

© 2018 Levi Costa Mota, Edward David Moreno, Admilson Lima Ribeiro and Ricardo J.P.B. Salgueiro. This open access

article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

A Comparative Analysis of Network Management Protocols in

IoT Applications

1
Levi Costa Mota,

2
Edward David Moreno,

2
Admilson Lima Ribeiro and

2
Ricardo J.P.B. Salgueiro

1Federal Institute of Sergipe, Aracaju, Sergipe, Brazil
2Federal University of Sergipe, Aracaju, Sergipe, Brazil

Article history

Received: 5-08-2018
Revised: 8-09-2018
Accepted: 22-09-2018

Corresponding Author:
Levi Costa Mota,
Federal Institute of Sergipe,
Aracaju, Sergipe, Brazil
Email: levi.mota@gmail.com

Abstract: The complexity and growth of new smart objects networks are

generating a new demand for the maintenance of these devices, with the

need to remotely monitor and control these devices without consuming

significant resources. Analyzing the memory and electric power

consumption of the protocols used in the management of these networks is

a way to highlight the best protocol alternatives for this type of application.

This study develops an experimental study, analyzing the behavior of

SNMP, Zabbix and MQTT protocols, in terms of memory and electric

power consumption, when it is used in an Internet of Things application,

with a sensor device implemented on the ESP8266. The experiment is

performed by monitoring devices in an environment with some Motes and a

Zabbix server. The study analyzes the ROM and RAM memories occupied

by the firmware code, in addition to the electric power consumption of each

protocol. At the end, the study confirms that the three protocols analyzed are

supported by the platform used. The research shows that the SNMP is the

protocol that consumes the least amount of device memory, that there is no

significant difference in the energy consumption between the protocols and

that the MQTT protocol is suitable to be used in this environment and it also

enables a significant reduction in energy consumption.

Keywords: Internet of Things, IoT, Management Protocol, SNMP, Zabbix,

MQTT

Introduction

The Networked Embedded Systems (NES) are

increasingly present in the current world, whether

through Wireless Sensor Networks (WSN), or because of

new smart objects that, by being interconnected and then

connected to the worldwide network, have created the

new concept of the Internet of Things (IoT).

It is estimated that, currently, each person has at least

two objects connected to the Internet and that by 2020

this number may reach 20.8 billion worldwide. These

smart objects are sensor devices with processing

limitations, network range, battery capacity and amount of

memory. They are generally used in applications with

little or no human interaction and their networks are

usually of large-scale, on the order of thousands of nodes.

In order to keep the NESs working properly, it is

essential to apply management techniques that allow

monitoring the functioning of the elements or send

commands to change their behavior (Sheng et al., 2015a).

Numerous researches have been carried out to
address the management of resource-limited device
networks, both in a broader context of management
(Sheng et al., 2015b) and specifically in monitoring the
elements of these networks (Paventhan et al., 2013).
However, there is no study that compares the protocols
that can be used for network management, analyzing the
memory and electric power consumption of the agents,
in order to guarantee the applicability of these protocols
in the management of devices with few resources.
The network management is usually performed by

including management agents in the network elements.
The agent is a software component that implements a
management protocol and has the ability to interact with
a server to provide the required management
functionality. This component adds new capabilities to
the device, but it also adds the resource consumption of
the device that will be managed.
Given this scenario, there is a necessity to get to

know the real impact of the network management

protocols applied to the Internet of Things environment,

Levi Costa Mota et al. / Journal of Computer Science 2018, 14 (9): 1238.1246

DOI: 10.3844/jcssp.2018.1238.1246

1239

taking the unique characteristics of this environment. It

is necessary to know what resource consumption is

added to the device after the inclusion of the

management agent that implements the communication

protocol with the management server.

This study analyzes the SNMP, Zabbix and MQTT

network management protocols, with the objective of

assessing the memory consumption and electric power

consumption of the management agent, in the context of

the IoT applications, in embedded systems implemented

with the ESP8266.

