

 © 2018 Geraldo Francisco Donegá Zafalon, Álvaro Magri Nogueira da Cruz anderson Rici Amorim, Matheus Carreira

Andrade, Allan de Godoi Contessoto, Leandro Alves Neves, Rogéria Cristiane Gratão de Souza, Carlos Roberto Valêncio and
Liria Matsumoto Sato. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Performance Improvement of SNP Search Using Multithread

Programming

1,2,3Geraldo Francisco Donegá Zafalon, 1Álvaro Magri Nogueira da Cruz,
1,3Anderson Rici Amorim, 1Matheus Carreira Andrade,
1,3Allan de Godoi Contessoto, 1Laendro Alves Neves,
1Rogéria Cristiane Gratãode Souza, 1Carlos Roberto Valêncio and 3Liria Matsumoto Sato

1Department of Computer Science and Statistics - DCCE, São Paulo State University (Unesp),

Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo, Brazil
2Universidade Paulista – ICET – Campus de São José do Rio Preto, São Paulo, Brazil
3Escola Politécnica – University of São Paulo, São Paulo, Brazil

Article history

Received: 30-07-2018

Revised: 12-10-2018

Accepted: 02-11-2018

Corresponding Author:

Geraldo Francisco Donegá

Zafalon

Department of Computer

Science and Statistics - DCCE,

São Paulo State University

(Unesp), Institute of

Biosciences, Humanities and

Exact Sciences (Ibilce),

Campus São José do Rio Preto,

São Paulo, Brazil
Email: geraldo.zafalon@unesp.br

Abstract: Pattern recognition is an important field in Bioinformatics and a

well-known task is the search for Single Nucleotide Polymorphism (SNP).

It is possible to search for a known SNP position and analyze it using

patterns of DNA bases, called masks. Nonetheless, this process becomes

computationally expensive as the amount of available genomic data

increases. Thus, in this study, we have developed a parallelization scheme,

based on multithread programming, to SNP analysis using masks. In our

tests, we noticed that the proposed scheme improved the execution time in

98.05 times when compared with the sequential approach.

Keywords: Multithreaded Approach, SNP Analysis, Bioinformatics

Introduction

Due to the huge amount of genomic data available,

performing manual biological analysis becomes

unfeasible. Thus, it is necessary the development of

computational methods to support biologists in their

analysis and inferences. This fact has originated

Bioinformatics (Amorim et al., 2016).

Bioinformatics is a Computer Science branch that aims

to provide computational solutions to biological problems,

as sequence alignment (Marucci et al., 2014; Zafalon et al.,

2015) and pattern recognition (Hemalatha and

Vivekanandan, 2008; Khuri, 2008). Concerning the

pattern recognition problems, the search problem is one of

the most important (Wang et al., 2016) and a well-known

one is the search and analysis for Single Nucleotide

Polymorphism (SNP) (Trick et al., 2009). The detection of

a SNP can be performed through the amplification of the

target sequence and its identification using hybridization

probe (Real-Time PCR) or through DNA sequencing

using capillary electrophoresis (Sanger Sequencing)

(Sanger and Coulson, 1975) or Next Generation

Sequencing (NGS) technology (Margulies et al., 2005).

After that, the analysis of the SNPs is performed

manually through chromatogram of the sequence. The

visualization a chromatogram is assisted by software, as

can be seen in Fig. 1.

Fig. 1: Chromatogram view of a DNA sequence

Geraldo Francisco Donegá Zafalon et al. / Journal of Computer Science 2018, 14 (11): 1465.1474
DOI: 10.3844/jcssp.2018.1465.1474

1466

This is an empirical process, since SNP identification
is performed through the search of known patterns of
DNA bases, here defined as masks. When a mask is
found on a DNA sequence, the subsequent base is a SNP
position. The problem is to analyze a large number of
sequences and multiple masks manually. In this way,
human error tends to be maximized. Thus, the
development of computational methods to assist SNP
analysis is essential. In other recent work, we have
developed a method to perform search and analysis of
known SNP positions. Nonetheless, this process becomes
time expensive when the amount of data increases,
because many iterations are required to perform the task.

Thus, in this study we propose a parallelization
scheme for SNP analysis, using multithread
programming, in order to improve its performance in the
process of SNP verification.

