato Balancieri: Designed the experimental

study, elaborated the discussion of the work, conducted

the analysis and interpretation of data, article writing.

Simone do Rocio Senger de Souza: Designed the

experimental study, elaborated the discussion of the work.

Gislaine Camila Lapasini Leal: Designed the

experimental study, executed the experimental study

elaborated the discussion of the work, article writing,

conducted the analysis and interpretation of data.

Edwin Vladimir Galdamez: Designed the

experimental study, elaborated the discussion of the

work, article writing, conducted the analysis and

interpretation of data.

Ethics

Authors confirm that this manuscript has not been

published elsewhere and that no ethical issues are involved.

Conflict of Interest Declaration

Authors declare that there is no conflict of interest

regarding the publication of this manuscript.

References

Alwis, B. and J. Sillito, 2009. Why are software projects

moving from centralized to decentralized version

control systems? Proceedings of the ICSE

Workshop on Cooperative and Human Aspects on

Software Engineering, May 17-17, IEEE Xplore

Press, Vancouver, BC, Canada, pp: 36-39.

 DOI: 10.1109/CHASE.2009.5071408

Araújo, M.A.P. and G.H. Travassos, 2009. The use of

statistical methods for planning and analyzing

experimental studies in software engineering area.

Proceedings of 6th Experimental Software Engineering

Latin American Workshop, (LAW’ 09), pp: 10-10.

Aversano, L., A. Lucia, M. Gaeta, P. Ritrovato and S.

Stefanucci et al., 2004. Managing coordination and

cooperation in distributed software processes: The

GENESIS environment. Software Process:

Improvement Pract., 9: 239-263.

 DOI: 10.1002/spip.206

Basili, V.R., G. Caldeira and H.D. Rombach, 1994. Goal

question metric paradigm. Encyclopedia Software

Eng., 2: 527-532.

Blincoe, K., 2012. Timely detection of Coordination

Requirements to support collaboration among

software developers. Proceedings of the

International Conference on Software Engineering,

Jun. 2-9, IEEE Xplore Press, Zurich, Switzerland,

pp: 1601-1603. DOI: 10.1109/ICSE.2012.6227230
Cataldo, M., P.A. Wagstrom, J.D. Herbsleb and K.M.

Carley, 2006. Identification of coordination
requirements: implications for the design of
collaboration and awareness tools. Proceedings of the
20th Conference on Computer Supported Cooperative
Work, Nov. 04-08, ACM, Banff, Alberta, Canada, pp:
353-362. DOI: 10.1145/1180875.1180929

Cataldo, M.B., M. Bass, J.D. Herbsleb and L. Bass, 2007.
On coordination mechanisms in global software
development. Proceedings of the International
Conference on Global Software Engineering, Aug.
27-30, IEEE Xplore Press, pp: 71-80.

 DOI: 10.1109/ICGSE.2007.33
Cepêda, R.S.V., A.M. Magdaleno, L.G.P. Murta and

C.M.L. Werner, 2010. Evoltrack: Improving design
evolution awareness in software development. J.
Brazil. Comput. Society, 16: 117-131.

 DOI: 10.1007/s13173-010-0011-5

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1544

Chaves, A.P., E.H.M. Huzita, V. Vieira and I.

Steinmacher, 2010. A context conceptual model for

a distributed software development environment.

Proceedings of the 22nd International Conference on

Software Engineering and Knowledge Engineering,

(EKE’ 10), pp: 437-442.

Chaves, A.P., I. Steinmacher, G.C.L. Leal, E.H.M.

Huzita and A.B. Biasao, 2011. OntoDiSENv1: An

ontology to support global software development.

CLEI Electronic J., 14: 1-12.

Damian, D., 2002. Workshop on global software

development. Proceedings of the 24th International

Conference on Software Engineering, May 19-25,

ACM, Orlando, Florida, pp: 667-668.

 DOI: 10.1145/581339.581435

de Lucia, A., F. Fasano, R. Francese and R. Oliveto,

2005. Traceability management in ADAMS.

Proceedings of the 1st International Workshop on

Distributed Software Development, (DSD’ 05),

pp: 135-149.

de Souza, C., P. Dourish, D. Redmiles, S. Quirk and E.

Trainer, 2004. From technical dependencies to

social dependencies. Proceedings of the Workshop

on Social Networks for Design and Analysis: Using

Network Information in CSCW, (UNI’ 04).

Dourish, P. and V. Bellotti, 1992. Awareness and

coordination in shared workspaces. Proceedings of

the ACM Conference on Computer-Supported

Cooperative Work, Nov. 01-04, ACM, Toronto,

Ontario, Canada, pp: 107-114.