The article is organized in 4 sections. Section 1

presents the introduction, the main related studies, the

fundamental concepts related to management of NES

and the protocols used in this work. Section 2 deals with

the materials and methods, detailing what has been done

for its development. Section 3 presents the results

obtained in the tests performed, while section 4 offers

the conclusions and suggestions for future studies.

Related Works

While performing the bibliographic review, no

studies dealing specifically with the analysis and

comparison of network management protocols of

embedded systems were found. However, the following

studies were found in the area related to the management

and monitoring of NES and the Internet of things,

including the analysis of the protocols used and

suggested by the authors.

In “Design and Implementation of Embedded SNMP

Network Management Manager in Web-Based Mode”

(Wu et al., 2008), the authors present an architecture of

network management of embedded systems based on

SNMP and in Web mode in Linux. However, metric

analysis are not done in order to assess the performance

of the protocol in the proposed environment, nor are

other protocols analyzed.
Mukhtar et al. (2008), in “LNMP- Management

Architecture for IPv6 Based Low-Power Wireless
Personal Area Networks (6LoWPAN)”, proposes the
LoWPAN Network Management Protocol (LNMP) as
the management architecture for WSN based on
6LoWPAN. It is suggested the use of a gateway to
separate the IPv6 and 6LoWPAN networks. The
analysis performed by the authors is about the latency
of the requests regarding of the number of jumps
performed by the packages to reach the destination.
They do not assess the memory consumption and do
not compare with other protocols.
Kuryla and Schönwälder (2011) carried out a study to

see if the SNMP protocol could be applied to devices

with limited resources. They implemented a SNMP

agent on the Contiki operating system and analyzed its

behavior on an 8-bit Raven AVR platform. The analysis

was performed in relation to the ROM and RAM used by

the agent. Kuryla’s method of analysis was the same

method chosen for this work. However, Kuyla analyzed

only the SNMP, not comparing it with other protocols.
The authors of “Management of Resource Constrained

Devices in the Internet of Things” (Sehgal et al., 2012)
have made an assessment of two management protocols
applied to the internet of things environment. The authors
assessed the SNMP protocol for monitoring and the
NETCONF protocol applied to the device configuration.
The metrics used are also based on ROM and RAM
consumption. However, the authors only analyze the
management aspects of a single protocol.
“Design and Implementation of a WiFi Sensor

Device Management System” is a project proposal for a
management system for sensor devices based on 802.11
networks (Cai et al., 2014). The authors proposed a
sensor device management model based on light
protocols such as the CoAP. An evaluation of the agent's
memory usage is performed by assessing the firmware
layers separately. The package sizes for each message
type are also analyzed.
As shown above, all the studies evaluate only one

protocol and one aspect of resource consumption. Some
studies do not have an environment that is true to the
current IoT scenario, or they do not use devices with
limited resources. This study presents an analysis of
three protocols applied to management in IoT, under the
memory and power consumption aspects.

Management of Networked Embedded Systems

Historically, the computer networks have been
marked by complexity, diversity and growth. These
characteristics make it difficult to maintain these
environments. In addition, as computer systems networks
are becoming critical to modern business environments,
monitoring and ensuring their reliability in performance is

absolutely necessary. A way for keeping the computer
networks running smoothly is to use solutions that allow the
management of elements of those networks.
NES also have difficulties that are similar to those of

common networks. In addition, the smart devices, which
often have several resource limitations, add even more

complexity to the task of managing those networks. In
order to maintain these sensor devices monitoring
performance or sending commands to the sensor node,
for instance, it is essential that a communication protocol
that is efficient and does not consume considerable
resources is used (Sheng et al., 2015a).
Models and protocols have been developed for

network management and the main exponent of these
technologies is the SNMP protocol. But some other
protocols can be availed for the same purpose.