This way, this work is organized as follows: In
section SNP Concepts, we define SNP and show its
relevance indifferent areas of biology. In section
Materials and Methods, it can be seen the materials and
methods used to develop this work. In section Tests and
Results we show the tests performed with the tool and
the obtained results. Finally, in section Conclusion, the
conclusions are presented.

SNP Concepts

A SNP is defined as a single base change in a DNA
sequence. The DNA sequence is a linear combination
off our nucleotides: Adenine (A), Thymine (T),
Cytosine (C) or Guanine (G). When comparing two
DNA sequences, position by position, a SNP is defined
as a presence of different nucleotides in the same
position (Trick et al., 2009; Sachidanandam et al.,
2001), as can be seen in Fig. 2. However, to be
considered as a SNP position, this occurrence must be
at least in 1% of analyzed population. Otherwise, this
occurrence is defined as a mutation position (Rallón et al.,
2010; Li and Sadler, 1991).

When a SNP position is detected, the subsequence
immediately before of this position is observed. This
subsequence can be classified as a pattern which always
precedes a SNP occurrence. This specific pattern is
called mask. Some specific ones are previously defined
by research interests.

Fig. 2: SNP position

Moreover, the real importance of SNPs is their
occurrence in large amount in the human genome. On
average, every 1000 to 2000 bases throughout human
DNA, approximately one nucleotide position differs
between two genomes (Li and Sadler, 1991; Kwok et al.,
1996). Considering that there are 3.2 billion nucleotides
in the human genome, a complete genome can reach the
magnitude of 1.6 million to 3.2 million SNPs.

In case of humans, many SNPs do not have any
known effect on health or evolution yet. Nevertheless,
some of these genetic variations are important in the
study of human health. It has been shown that some
SNPs may contribute to the individual predisposition to
the response to certain drugs, in addition to susceptibility
to environmental factors such as toxins and the risk of
developing diseases (Harrow et al., 2012).

Many studies have focused their efforts on the SNPs
research, as well as the search for their relationship
with different types of diseases and their respective
treatments, such as HIV (AIDS) (Westrop et al.,
2017), HCV (Hepatitis C) (Elsedawy et al., 2016),
obesity (Usher et al., 2015) and cancer (Kocarnik et al.,
2015). However, it is important the aid of
computational methods to perform these studies more
efficiently, which simplifies the analysis and reduces
the time to obtain the results.

There are methods that have different approaches to
perform SNP detection, such as SNP detector (Zhang et al.,
2005) and SNP Server (Savage et al., 2005). SNP detector
uses sequence segments for nucleotide base calls and
determines the quality of the files that were sequenced and
in a later stage, it performs the alignment of these
sequences using the Smith-Waterman algorithm (Smith
and Waterman, 1981). Finally, it compares the alignment
produced with a base alignment looking for positions of
divergence, in this case, SNPs. However, SNP detector
uses an external method, Phred
(http://www.phrap.org/consed/consed.html\#howToGet),
which has a license you must pay for use.

The SNP Server (Savage et al., 2005) is a real-time

implementation of the auto SNP method (Barker et al.,

2003), which implies the use of a web server to operate

it. It is a web interface and a wrapper to three other

programs: BLAST (Altschul et al., 1990;

Rajendrakumar, 2015), CAP3 (Huang and Madan, 1999)

and auto SNP. These ones are a SNP discovery pipeline

as can be seen in Fig. 3. The pipeline accepts an input

sequence and compares it to a database of previously

specified nucleotide sequences, using BLAST algorithm

to identify related sequences. The obtained sequences

can be selected to an assembly (grouping) process using

CAP3 and after performing the SNP discovery using

auto SNP. The users must use input sequences in the

FASTA format to proceed the assembly process, or

sequences in the ACE format to skip this step.

Geraldo Francisco Donegá Zafalon et al. / Journal of Computer Science 2018, 14 (11): 1465.1474
DOI: 10.3844/jcssp.2018.1465.1474

1467

Fig. 3: An overview of components of the real-time auto SNP web server, the SNP Server (Savage et al., 2005)

There are also approaches that use parallel computing

in the SNP analysis. As an example, the method
ParDMETMiner (Agapito et al., 2016), which is based
on a multithreaded Master-Slave architecture, where the
Master is responsible for partitioning and distributing the
data to each slave and collecting the results. The method
is a parallelization of the DMET-Miner tool (Agapito et al.,
2015), developed by Affymetrix, which allows the
investigation of 1936 different nucleotides. These are
candidates for possible SNPs in 255 genes that are
related to the absorption, distribution, metabolism and
excretion of the drugs.