 DOI: 10.1145/143457.143468

Froehlich, J. and P. Dourish, 2004. Unifying artifacts

and activities in a visual tool for distributed software

development teams. Proceedings of the 26th

International Conference on Software Engineering,

May 28-28, IEEE Xplore Press, Edinburgh, UK,

pp: 387-396. DOI: 10.1109/ICSE.2004.1317461

Fuks, H. and R.L. Assis, 2001. Facilitating perception on

virtual learning ware based environments. J. Syst.

Inform. Technol., 5: 93-113.

 DOI: 10.1108/13287260180000761

Gutwin, C., K. Schneider, D. Paquette and R. Penner, 2005.

Supporting group awareness in distributed software

development. Proceedings of the IFIP International

Conference on Engineering Human Computer

Interaction and Interactive Systems, (IIS’ 05), Springer,

Berlin, pp: 901-904. DOI: 10.1007/11431879_25

Gutwin, C., R. Penner and K. Schneider, 2004. Group

awareness in distributed software development.

Proceedings of the ACM Conference on Computer

Supported Cooperative Work, Nov. 06-10, ACM,

Chicago, Illinois, USA, pp: 72-81.

 DOI: 10.1145/1031607.1031621

Hargreaves, E. and D. Damian, 2004. Can global software

teams learn from military teamwork models?

Proceedings of 26th International Workshop on Global

Software Development, May 24-24, Edinburgh, UK,

pp: 21-23. DOI: 10.1049/ic:20040307

Herbsleb, J.D., A. Mockus, T.A. Finholt and R.E. Grinter,

2000. Distance, dependencies and delay in a global

collaboration. Proceedings of the ACM Conference on

Computer Supported Cooperative Work, Dec. 02-06,

ACM, Philadelphia, Pennsylvania, USA, pp: 319-328.

DOI: 10.1145/358916.359003.

Herbsleb, J.D. and D. Moitra, 2001. Guest editor’s

introduction: global software development. IEEE

Software, 18: 16-20. DOI: 10.1109/52.914732

Ivcek, M. and T. Galinac, 2008. Aspects of quality

assurance in global software development

organization. Proceedings of the 27th International

Conference on Telecommunications and

Information of the 31th International Convention

MIPRO, (CTI’ 08), pp: 150-155.

Jiménez, M., A. Vizcaíno and M. Piattini, 2010.

Improving distributed software development in

small and medium enterprises. Open Software Eng.

J., 4: 26-37. DOI: 10.2174/1874107X01004020026

Jiménez, M., M. Piattini and A. Vizcaíno, 2009.

Challenges and improvements in distributed

software development: A systematic review. Adv.

Software Eng., 2009: 1-14.

 DOI: 10.1155/2009/710971

Lahtinen, S. and J. Peltonen, 2005. Adding speech

recognition support to UML tools. J. Visual Lang.

Comput., 16: 85-118.

 DOI: 10.1016/j.jvlc.2004.08.001

Lanubile, F., C. Ebert, R. Prikladnicki and A. Vizcaíno,

2010. Collaboration tools for global software

engineering. IEEE Software, 27: 52-55.

 DOI: 10.1109/MS.2010.39

Layman, L., L. Williams, D. Damian and H. Bures,

2006. Essential communication practices for

extreme programming in a global software

development team. Inform. Software Technol., 48:

781-794. DOI: 10.1016/j.infsof.2006.01.004

Leal, G.C.L., A.P. Chaves, E.H.M. Huzita and M.E.
Delamaro, 2012. An integrated approach of software

development and test processes to distributed teams.

J. Univ. Comput. Sci., 18: 2686-2686.

 DOI: 10.3217/jucs-018-19-2686

Monte-Alto, H.H.L.C., A.B. Biasão, L.O. Teixeira and

E.H.M. Huzita, 2012. Multi-Agent Applications in a

Context-Aware Global Software Development

Environment. In: Distributed Computing and

Artificial Intelligence: Advances in Intelligent and

Soft Computing, Omatu, S., J. De Paz Santana, S.

González, J. Molina and A. Bernardos et al. (Eds.),

Springer, pp: 265-272.

Rafael Leonardo Vivian et al. / Journal of Computer Science 2018, 14 (11): 1531.1545

DOI: 10.3844/jcssp.2018.1531.1545

1545

Noll, J., S. Beecham and I. Richardson, 2010. Global

software development and collaboration: Barriers

and solutions. ACM Inroads, 1: 66-78.