SNMP Protocol

The Simple Network Management Protocol (SNMP)
is a network management and monitoring protocol that
runs on the UDP protocol (Paventhan et al., 2013). Its
last specification is the RFC-1157. This is an application

Levi Costa Mota et al. / Journal of Computer Science 2018, 14 (9): 1238.1246

DOI: 10.3844/jcssp.2018.1238.1246

1240

layer protocol of the TCP/IP stack. Its architectural
model has a collection of network management stations
and network elements, which are called managed
devices. Each managed device contains asoftware called
“agent”, which is responsible for handling the manager's
requests. It is possible to affirm that, currently, the
SNMP is the standard protocol for managing TCP/IP
networks (Salvador and Granville, 2008).

Zabbix Protocol

Zabbix is a modern, open source and multiplatform
network management tool, with a distributed monitoring
system capable of monitoring the availability and
performance of a network infrastructure, as well as its
applications.
In addition to the tool, Zabbix developers have also

defined a protocol for communicating with equipment
agents that do not support traditional protocols such as
SNMP. The Zabbix protocol is extremely simple and
works over TCP connections. The Zabbix agent, which
implements the management protocol, is deployed to a
monitoring target and then provides data for the local
resources.

MQTT Protocol

The Message Queue Telemetry Transport (MQTT) is a

messaging protocol introduced by Andy Stanford-Clark of

IBM and Arlen Nipper of Arcom in 1999, and it was

standardized in 2013 (Al-Fuqaha et al., 2015). Its primary

purpose is to connect embedded devices to applications and

middlewares. It works over the TCP protocol and uses the

default publish/subscribe, in which clients do not have to

request updates impulsively, thus reducing the depletion of

the nodes resources (Katsikeas et al., 2017).
The MQTT protocol is not advertised as a network

management protocol, but after a detailed analysis it is
clear that its use in this type of application is perfectly
possible, since telemetry technology allows things to be
measured or monitored remotely. The MQTT is suitable
for use in situations in which the network has low
bandwidth or high latency and with devices that may
have limited processing and memory capacity.

Materials and Methods

The environment used to perform the experiments
and collect the data to be used in the assessment is
shown in Fig. 1 and its operation is described below.
The Administrator uses any network station that has a

Web browser. By using the browser, it is possible to access

the Zabbix Web Interface. In this same virtual machine, the

Zabbix server is also running, which accesses the Motes,

made on the ESP8266, through the management protocols.

In the Motes, the software component that responds to the

consultations is the management agent. This is sufficient

to meet the SNMP and Zabbix protocols but is not

sufficient for the operation of the MQTT protocol.

Z
ab

b
ix

 a
p
p
lia

n
c
e

V
M

Zabbix Server

publish

Zabbix Web
Interface

Control
station

(browser)

HTTPManager

Broker
(mosquitto)

mqttwarn

publish

Zabbix trap

subscribe
MQTT

Protocol

Mote
(NodeMCU)

SNMP
Agent

Mote
(NodeMCU)

Zabbix
Agent

Mote
(NodeMCU)

MQTT
Agent

Manager

Device

Managed

Devices

Zabbix

Protocol

SNMP

Protocol

Fig. 1: Experimental environment components diagram

Manager Device

The manager device is an equipment in which the

management server runs. In order to work as a manager

device, Zabbix was installed and configured from its

distribution in the form of an appliance-type virtual

machine. It has facilitated the server and management

interface operation process.

Managed Device

In order to play the role of the managed device a

Mote was built on the ESP8266. The ESP8266 is a

microcontroller that has been standing out as a low-cost

alternative for the implementation of smart objects. The

characteristics of this new System On a Chip (SOC), such

as a 32-bit processor, RAM of about 100KB and 512K

Flash memory, have been decisive for its use in several

scientific researches carried out in the last two years

(Kodali and Soratkal, 2016; Marques and Pitarma, 2016).

A comparative analysis was also made between

ESP8266 and existing devices such as TMote Sky, AVR

Raven, WisMote and Arduino BT, as can be seen in

Table 1. In this comparison it is possible to observe the

advantage of the ESP8266 in the “Processor”, “RAM”,

“ROM” and “Wireless network standards”.

A Mote is a device that brings with it some sensors

and a power source. As the ESP8266 does not have these

elements, it was necessary to build a device that had its

own power and sensors in order to obtain information

from the environment, thus simulating a Smart Object.