In a similar way, SPRITE (Rengasamy and Madduri,
2016) is an open-source method that provides a parallel
implementation of the genomic data analysis workflow
for detection of SNPs. This software is divided into
three parts: PRUNE for reading and sequence
alignment, SAMPA for intermediate file processing and
PARSNIP for parallel SNP lookup queries. In the
parallelization of PARSNIP, the Message Passing
Interface (MPI) library is used, dividing the number of
sequences to be analyzed into the number of existing
threads (Rengasamy and Madduri, 2015).

Fig. 4: Representation of a SNP search with mask

The methods previously presented do not use the

mask strategy for SNP identification and analysis. Thus,
our parallel method is capable to analyze multiple SNPs,
unlike the other methods. It is important to stand out that
our method does not search for unknown SNP positions,
but it analyzes known SNP positions instead.

An efficient way to perform the analysis for SNPs
is through masks, as shown in Fig. 4. This strategy
consists in a definition of a subsequence to be found
into target sequences and, after finding it, a
subsequent position analysis will be performed where
the subsequence was found.

The enhancement of SNP search and analysis
algorithms is desirable, considering the development

User defined sequence

User set parameters

BLAST comparison

User set parameters
User submitted

FASTA

CAP3 contig assembly

User submitted ACE User set parameters

Redundancy based
SNP detection

User set parameters

Candidate SNPs

Geraldo Francisco Donegá Zafalon et al. / Journal of Computer Science 2018, 14 (11): 1465.1474
DOI: 10.3844/jcssp.2018.1465.1474

1468

and application of new sequencing technologies. Next
Generation Sequencing produces huge amount of
genomic data due its parallel sequencing approach,
which generates hundreds of thousands of biological
sequences (Liu et al., 2012). Thus, sequential
approaches to SNP analysisbe come unfeasible due to
the increasing of genomic data. This strategy can be
performed in parallel given the nondependency of the
data structures involved in the operation. Thus, it is not
necessary blocking operations to access the sequences
in a shared way.

Materials and Methods

SNP Verifier Method

The SNP Verifier method, which we have
implemented in other recent work, allows multi-mask
sequential analysis of known SNPs. It receives ab1 files
as input data and convert them to XML files for analysis

by means of tags, since the converted file provides the
primary sequence, secondary sequence, sequencing
quality and the peak values of the primary and secondary
sequences. After the conversion process, the SNP
identification and analysis are performed, using the
masks previously inserted. When a SNP position is
found, the occurrence of homozygous or heterozygous is
evaluated, which will be better described in the
subsection Parallelization of SNP position analysis and
the result is finally stored.

As can be seen in the Fig. 5, the masks and a name
for the SNP to be analyzed are given to the method. In
the Fig. 6, we can observe the obtained results using the
multi-mask identification and analysis. Nonetheless, as
the number of sequences and masks to be analyzed
grows, the sequential approach becomes unfeasible.
Thus, it is necessary the use of some parallel approach to
reduce the computational cost of the method, in order to
reduce its execution time.

Fig. 5: Insertion of masks on SNP verifier tool

Fig. 6: Results table on SNP verifier tool

Masks

AA

TT

GC

TA

CC

SNP name

MASK1

MASK2

MASK3

MASK4

MASK5

Template (Mask)

SNP name

Sequence Residue Quality Position

Mask: TT

EU3F Allele 1

EU3F Allele 2

EU3F Allele 1

EU3F Allele 2

EU3F Allele 1

EU3F Allele 2

8

8

9

9

62

62

15

15

23

23

124

124

Output:

A

T

G

G

G

G

Geraldo Francisco Donegá Zafalon et al. / Journal of Computer Science 2018, 14 (11): 1465.1474
DOI: 10.3844/jcssp.2018.1465.1474

1469

Parallelization of the Masks Search

With our proposed parallel approach, we are able
to verify many masks simultaneously. Thus, it allows
performing multiple analysis simultaneously. The
parallelization of this stage consists of assigning to
each mask a different thread, so given N masks, it is
assigned to them N threads. Finally, considering that

a processor has K cores, it is called a
N

K
threads per

core, as can be seen in Fig. 7. As each task is
terminated, the available core performs the next
thread assigned to that core. This is done until all
threads assigned to that core are performed. This
way, the simultaneous analysis by means of masks
is efficiently parallelized without impairing the
analysis operation.

