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Abstract: Pattern recognition is an important field in Bioinformatics and a 

well-known task is the search for Single Nucleotide Polymorphism (SNP). 

It is possible to search for a known SNP position and analyze it using 

patterns of DNA bases, called masks. Nonetheless, this process becomes 

computationally expensive as the amount of available genomic data 

increases. Thus, in this study, we have developed a parallelization scheme, 

based on multithread programming, to SNP analysis using masks. In our 

tests, we noticed that the proposed scheme improved the execution time in 

98.05 times when compared with the sequential approach. 
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Introduction 

Due to the huge amount of genomic data available, 

performing manual biological analysis becomes 

unfeasible. Thus, it is necessary the development of 

computational methods to support biologists in their 

analysis and inferences. This fact has originated 

Bioinformatics (Amorim et al., 2016). 

Bioinformatics is a Computer Science branch that aims 

to provide computational solutions to biological problems, 

as sequence alignment (Marucci et al., 2014; Zafalon et al., 

2015) and pattern recognition (Hemalatha and 

Vivekanandan, 2008; Khuri, 2008). Concerning the 

pattern recognition problems, the search problem is one of 

the most important (Wang et al., 2016) and a well-known 

one is the search and analysis for Single Nucleotide 

Polymorphism (SNP) (Trick et al., 2009). The detection of 

a SNP can be performed through the amplification of the 

target sequence and its identification using hybridization 

probe (Real-Time PCR) or through DNA sequencing 

using capillary electrophoresis (Sanger Sequencing) 

(Sanger and Coulson, 1975) or Next Generation 

Sequencing (NGS) technology (Margulies et al., 2005). 

After that, the analysis of the SNPs is performed 

manually through chromatogram of the sequence. The 

visualization a chromatogram is assisted by software, as 

can be seen in Fig. 1. 
 

 
 
Fig. 1: Chromatogram view of a DNA sequence 
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This is an empirical process, since SNP identification 
is performed through the search of known patterns of 
DNA bases, here defined as masks. When a mask is 
found on a DNA sequence, the subsequent base is a SNP 
position. The problem is to analyze a large number of 
sequences and multiple masks manually. In this way, 
human error tends to be maximized. Thus, the 
development of computational methods to assist SNP 
analysis is essential. In other recent work, we have 
developed a method to perform search and analysis of 
known SNP positions. Nonetheless, this process becomes 
time expensive when the amount of data increases, 
because many iterations are required to perform the task. 

Thus, in this study we propose a parallelization 
scheme for SNP analysis, using multithread 
programming, in order to improve its performance in the 
process of SNP verification. 

This way, this work is organized as follows: In 
section SNP Concepts, we define SNP and show its 
relevance indifferent areas of biology. In section 
Materials and Methods, it can be seen the materials and 
methods used to develop this work. In section Tests and 
Results we show the tests performed with the tool and 
the obtained results. Finally, in section Conclusion, the 
conclusions are presented. 

SNP Concepts 

A SNP is defined as a single base change in a DNA 
sequence. The DNA sequence is a linear combination 
off our nucleotides: Adenine (A), Thymine (T), 
Cytosine (C) or Guanine (G). When comparing two 
DNA sequences, position by position, a SNP is defined 
as a presence of different nucleotides in the same 
position (Trick et al., 2009; Sachidanandam et al., 
2001), as can be seen in Fig. 2. However, to be 
considered as a SNP position, this occurrence must be 
at least in 1% of analyzed population. Otherwise, this 
occurrence is defined as a mutation position (Rallón et al., 
2010; Li and Sadler, 1991). 

When a SNP position is detected, the subsequence 
immediately before of this position is observed. This 
subsequence can be classified as a pattern which always 
precedes a SNP occurrence. This specific pattern is 
called mask. Some specific ones are previously defined 
by research interests. 
 

 
 
Fig. 2: SNP position 

Moreover, the real importance of SNPs is their 
occurrence in large amount in the human genome. On 
average, every 1000 to 2000 bases throughout human 
DNA, approximately one nucleotide position differs 
between two genomes (Li and Sadler, 1991; Kwok et al., 
1996). Considering that there are 3.2 billion nucleotides 
in the human genome, a complete genome can reach the 
magnitude of 1.6 million to 3.2 million SNPs. 