Levi Costa Mota et al. / Journal of Computer Science 2018, 14 (9): 1238.1246

DOI: 10.3844/jcssp.2018.1238.1246

1241

Fig. 2: Schematic diagram of the implemented device

Table 1: Use of ROM and RAM by the agents (in bytes)

Device Processor RAM (KB) ROM (KB) Network

ESP8266 Tensilica L106 32-bits RISC 32 + 80 512 Flash 802.11 b/g/n/e/i
Telos/ TMote Texas Instruments 10 48 802.15.4
Sky/ MTM-CM5000 MSP430 F161116-bits RISC
AVR Raven Atmel ATmega3290P + 16 4 802.15.4
 ATmega1284P 8-bits RISC
WiSMote Texas Instruments 16 128 802.15.4
 MSP430 5 series 16-bits
Arduino BT Atmel ATmega328 2 32 Flash Bluetooth
 8-bits RISC

In addition, it has been added to the device the ability to

provide performance and failure measures, enabling a

useful and effective remote management.
The schematic diagram of the device circuit is shown

in Fig. 2. It uses as base a NodeMCU board, which
includes the ESP8266. The circuit includes a DHT22 as
a temperature and humidity sensor for the environment, a
DS18B20 as the temperature sensor for the chip and to
complete, a power supply meter made with a resistive
tension divider and an operational amplifier configured
as a tension follower.

Memory Consumption Metric

Considering that memory is one of the most limited

resources of the devices that are used in IoT, the

amount of RAM and ROM occupied by the agent are

important parameters to be evaluated (Kuryla and

Schönwälder, 2011).

The firmware stored on the device includes the code

of the program that performs the function for which the

device was developed, but also includes the agent code

that allows its management remotely. The firmware

code, including the agent, is recorded on a Flash-type

ROM and this is loaded into RAM when it is run. The

RAM stores, in addition to the code that will be

executed, the constant and variable data used by the

program. Thus, the less space of code and memory is

occupied by the agent, the more room will be left for the

main firmware code.

Power Consumption Metric

Power consumption is a great concern when it comes

to embedded devices applied to IoT. Several researches

focus on this aspect with the aim of saving the energy

consumed by these restrict devices (Atzori et al., 2010;

Feng et al., 2011; Dagale et al., 2015).

The concern regarding the power consumption is

particularly important when the solution applies

battery-powered devices running on field, without the

use of the power grid. In these cases, the lower the

power consumption, the longer the device's autonomy

(Wang et al., 2006; Moui and Desprats, 2011).

Experiment Scenario

In the experiment scenario, the sensor device is
managed and monitored by a management server, which
collects the failure and performance data every ten seconds.
For convenience, every time the experiment is run, it

lasts a total period of five minutes. During this period,
one hundred and fifty requests are made from the server
to the agent. As the server sends requests every ten
seconds and at that time five different fault and

DS1
DS18B20

DS18B20

VDD

DQ

GND

3

2

1

DHT1

DHT22

VDD

DATA

NULL

1

GND

2

3

4

R3

4.7kΩ

R4

4.7kΩ

3V3

GND

TX

RX

D8

D7

D6

D5

GND

3V3

D4

D3

D2

D1

D0

Vin

GND

RST

EN

3V3

GND

CLK

SD0

CMD

SD1

SD2

SD3

RSV

RSV

A0

V1.0

NodeMCU

VCC1

R1

4.70kΩ

R2

4.70kΩ

U2

LM358

2

1

3

2

8

1

2

1

4

2

1

2

1

1

2

Levi Costa Mota et al. / Journal of Computer Science 2018, 14 (9): 1238.1246

DOI: 10.3844/jcssp.2018.1238.1246

1242

performance information is requested, in the period of
each test thirty bursts of five requisitions are obtained.
This time is sufficient to confirm the dynamic memory
consumption of the agents, whose stabilization already
happens around three minutes of execution. In addition,
during this time, it is possible to perform 16,100 samples
of energy consumption of the device, enough to observe
the linearity in the evolution of this consumption.