To implement our multithreaded method, we have

used the C# language, since it is the same language

used to develop the SNP Verifier method. The used

library was System.Threading.Task, which contains

the Parallel class that supports regions and loops that

are executed in parallel (Okur and Dig, 2012).

Parallelization of SNP Position Analysis

After dividing the masks into the processor cores,

we have the stage of analyzing the SNP positions.

This analysis can be performed by extracting from the

input file the values of the primary and secondary

peaks of the sequences.

In order to differentiate a homozygous SNP (refers

to an individual having identical alleles for a single

trait) from a heterozygous (refers to an individual

having two different alleles for a specific trait), the

primary and secondary peak values from the ab1 files,

converted to XML, are evaluated. When the secondary

peak has a value greater than or equal to 20% of the

primary peak value, the SNP is considered to be

heterozygous, as can be seen in the Fig. 8. If the value

of the secondary peak value is less than 20% of the

value of the primary peak, this SNP is classified as

homozygous.

The parameter of 20% was based on that used by

SNP detector (Zhang et al., 2005), since it is efficient

in the detection of homozygous and heterozygous by

attenuating the occurrence of false positives.

However, it is important to notice that this value is a

user-defined parameter.

To model this process in our parallel approach, we

defined the steps that must be performed, as we can

see in Fig. 9.

In this stage, we divide each SNP position found

for a different thread. Thus, each thread is scheduled

to a processor core, in order to parallelize the SNP

analysis. Each thread, firstly, find the SNP position

through its respective mask. Thus, the SNP position is

analyzed based on its peak values, to check the

homozygous or heterozygous occurrence. After this

process, it is verified if the sequence under analysis

has been completely investigated. If the end of the

sequence is found, the process ends. Otherwise, the

analysis of other positions of the same SNP will continue.

It is important to notice that the higher the number of

cores in the processor, the lower is the number of threads

per core, so the analysis becomes faster.

Fig. 7: Representation of our parallel SNP search with masks

Fig. 8: Secondary peak value is greater than 20% of the

primary peak value, thus it is heterozygote

Masks

Masks 1
Masks 2
Masks 3
.
.
.
Masks N

One mask per thread

Thread 1 … Thread N

(N/K) threads (N/K) threads

Core 1 … Core N

Heterozygote

20%

Homozygote

Geraldo Francisco Donegá Zafalon et al. / Journal of Computer Science 2018, 14 (11): 1465.1474
DOI: 10.3844/jcssp.2018.1465.1474

1470

Fig. 9: Flowchart describing the analysis stage

Tests and Results

Test Platform

The tests were performed using a computer with
Intel(R) Core (TM) i7-6700HQ CPU @ 2.60 GHz
processor, with 32GB of RAM memory and Windows10
Home operating system.

Test Cases

The tests were run for the sequential SNP Verifier

method and our parallel approach, in order to observe

the obtained improvement. This method cannot be

compared with the other methods presented in section

SNP Concepts, since they perform detection of

unknown SNP positions, while our method performs

the analysis of known SNP positions, using the mask

search approach. Hence, any comparison with other

methods that do not use the mask approach is

inappropriate. To the extent of our knowledge, there is

not any other method similar to ours. Thus, the tests

performed have the following structure:

• Test 1: 5 sequences

• Test 2: 10 sequences

• Test 3: 15 sequences

• Test 4: 20 sequences

• Test 5: 25 sequences

• Test 6: 30 sequences

Moreover, we used five different masks to perform
the tests:

• AA

• TT

• GC

• TA

• CC

The sequences, which were used to perform the
tests, have the length between 380 and 390 nucleotides
and they were provided by Genomic Studies
Laboratory (LEGO) at São Paulo State University
(Unesp). The masks were selected considering their
biological significance, based on previous studies.
Finally, we have executed six test sets four times each
to ensure statistical robustness and fidelity in the
results. Considering a test set, each execution of it we
have called round, so we have round 1 (R1), round 2
(R2), round 3 (R3) and round 4 (R4). Basically, the
difference among the test sets is the number of
sequences in each one, considering 5, 10, 15, 20, 25
and 30 sequences, respectively. Finally, another
relevant issue to be explained here concerns the mask
length, where we have chosen all masks with length
two. This decision was related to the length of the
masks, because it implies directly in the processing time.
As it is more common to find masks with small lengths
than masks with high lengths, with this kind of test, the

Thread 1 Thread N

Each thread

Search SNP

No
No

Finish
Finish

SNP found
Yes

Yes End of the

sequence?

End of the

sequence?

Heterozygous Heterozygous
Homozygous

check

Secondary peak >= 20%

of primary peak
Secondary peak < 20%

of primary peak

Geraldo Francisco Donegá Zafalon et al. / Journal of Computer Science 2018, 14 (11): 1465.1474
DOI: 10.3844/jcssp.2018.1465.1474

1471

algorithm can amplify the stress on the processors,
where we can improve the performance measure.

Results

In the Table 1, we show the execution times of all
rounds, in seconds, for sequential and parallel
approaches. To show the statistical consistency of these
results, in the Table 2 can be seen the execution time
averages and standard deviations of executed tests.
Moreover, still in the Table 2, we present the sequential
and parallel standard deviation averages.

It can be noticed in Table 1 the considerable
difference between the obtained execution times for
sequential and parallel approaches. Considering the
execution time average of all test cases, both for
sequential and parallel, we can verify that the parallel
version wastes, on average, just 0.18% of the time of
sequential one. From these results, it is possible to
verify the huge performance improvement of the
parallel approach for all test cases from 5 to 30
nucleotide sequences. Another important consideration
about the results is concerning the standard deviations
presented in Table 2, where the standard deviations of
parallel approach are lower than sequential one, which
indicates higher robustness and regularity of the
parallel one. When a comparative analysis is performed
between the approaches, it can be noticed that the
average of standard deviations is 0.0219 and 0.59, for
parallel and sequential one, respectively.

Still concerning the analysis of the execution time, it
is important to show as the data volume increases the
execution time presents a linear growth for both

sequential and parallel approaches. This can be verified
in the Fig. 10 and 11, respectively.

Table 1: Sequential and parallel approach tests

 N of seqs. R1 R2 R3 R4

Sequential 5 55.39 54.06 54.15 53.89

 10 136.70 134.50 135.30 134.30

 15 199.39 199.07 198.67 198.74

 20 365.10 363.90 363.40 363.80

 25 406.10 407.30 407.17 406.38

 30 563.57 562.05 562.57 563.34

Parallel 5 0.20 0.22 0.21 0.21

 10 0.28 0.30 0.31 0.31

 15 0.36 0.39 0.39 0.41

 20 0.45 0.52 0.50 0.49

 25 0.51 0.59 0.60 0.58

 30 0.61 0.68 0.70 0.68

Table 2: Sequential and parallel approach statistics

 N of seqs. Average Standard deviation

Sequential 5 54.37 0.60

 10 135.20 0.94

 15 198.96 0.28

 20 364.05 0.63

 25 406.73 0.50

 30 562.88 0.60

Average 0.59

Parallel 5 0.21 0.0069

 10 0.30 0.0119

 15 0.38 0.0161

 20 0.49 0.0258

 25 0.57 0.0352

 30 0.67 0.0357

Average 0.0219

Fig. 10: Average execution times of sequential approach

Sequential approach
600

500

400

300

200

100

0

E
x
ec

u
ti

o
n
 t

im
e

(i
n
 s

ec
o
n
d
s)

0 5 10 15 20 25 30 35

Number of sequences

Geraldo Francisco Donegá Zafalon et al. / Journal of Computer Science 2018, 14 (11): 1465.1474
DOI: 10.3844/jcssp.2018.1465.1474

1472

Fig. 11: Average execution times of Parallel Approach

In the Fig. 10, with the analysis of linear regression

coefficient R2, we have obtained the Equation (1):

100.64 65.19y x= − (1)

andR2 = 0.9776 for sequential approach.