In case of humans, many SNPs do not have any 
known effect on health or evolution yet. Nevertheless, 
some of these genetic variations are important in the 
study of human health. It has been shown that some 
SNPs may contribute to the individual predisposition to 
the response to certain drugs, in addition to susceptibility 
to environmental factors such as toxins and the risk of 
developing diseases (Harrow et al., 2012). 

Many studies have focused their efforts on the SNPs 
research, as well as the search for their relationship 
with different types of diseases and their respective 
treatments, such as HIV (AIDS) (Westrop et al., 
2017), HCV (Hepatitis C) (Elsedawy et al., 2016), 
obesity (Usher et al., 2015) and cancer (Kocarnik et al., 
2015). However, it is important the aid of 
computational methods to perform these studies more 
efficiently, which simplifies the analysis and reduces 
the time to obtain the results. 

There are methods that have different approaches to 
perform SNP detection, such as SNP detector (Zhang et al., 
2005) and SNP Server (Savage et al., 2005). SNP detector 
uses sequence segments for nucleotide base calls and 
determines the quality of the files that were sequenced and 
in a later stage, it performs the alignment of these 
sequences using the Smith-Waterman algorithm (Smith 
and Waterman, 1981). Finally, it compares the alignment 
produced with a base alignment looking for positions of 
divergence, in this case, SNPs. However, SNP detector 
uses an external method, Phred 
(http://www.phrap.org/consed/consed.html\#howToGet), 
which has a license you must pay for use. 

The SNP Server (Savage et al., 2005) is a real-time 

implementation of the auto SNP method (Barker et al., 

2003), which implies the use of a web server to operate 

it. It is a web interface and a wrapper to three other 

programs: BLAST (Altschul et al., 1990; 

Rajendrakumar, 2015), CAP3 (Huang and Madan, 1999) 

and auto SNP. These ones are a SNP discovery pipeline 

as can be seen in Fig. 3. The pipeline accepts an input 

sequence and compares it to a database of previously 

specified nucleotide sequences, using BLAST algorithm 

to identify related sequences. The obtained sequences 

can be selected to an assembly (grouping) process using 

CAP3 and after performing the SNP discovery using 

auto SNP. The users must use input sequences in the 

FASTA format to proceed the assembly process, or 

sequences in the ACE format to skip this step. 
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Fig. 3: An overview of components of the real-time auto SNP web server, the SNP Server (Savage et al., 2005) 

 
There are also approaches that use parallel computing 

in the SNP analysis. As an example, the method 
ParDMETMiner (Agapito et al., 2016), which is based 
on a multithreaded Master-Slave architecture, where the 
Master is responsible for partitioning and distributing the 
data to each slave and collecting the results. The method 
is a parallelization of the DMET-Miner tool (Agapito et al., 
2015), developed by Affymetrix, which allows the 
investigation of 1936 different nucleotides. These are 
candidates for possible SNPs in 255 genes that are 
related to the absorption, distribution, metabolism and 
excretion of the drugs. 

In a similar way, SPRITE (Rengasamy and Madduri, 
2016) is an open-source method that provides a parallel 
implementation of the genomic data analysis workflow 
for detection of SNPs. This software is divided into 
three parts: PRUNE for reading and sequence 
alignment, SAMPA for intermediate file processing and 
PARSNIP for parallel SNP lookup queries. In the 
parallelization of PARSNIP, the Message Passing 
Interface (MPI) library is used, dividing the number of 
sequences to be analyzed into the number of existing 
threads (Rengasamy and Madduri, 2015). 

 
 
Fig. 4: Representation of a SNP search with mask 

 
The methods previously presented do not use the 

mask strategy for SNP identification and analysis. Thus, 
our parallel method is capable to analyze multiple SNPs, 
unlike the other methods. It is important to stand out that 
our method does not search for unknown SNP positions, 
but it analyzes known SNP positions instead. 