Results and Discussion

General Memory Consumption

The results of the ROM and static RAM collections
of the three agents are presented in Table 2. As the
collection was made by layers, it can be observed that
the SDK layer occupies 221,995 bytes of ROM, which
corresponds to 42.3% of the total and 31,568 bytes of
RAM, corresponding to 38.5% of the total. The sum of the
ROM of the other layers is 7.7%, 9.5% and 12.3% of the
ROM occupied by the SDK in the SNMP, Zabbix and
MQTT protocols, respectively. For the RAM, this
comparison is 5.6%, 4.8% and 6.6%, in the same protocols.

ROM

The results of the ROM occupation by the agents are

presented in Fig. 3. The lowest occupancy of ROM was

that of the SNMP agent, followed by the Zabbix agent and,

with the greatest occupation, the MQTT agent. It is possible

to observe that the difference occurred due to the transport

protocol used by the agents and due to the agent's own

code. Regarding the transport protocol, the SNMP uses

UDP messages and this is an advantage in terms of ROM

when compared to Zabbix and MQTT, which uses TCP

connections. It is worth remembering that the TCP protocol

is connection-oriented (reliable), while the UDP does not

have this concern. In addition, the UDP simplicity also

results in much less code in the management agent.

Static RAM

The results of the occupation of static RAM are

shown in Fig. 4. Based on total the occupied RAM, the

Zabbix protocol performed better, occupying 248 bytes

less than the SNMP firmware and 572 bytes less than the

MQTT firmware. By analyzing the layers individually, it

is clear the responsible for this was the Zabbix agent. The

largest occupation of RAM was from the MQTT agent.

Evolution of Total RAM Consumption

The results of the collection of RAM occupied by the
firmware over time can be seen in Fig. 5. The total RAM
occupancy of the agents starts at near levels. This initial
occupation is directly related to the static data used by the
agent. The occupation of RAM of the SNMP agent keeps,
during all execution, in the level of 35,224 bytes, except for
just two moments in which this occupation quickly rises to
35,424 bytes. It demonstrates that the UDP messages
exchanged over time little affect the occupancy of RAM.
The Zabbix agent experiences memory increase as it

receives requests from the server. At the time of the
establishment of each TCP connection, there is an
increment of approximately 200 bytes of RAM, which is
only released some time after the connection is finished.
The ten-second interval between the requests is less than
the disposal time of the connections, causing the
memory to continue to increase. When reaching the
threshold of 41,024 bytes, there is an equilibrium point.
At this point, the memory allocation due to the initiation
of new connections and the discarding of memory from
previous connections keeps the memory occupancy at
the same level until the end of the experiment.
The MQTT protocol starts the execution taking

35,728 bytes and remains at that level until the end of the
experiment. It happens because the MQTT uses only a
TCP connection and all the message exchanges happen
over that connection. This takes up a memory space of
about 200 bytes, but that remains stable throughout the
execution of the agent.

Power Consumption

In order to reach the electric power consumption, the
electric voltage and the electric current are also
measured. The product of these last two quantities
results in dissipated power. The energy consumption is
the integral of powers over time.
The results of the power measurements over the run

time of the experiment are shown in Fig. 6. Although
power peaks of up to 1200 mW are observed, the
average power dissipated remains in the range of 475
mW regardless of the protocol used.

Table 2: Use of ROM and RAM by the agents (in bytes)

 SNMP Zabbix MQTT

 -------------------------------------- ------------------------------------ -----------------------------------

Layer ROM RAM ROM RAM ROM RAM

SDK (SO) 221,995 31,568 221,995 31,568 221,995 31,568
Network and Data Link 1,018 76 1,018 76 1,018 76
UDP 2,256 128 0 0 0 0
TCP 0 0 3,208 192 3,208 192
Basic firmware 9,392 1,016 9,392 1,016 9,392 1,016
Agent 4,408 552 7,416 240 13,668 812
Total 239,069 33,340 243,029 33,092 249,281 33,664