In the Fig. 11, with the same analysis of linear
regression coefficient R2, we have obtained the
Equation (2):

0.0909 0.1242y x= + (2)

And R2 = 0.9992 for parallel one. The linear

regression coefficient demonstrates how the proposed

model fits to the linear model. As closer value 1 the

coefficient is, the proposed model is more adequate to

the ideal one. Thus, we can verify that the parallel

approach fits better to the linear model than the

sequential one, because its coefficient reaches the value

of 0.9992, while the sequential is 0.9776. Thus, it is

possible to notice the stability of the parallel approach

with this linear growth.

Finally, another issue of performance analysis of

parallel programs is the speedup (Eager et al., 1989).

Speedup is defined as the portion of time to execute a

program with one processor (sequential execution) to

time to execute when � processors are available. Thus,

the speedup is considered as Equation 3:

()
()

()

1T
S p

T p
= (3)

Where:
T(1): Execution time with one processor
T(p): Execution time with p processors

In our tests, we have used five processing cores. As

we considered five masks and their division into five

threads, we have allocated five processing cores (Fig. 7).

Thus, the average speedup obtained is:

()

54.37 135.20 198.96

0.21 0.30 0.38
5 / 6 98.05

364.05 406.73 562.88

0.49 0.57 0.67

S

+ +

 = =
 + + +

 (4)

Therefore, it is possible to notice that, on the average,

the parallel approach improved 98.05 times in relation to

the sequential one.

Conclusion

In this study, we have proposed a parallelization

scheme to the SNP Verifier method using multithread

programming. We can conclude that our work improved

the performance of the analysis of known SNP positions,

in terms of execution time. This fact allows the users to

perform SNP analysis in a feasible time, even with huge

amount of genomic data.
With the tests, we can observe great performance

improvement of our parallel method, for all test cases
from 5 to 30 nucleotides. The speedup shows that the
performance of our multithreaded approach is 98.05
times faster than the sequential one. Moreover, it can be

Parallel approach
0,7

0,6

0,5

0,4

0,3

0,2

E
x
ec

u
ti

o
n
 t

im
e

(i
n
 s

ec
o
n
d
s)

0 5 10 15 20 25 30 35

Number of sequences

Geraldo Francisco Donegá Zafalon et al. / Journal of Computer Science 2018, 14 (11): 1465.1474
DOI: 10.3844/jcssp.2018.1465.1474

1473

seen that our multithreaded method is more statistically
robust because the calculated average standard deviation
is considerably smaller than the value obtained by the
sequential approach.

Acknowledgement

The authors would like to thank Dr. Livia Rossi and

Dr. Gilberto Vaughan from Centers for Disease Control

and Prevention (CDC – USA) for the collaboration in the

research development and Universidade Paulista

(Unip/ICET) to partially support this research under

grant number 7-02-1053/2017. The authors would like to

thank FAPERP (Fundação de Apoio à Pesquisa e

Extensão deSão José do Rio Preto).

Author’s Contributions

Geraldo Francisco Donegá Zafalon: Developed and
implemented the strategies, analyzed the results and
wrote the paper.

Álvaro Magri Nogueira da Cruz: Developed and
implemented the strategies and wrote the paper.

Anderson Rici Amorim: Developed and
implemented the strategies.

Matheus Carreira Andrade: Helped in the
improvement of the model and analyzed the results.

Allan de Godoi Contessoto: Helped in the
improvement of the interface and analyzed the results.

Leandro Alves Neves: Helped in the improvement

of the interface and analyzed the results.

Rogéria Cristiane Gratão de Souza: Helped in the

improvement of the model and analyzed the results.

Carlos Roberto Valêncio: Helped in the

improvement of the model, evaluated the data and

analyzed the results.

Liria Matsumoto Sato: Helped in the improvement

of the parallel model, evaluated the data and analyzed

the results.

References

Agapito, G., P.H. Guzzi and M. Cannataro, 2016.Parallel

processing of genomics data. Proceedings of the 2nd

International Conference on Numerical

Computations: Theory and Algorithms, (CTA’ 16).