An efficient way to perform the analysis for SNPs 
is through masks, as shown in Fig. 4. This strategy 
consists in a definition of a subsequence to be found 
into target sequences and, after finding it, a 
subsequent position analysis will be performed where 
the subsequence was found. 

The enhancement of SNP search and analysis 
algorithms is desirable, considering the development 
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and application of new sequencing technologies. Next 
Generation Sequencing produces huge amount of 
genomic data due its parallel sequencing approach, 
which generates hundreds of thousands of biological 
sequences (Liu et al., 2012). Thus, sequential 
approaches to SNP analysisbe come unfeasible due to 
the increasing of genomic data. This strategy can be 
performed in parallel given the nondependency of the 
data structures involved in the operation. Thus, it is not 
necessary blocking operations to access the sequences 
in a shared way. 

Materials and Methods 

SNP Verifier Method 

The SNP Verifier method, which we have 
implemented in other recent work, allows multi-mask 
sequential analysis of known SNPs. It receives ab1 files 
as input data and convert them to XML files for analysis 

by means of tags, since the converted file provides the 
primary sequence, secondary sequence, sequencing 
quality and the peak values of the primary and secondary 
sequences. After the conversion process, the SNP 
identification and analysis are performed, using the 
masks previously inserted. When a SNP position is 
found, the occurrence of homozygous or heterozygous is 
evaluated, which will be better described in the 
subsection Parallelization of SNP position analysis and 
the result is finally stored. 

As can be seen in the Fig. 5, the masks and a name 
for the SNP to be analyzed are given to the method. In 
the Fig. 6, we can observe the obtained results using the 
multi-mask identification and analysis. Nonetheless, as 
the number of sequences and masks to be analyzed 
grows, the sequential approach becomes unfeasible. 
Thus, it is necessary the use of some parallel approach to 
reduce the computational cost of the method, in order to 
reduce its execution time. 

 

 
 

Fig. 5: Insertion of masks on SNP verifier tool 
 

 
 

Fig. 6: Results table on SNP verifier tool 
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Parallelization of the Masks Search 

With our proposed parallel approach, we are able 
to verify many masks simultaneously. Thus, it allows 
performing multiple analysis simultaneously. The 
parallelization of this stage consists of assigning to 
each mask a different thread, so given N masks, it is 
assigned to them  N threads. Finally, considering that 

a processor has K cores, it is called a 
N

K  
threads per 

core, as can be seen in Fig. 7. As each task is 
terminated, the available core performs the next 
thread assigned to that core. This is done until all 
threads assigned to  that core are performed. This 
way, the simultaneous  analysis  by  means of masks 
is efficiently parallelized without impairing the 
analysis operation. 

To implement our multithreaded method, we have 

used the C# language, since it is the same language 

used to develop the SNP Verifier method. The used 

library was System.Threading.Task, which contains 

the Parallel class that supports regions and loops that 

are executed in parallel (Okur and Dig, 2012). 

Parallelization of SNP Position Analysis 

After dividing the masks into the processor cores, 

we have the stage of analyzing the SNP positions. 

This analysis can be performed by extracting from the 

input file the values of the primary and secondary 

peaks of the sequences. 

In order to differentiate a homozygous SNP (refers 

to an individual having identical alleles for a single 

trait) from a heterozygous (refers to an individual 

having two different alleles for a specific trait), the 

primary and secondary peak values from the ab1 files, 

converted to XML, are evaluated. When the secondary 

peak has a value greater than or equal to 20% of the 

primary peak value, the SNP is considered to be 

heterozygous, as can be seen in the Fig. 8. If the value 

of the secondary peak value is less than 20% of the 

value of the primary peak, this SNP is classified as 

homozygous. 

The parameter of 20% was based on that used by 

SNP detector (Zhang et al., 2005), since it is efficient 

in the detection of homozygous and heterozygous by 

attenuating the occurrence of false positives. 

However, it is important to notice that this value is a 

user-defined parameter. 

To model this process in our parallel approach, we 

defined the steps that must be performed, as we can 

see in Fig. 9. 