Levi Costa Mota et al. / Journal of Computer Science 2018, 14 (9): 1238.1246

DOI: 10.3844/jcssp.2018.1238.1246

1243

Fig. 3: Use of ROM by the agents

Fig. 4: Use of RAM by the agents

Fig. 5: Evolution of RAM consumption by the agents

ROM Consumption

MQTT

Zabbix

SNMP

P
ro

to
co

lo
s

205, 000 215, 000 225, 000 235, 000 245, 000 255,000

30, 500 31, 000 31, 500 32, 000 32, 500 33, 000 33, 500 34, 000

Bytes

OS (SDK) Network and data link UDP TCP Firmware (basic) Agent

OS (SDK) Network and data link UDP TCP Firmware (basic) Agent

MQTT

Zabbix

SNMP

RAM Consumption

Bytes

P
ro

to
co

lo
s

SNMP Agent

Zabbix Agent MQTT Agent

0 50 100 150 200 250 300

Time (sec)

42, 000

41, 000

40, 000

39, 000

38, 000

37, 000

36, 000

35, 000

34, 000

B
y
te

s

RAM Consumption evolution

Levi Costa Mota et al. / Journal of Computer Science 2018, 14 (9): 1238.1246

DOI: 10.3844/jcssp.2018.1238.1246

1244

Table 3: Power consumption of the agents

Firmware and Average power Total power Estimated battery life
agent dissipated (mW) consumed (mWh) of 4300mAh (hours)

SNMP agent 476.5 39.7 43.4
Zabbix agent 473.1 39.6 43.8
MQTT agent 475.0 39.6 43.9
MQTT (on sleep mode) 182.7 15.1 115.1

 (a) (b)

 (c) (d)

Fig. 6: Evolution of electric power

The experiment performed with the MQTT protocol,

which places the device in suspend mode in the intervals

between data collection and sending is a highlight. As

can be seen in Fig. 6(d), the device starts its operation

dissipating an average power of 475mW, however, after the

first transmission of information and the device is placed in

deep sleep mode, the dissipated power changes to a

threshold of 120mW. When the device returns from sleep

mode, the power has peaks of more than 1200mW returning

to the 475mW threshold and starting a new cycle.

Table 3 shows the results of the measurements of the

average power dissipated and it also details the total

energy consumed in the five minutes of the experiments.

In the table is also included a forecast of the 4300mAh

battery life, if we consider what is consumed during the

experiment. It is once more possible to observe that the

great differential happens when the device is put into

sleep mode. In this case, the average power dissipated

during the entire execution of the experiment is

182.7mW, compared to the 475mW of the other cases.

The total energy consumed in the experiment is

15.1mWh, against the average of 39.6% of the other

cases. Moreover, the expected battery life goes from 43.7

hours to over 115 hours.

Conclusion

This study has pointed to the memory and power

consumption of the main network management protocols

implemented in agents installed on an ESP8266 device,

when applied in an Internet of Things environment.

In addition, due to the analysis of the results

obtained, it was possible to get to some more

conclusions. The three protocols analyzed can be

Electric power-SNMP

0 50,000 100,000 150,000 200,000 250,000 300,000

1,600

1,400

1,200

1,000

800

600

400

200

0

P
o
w

er
 (

m
W

)

Electric power-Zabbix

Instantaneous power (mW) Average

Time (ms)

1,600

1,400

1,200

1,000

800

600

400

200

0

P
o
w

er
 (

m
W

)

0 50,000 100,000 150,000 200,000 250,000 300,000

Time (ms)

Instantaneous power (mW) Average

0 50,000 100,000 150,000 200,000 250,000

300,000

Electric power-MQTT Electric power-MQTT (sleep mode)
1,600

1,400

1,200

1,000

800

600

400

200

0

P
o
w

er
 (

m
W

)

1,600

1,400

1,200

1,000

800

600

400

200

0
0 50,000 100,000 150,000 200,000 250,000 300,000

Instantaneous power (mW) Average Instantaneous power (mW) Average

Time (ms)

Time (ms)

P
o
w

er
 (

m
W

)