DOI: 10.1063/1.4965364

Agapito, G., P.H. Guzzi and M. Cannatro, 2015.

Dmetminer: Efficient discovery of association rules

from pharmacogenomic data. J. Biomed. Inform.,

56: 273-283. DOI:10.1016/j.jbi.2015.06.005

Altschul, S.F., W. Gish, W. Miller, E.W., Myers and D.J.

Lipman, 1990. Basic local alignment search tool. J.

Molecular Biol., 215: 403-410.

 DOI: 10.1016/S0022-2836(05)80360-2

Amorim, A.R., J.M.V. Visotaky, A.D.G. Contessoto,

L.A. Neves and R.C.G. De Souza et al., 2016.

Performance improvement of genetic algorithm for

multiple sequence alignment. Proceedings of the

17th International Conference on Parallel and

Distributed Computing, Applications and

Technologies, IEEE Xplore Press, pp: 69-72.

 DOI: 10.1109/PDCAT.2016.029

Barker, G., J. Batley, H. OSullivan, K.J. Edwards and D.

Edwards, 2003. Redundancy based detection of

sequence polymorphisms in expressed sequence tag

data using autosnp. Bioinformatics, 19: 421-422.

DOI: 10.1093/bioinformatics/btf881

Eager, D.L., J. Zahorjan and E.D. Lazowska, 1989.

Speedup versus efficiency in parallel systems.

IEEE Trans. Comput., 38: 408-423.

 DOI: 10.1109/12.21127

Elsedawy, Y.S., M.A. Khattab, S.A. El Hady, A.A. El

Sayed and A.M. Albreed et al., 2016. Single

nucleotide polymorphisms of toll-like receptor 7

in hepatitis c virus infection and hepatocellular

carcinoma patients. Egypt. J. Med. Microbiol., 25:

428-34. DOI: 10.3349/ymj.2014.55.2.428

Hemalatha, M. and K. Vivekanandan, 2008. Genetic

algorithm based probabilistic motif discovery in

unaligned biological sequences. J. Comput. Sci.,

4: 625-630.

 DOI: 10.3844/jcssp.2008.625.630

Harrow, J., A. Frankish, J.M. Gonzalez, E. Tapanari and

M. Diekhans et al., 2012. Gencode: The reference

human genome annotation for the encode project.

Genome Res., 22: 1760-1774.

 DOI: 10.1101/gr.135350.111

Huang, X. and A. Madan, 1999. Cap3: A DNA sequence

assembly program. Genome Res., 9: 868-877.

 DOI: 10.1101/gr.9.9.868

Khuri, S., 2008. A bioinformatics track in computer

science. ACM SIGCSE Bull., 40: 508-512.

 DOI: 10.1145/1352322.1352305

Kocarnik, J.M., S.L. Park, J. Han, L. Dumitrescu and I.

Cheng et al., 2015. Pleiotropic and sex-specific

effects of cancer was SNPS on melanoma risk in the

population architecture using genomics and

epidemiology (page) study. PloS One, 10:

e0120491-e0120491.

 DOI: 10.1371/journal.pone.0120491

Kwok, P.Y., Q. Deng, H. Zakeri, S.L. Taylor and D.A.

Nickerson, 1996. Increasing the information content

of STS-based genome maps: Identifying

polymorphisms in mapped STSS. Genomics, 31:

123-126. DOI: 10.1006/geno.1996.0019

Li, W.H. and L.A. Sadler, 1991. Low nucleotide

diversity in man. Genetics, 129: 513-523.

Geraldo Francisco Donegá Zafalon et al. / Journal of Computer Science 2018, 14 (11): 1465.1474
DOI: 10.3844/jcssp.2018.1465.1474

1474

Liu, L., Y. Li, S. Li, N. Hu and Y. He et al., 2012.

Comparison of next generation sequencing systems.

BioMed Res. Int., 2012: 251364-251364.

 DOI: 10.1155/2012/251364
Margulies, M., M. Egholm, W.E. Altman, S. Attiya and

J.S. Bader et al., 2005. Genome sequencing in
microfabricated high-density picolitrereactors.
Nature, 437: 376-380. DOI: 10.1038/nature04774

Marucci, E.A., G.F. Zafalon, J.C. Momente, L.A. Neves
and C.R. Valêncio et al., 2014.An efficient parallel
algorithm for multiple sequence similarities
calculation using a low complexity method. BioMed
Res. Int., 2014: 563016-563016.