In this stage, we divide each SNP position found 

for a different thread. Thus, each thread is scheduled 

to a processor core, in order to parallelize the SNP 

analysis. Each thread, firstly, find the SNP position 

through its respective mask. Thus, the SNP position is 

analyzed based on its peak values, to check the 

homozygous or heterozygous occurrence. After this 

process, it is verified if the sequence under analysis 

has been completely investigated. If the end of the 

sequence is found, the process ends. Otherwise, the 

analysis of other positions of the same SNP will continue. 

It is important to notice that the higher the number of 

cores in the processor, the lower is the number of threads 

per core, so the analysis becomes faster. 

 

 
 
Fig. 7: Representation of our parallel SNP search with masks 

 

 

 
Fig. 8: Secondary peak value is greater than 20% of the 

primary peak value, thus it is heterozygote 
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Fig. 9: Flowchart describing the analysis stage 
 

Tests and Results 

Test Platform 

The tests were performed using a computer with 
Intel(R) Core (TM) i7-6700HQ CPU @ 2.60 GHz 
processor, with 32GB of RAM memory and Windows10 
Home operating system. 

Test Cases 

The tests were run for the sequential SNP Verifier 

method and our parallel approach, in order to observe 

the obtained improvement. This method cannot be 

compared with the other methods presented in section 

SNP Concepts, since they perform detection of 

unknown SNP positions, while our method performs 

the analysis of known SNP positions, using the mask 

search approach. Hence, any comparison with other 

methods that do not use the mask approach is 

inappropriate. To the extent of our knowledge, there is 

not any other method similar to ours. Thus, the tests 

performed have the following structure: 
 

• Test 1: 5 sequences 

• Test 2: 10 sequences 

• Test 3: 15 sequences 

• Test 4: 20 sequences 

• Test 5: 25 sequences 

• Test 6: 30 sequences 

Moreover, we used five different masks to perform 
the tests: 
 
• AA 

• TT 

• GC 

• TA 

• CC 
 

The sequences, which were used to perform the 
tests, have the length between 380 and 390 nucleotides 
and they were provided by Genomic Studies 
Laboratory (LEGO) at São Paulo State University 
(Unesp). The masks were selected considering their 
biological significance, based on previous studies. 
Finally, we have executed six test sets four times each 
to ensure statistical robustness and fidelity in the 
results. Considering a test set, each execution of it we 
have called round, so we have round 1 (R1), round 2 
(R2), round 3 (R3) and round 4 (R4). Basically, the 
difference among the test sets is the number of 
sequences in each one, considering 5, 10, 15, 20, 25 
and 30 sequences, respectively. Finally, another 
relevant issue to be explained here concerns the mask 
length, where we have chosen all masks with length 
two. This decision was related to the length of the 
masks, because it implies directly in the processing time. 
As it is more common to find masks with small lengths 
than masks with high lengths, with this kind of test, the 

Thread 1 Thread N 

Each thread 

Search SNP 
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Finish 
Finish 

SNP found 
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End of the 
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algorithm can amplify the stress on the processors, 
where we can improve the performance measure. 

Results 

In the Table 1, we show the execution times of all 
rounds, in seconds, for sequential and parallel 
approaches. To show the statistical consistency of these 
results, in the Table 2 can be seen the execution time 
averages and standard deviations of executed tests. 
Moreover, still in the Table 2, we present the sequential 
and parallel standard deviation averages. 

It can be noticed in Table 1 the considerable 
difference between the obtained execution times for 
sequential and parallel approaches. Considering the 
execution time average of all test cases, both for 
sequential and parallel, we can verify that the parallel 
version wastes, on average, just 0.18% of the time of 
sequential one. From these results, it is possible to 
verify the huge performance improvement of the 
parallel approach for all test cases from 5 to 30 
nucleotide sequences. Another important consideration 
about the results is concerning the standard deviations 
presented in Table 2, where the standard deviations of 
parallel approach are lower than sequential one, which 
indicates higher robustness and regularity of the 
parallel one. When a comparative analysis is performed 
between the approaches, it can be noticed that the 
average of standard deviations is 0.0219 and 0.59, for 
parallel and sequential one, respectively. 