 DOI: 10.1145/1835428.1835445

Omoronyia, I., J. Ferguson, M. Roper and M. Wood,

2010. A review of awareness in distributed

collaborative software engineering. Software:

Practice Exp., 40: 1107-1133.

 DOI: 10.1002/spe.1005

Prikladnicki, R., S. Marczak, T. Conte, C. Souza and

J.L.N. Audy et al., 2011. The evolution and impact

of the research in distributed software development

in Brazil. Proceedings of the 25th Brazilian

Symposium on Software Engineering, Sept. 28-30,

IEEE Xplore Press, Sao Paulo, Brazil, pp: 126-131.

DOI: 10.1007/s13173-013-0114-x

Salman, I., A.T. Misirli and N. Juristo, 2015. Are

students representatives of professionals in software

engineering experiments? Proceedings of the 37th

IEEE International Conference on Software

Engineering, May 16-24, IEEE Xplore Press,

Florence, Italy, pp: 666-676.

 DOI: 10.1109/ICSE.2015.82

Sangwan, R., M. Bass, N. Mullick, D.J. Paulish and J.

Kazmeier, 2006. Global Software Development

Handbook (Auerbach Series on Applied Software

Engineering Series). 1st Edn., Auerbach Publications,
Boca Raton, ISBN-10: 0849393841, pp: 288.

Sarma, A., Z. Noroozi and A. van der Hoek, 2003.
Palantir: Raising awareness among configuration
management workspaces. Proceedings of the 25th
International Conference on Software Engineering,
May 3-10, IEEE Xplore Press, Portland, OR, USA,
pp: 444-454. DOI: 10.1109/ICSE.2003.1201222

Sengupta, B., S. Chandra and V. Sinha, 2006. A research
agenda for distributed software development.
Proceedings of the 28th International Conference on
Software Engineering, May 20-28, ACM, Shanghai,
China, pp: 731-740.

 DOI: 10.1145/1134285.1134402
Silva, F.Q.B., C. Costa, A.C.C. Franca and R.

Prikladinicki, 2010. Challenges and solutions in
distributed software development project
management: A systematic literature review.
Proceedings of the International Conference on
Global Software Engineering, Aug. 23-26, IEEE
Xplorev Press, Princeton, NJ, USA, pp: 87-96.

 DOI: 10.1109/ICGSE.2010.18

Steinmacher, I., A.P. Chaves and M.A. Gerosa, 2012.

Awareness support in distributed software

development: A systematic review and mapping of

the literature. Comput. Supported Cooperative

Work, 22: 113-158.

 DOI: 10.1007/s10606-012-9164-4

Vieira, V., 2008. CEManTIKA: A domain-independent

framework for designing context-sensitive system.

Tese de Doutoramento, Centro de Informática - CIn,

Universidade Federal de Pernambuco-UFPE, Recife

- Pernambuco.

Vivian, R.L., E.H.M. Huzita and G.C.L. Leal, 2013.

Supporting distributed software development

through context awareness on software artifacts: The

DiSEN-CollaborAR approach. Proceedings of the

28th Annual ACM Symposium on Applied

Computing, Mar. 18-22, ACM, Coimbra, Portugal,

pp: 765-770. DOI: 10.1145/2480362.2480509

Vivian, R.L., E.H.M. Huzita, G.C.L. Leal and A.P.

Chaves, 2011. Context-awareness on software

artifacts in distributed software development: A

systematic review. Proceedings of the 17th CRIWG

Conference on Collaboration and Technology, Oct.

02-07, Springer, Paraty, Brazil, pp: 30-44.

 DOI: 10.1007/978-3-642-23801-7_3

Whitehead, J., 2007. Collaboration in software

engineering: A roadmap. Proceedings of the Future

of Software Engineering, May 23-25, IEEE Xplore

Press, Minneapolis, MN, USA, pp: 214-225.

 DOI: 10.1109/FOSE.2007.4

Wohlin, C., P. Runeson, M. Host, M. Ohlsson and B.

Regnell et al., 2000. Experimentation in Software

Engineering: An Introduction. 1st Edn., Kluwer

Academic Publishers, USA,

 ISBN: 0792386825, pp: 204.

Yacoub, M.K., M.A.A. Mostafa and A.B. Faria, 2016. A

new approach for distributed software engineering

teams based on kanban method for reducing

dependency. J. Software, 11: 1231-1241.

 DOI: 10.17706/jsw.11.12.1231-1241

Zhang, Y., R. Witte, J. Rilling and V. Haarslev, 2008.

Ontological approach for the semantic recovery of

traceability links between software artefacts. IET

Software, 2: 185-203.

 DOI: 10.1049/iet-sen:20070062