 DOI: 10.1155/2014/563016
Okur, S. and D. Dig, 2012. How do developers use

parallel libraries? Proceedings of the ACM
SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, Nov. 11-16,
ACM, Cary, North Carolina, pp: 54-54.

 DOI: 10.1145/2393596.2393660
Rajendrakumar, P., 2015. Molecular Marker

Development Using Bioinformatic Tools. In:
Sorghum Molecular Breeding, Madhusudhana, R.,
P. Rajendrakumar and J. Patil (Eds.), Springer,
pp: 179-195.

Rallón, N.I., S. Naggie, J.M. Benito, J. Medrano and C.
Restrepo et al., 2010. Association of a single
nucleotide polymorphism near the interleukin-28b
gene with response to hepatitis c therapy in
HIV/hepatitis c virus-coinfectedpatients. Aids, 24:
F23-F29. DOI: 10.1097/QAD.0b013e3283391d6d

Rengasamy, V. and K. Madduri, 2015. Engineering a high-
performance snp detection pipeline. Technical Report.

Rengasamy, V. and K. Madduri, 2016. Sprite: A fast
parallel SNP detection pipeline. Proceedings of the
31st International Conference, ISC High
Performance, Jun. 19-23, Springer, Frankfurt,
Germany, pp: 159-177.

 DOI: 10.1007/978-3-319-41321-1
Sachidanandam, R., D. Weissman, S.C. Schmidt, J.M.

Kakol and L.D. Stein et al., 2001. A map of human
genome sequence variation containing 1.42 million
single nucleotide polymorphisms. Nature, 409:
928-933. DOI: 10.1038/35057149

Sanger, F. and A.R. Coulson, 1975. A rapid method for

determining sequences in DNA by primed synthesis

with DNA polymerase. J. Molecular Biol., 94:

441IN19447-446IN20448.

 DOI: 10.1016/0022-2836(75)90213-2

Savage, D., J. Batley, T. Erwin, E. Logan and C.G.

Love et al., 2005. SNP server: A real-time SNP

discovery tool. Nucleic Acids Res., 33: W493-W495.

DOI: 10.1093/nar/gki462

Smith, T.F. and M.S. Waterman, 1981. Identification of

common molecular subsequences. J. Molecular Biol.,

147: 195-197. DOI: 10.1016/0022-2836(81)90087-5

Trick, M., Y. Long, J. Meng and I. Bancroft, 2009.

Single Nucleotide Polymorphism (SNP) discovery

in the polyploid brassica napus using solexa

transcriptome sequencing. Plant Biotechnol. J., 7:

334-346. DOI: 10.1111/j.1467-7652.2008.00396.x

Usher, C.L., R.E. Handsaker, T. Esko, M.A. Tuke and

M.N. Weedon et al., 2015. Structural forms of the

human amylase locus and their relationships to

SNPS, haplotypes and obesity. Nature Genet., 47:

921-925. DOI: 10.1038/ng.3340

Wang, L., Y. Wang and Q. Chang, 2016. Feature

selection methods for big data bioinformatics: A

survey from the search perspective. Methods, 111:

21-31. DOI: 10.1016/j.ymeth.2016.08.014

Westrop, S., A. Cocker, A. Boasso, A. Sullivan and M.

Nelson et al., 2017. Enrichment of HLA types and

SNP associated with non-progression in a strictly

defined cohort of hiv-1 controllers. Frontiers

Immunol., 8: 746-746.

 DOI: 10.3389/fimmu.2017.00746

Zafalon, G., J. Visotaky, A. Amorim, C. Valêncio and L.

Neves et al., 2015. A parallel approach of coffee

objective function to multiple sequence alignment. J.

Phys. DOI: 10.1088/1742-6596/633/1/012084

Zhang, J., D.A. Wheeler, I. Yakub, S. Wei and R.

Sood et al., 2005. SNP detector: A software tool for

sensitive and accurate SNP detection. PLoS

Comput. Biol., 1: e53-e53.

 DOI: 10.1371/journal.pcbi.0010053