Still concerning the analysis of the execution time, it 
is important to show as the data volume increases the 
execution time presents a linear growth for both 

sequential and parallel approaches. This can be verified 
in the Fig. 10 and 11, respectively. 

 
Table 1: Sequential and parallel approach tests 

 N of seqs. R1 R2 R3 R4 

Sequential 5 55.39 54.06 54.15 53.89 

 10 136.70 134.50 135.30 134.30 

 15 199.39 199.07 198.67 198.74 

 20 365.10 363.90 363.40 363.80 

 25 406.10 407.30 407.17 406.38 

 30 563.57 562.05 562.57 563.34 

Parallel 5 0.20 0.22 0.21 0.21 

 10 0.28 0.30 0.31 0.31 

 15 0.36 0.39 0.39 0.41 

 20 0.45 0.52 0.50 0.49 

 25 0.51 0.59 0.60 0.58 

 30 0.61 0.68 0.70 0.68 

 
Table 2: Sequential and parallel approach statistics 

 N of seqs. Average Standard deviation 

Sequential 5 54.37  0.60 

 10 135.20  0.94 

 15 198.96  0.28 

 20  364.05  0.63 

 25  406.73  0.50 

 30  562.88  0.60 

Average   0.59 

Parallel 5  0.21  0.0069 

 10  0.30  0.0119 

 15  0.38  0.0161 

 20  0.49  0.0258 

 25  0.57  0.0352 

 30  0.67  0.0357 

Average    0.0219 

 

 
 

Fig. 10: Average execution times of sequential approach 
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Fig. 11: Average execution times of Parallel Approach 

 
In the Fig. 10, with the analysis of linear regression 

coefficient R2, we have obtained the Equation (1): 
 

100.64 65.19y x= −  (1) 

 
andR2 = 0.9776 for sequential approach. 

In the Fig. 11, with the same analysis of linear 
regression coefficient R2, we have obtained the 
Equation (2): 
 

0.0909 0.1242y x= +  (2) 

 

And R2 = 0.9992 for parallel one. The linear 

regression coefficient demonstrates how the proposed 

model fits to the linear model. As closer value 1 the 

coefficient is, the proposed model is more adequate to 

the ideal one. Thus, we can verify that the parallel 

approach fits better to the linear model than the 

sequential one, because its coefficient reaches the value 

of 0.9992, while the sequential is 0.9776. Thus, it is 

possible to notice the stability of the parallel approach 

with this linear growth. 

Finally, another issue of performance analysis of 

parallel programs is the speedup (Eager et al., 1989). 

Speedup is defined as the portion of time to execute a 

program with one processor (sequential execution) to 

time to execute when � processors are available. Thus, 

the speedup is considered as Equation 3: 

 

( )
( )

( )

1T
S p

T p
=  (3) 

Where: 
T(1): Execution time with one processor 
T(p): Execution time with p processors 
 

In our tests, we have used five processing cores. As 

we considered five masks and their division into five 

threads, we have allocated five processing cores (Fig. 7). 

Thus, the average speedup obtained is: 
 

( )

54.37 135.20 198.96

0.21 0.30 0.38
5 / 6 98.05

364.05 406.73 562.88

0.49 0.57 0.67

S

 
+ + 

 = =
 + + + 
 

 (4) 

 

Therefore, it is possible to notice that, on the average, 

the parallel approach improved 98.05 times in relation to 

the sequential one. 

Conclusion 

In this study, we have proposed a parallelization 

scheme to the SNP Verifier method using multithread 

programming. We can conclude that our work improved 

the performance of the analysis of known SNP positions, 

in terms of execution time. This fact allows the users to 

perform SNP analysis in a feasible time, even with huge 

amount of genomic data. 
With the tests, we can observe great performance 

improvement of our parallel method, for all test cases 
from 5 to 30 nucleotides. The speedup shows that the 
performance of our multithreaded approach is 98.05 
times faster than the sequential one. Moreover, it can be 
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seen that our multithreaded method is more statistically 
robust because the calculated average standard deviation 
is considerably smaller than the value obtained by the 
sequential approach. 
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