Levi Costa Mota et al. / Journal of Computer Science 2018, 14 (9): 1238.1246

DOI: 10.3844/jcssp.2018.1238.1246

1245

implemented and run on ESP8266 devices. The SNMP

protocol agent performed best in terms of memory

occupancy, both ROM and RAM and it is the best

alternative among the three protocols. In many scenarios,

the use of a standardized and consolidated protocol such

as the SNMP may be desirable, or even required. In

these cases, SNMP responds perfectly. The Zabbix

protocol agent had the second best performance in ROM

occupancy. Regarding the static RAM, it was better than

the other two protocols. However, when analyzing the

evolution of RAM occupation over the time of the

experiment, this protocol was the worst among the three.

It is possible to assume that this protocol may not

withstand executions in scenarios with a higher request

overload than the analyzed scenario, which had six

requests every ten seconds for five minutes. The MQTT

protocol agent, despite having occupied the most ROM

and static RAM, has remained stable throughout the

execution and can be a viable alternative if the application

environment requires or prefers this recent protocol.

There is no significant difference in energy

consumption between the protocols analyzed on the

ESP8266 platform with a NodeMCU development

board. However, the MQTT protocol agent, because of

its characteristics, allowed the device to be put into sleep

mode reducing by more than half the power consumption

in that operating model.

Several future studies can be carried out seeking the

continuity and improvement of this research, among

them: the performance of a similar experiment, including

more protocols in the analysis, such as Modbus, for

instance; the analysis of the network traffic of the agents

of each protocol; the analysis of the latency in the

exchange of the messages between the device and the

server; the application to other protocols, besides the

MQTT, of the active agent management model,

assessing its gains.

Acknowledgment

We would like to thank the Federal University of

Sergipe and the Federal Institute of Sergipe for

supporting this research.

Author’s Contributions

All authors equally participated in all experiments,

coordinated the data-analysis and contributed to the

writing of the manuscript.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and there are no ethical issues involved.

References

Al-Fuqaha, A., M. Mohammadi, M. Aledhari and M.

Ayyash, 2015. Internet of things: A survey on

enabling technologies, protocols and applications.

IEEE Communi. Surveys Tutorials, 17: 2347-2376.

DOI: 10.5752/P.2316-9451.2013v1n2p78

Atzori, L., A. Iera and G. Morabito, 2010. The internet

of things: A survey. Comput. Netw., 54: 2787-2805.

DOI: 10.1016/j.comnet.2010.05.010

Cai, X., Y. Wang, X. Zhang and L. Luo, 2014. Design

and implementation of a WiFi sensor device

management system. 2014 IEEE World Forum

Internet Things.

 DOI: 10.1109/WF-IoT.2014.6803108

Dagale, H., S.V.R. Anand, M. Hegde, N. Purohit and

M.K. Supreeth et al., 2015. CyPhyS+: A reliable

and managed cyber-physical system for old-age

home healthcare over a 6LoWPAN using wearable

motes. 2015 IEEE Int. Conference Services Comput.

DOI:10.1109/SCC.2015.50

Feng, K., X. Huang and Z. Su, 2011. A network

management architecture for 6LoWPAN network.

Proceedings of the 4th IEEE International

Conference on Broadband Network and Multimedia

Technology, Oct. 28-30, IEEE Xplore Press, China,

pp: 430-434. DOI: 10.1109/ICBNMT.2011.6155971
Katsikeas, S., K. Fysarakis, A. Miaoudakis, A. Van

Bemten, I. Askoxylakis, I. Papaefstathiou and A.
Plemenos. 2017. Lightweight & secure industrial
IoT communications via the MQ telemetry transport
protocol. Proceedings of the 2017 IEEE
Symposium on Computers and Communications,
Jul. 3-6, IEEE Xplore Press, Greece, pp: 1193-1200.
DOI: 10.1109/ISCC.2017.8024687

Kodali, R.K. and S. Soratkal, 2016. MQTT based home
automation system using ESP8266. Proceedings of
the 2016 IEEE Region 10 Humanitarian Technology
Conference, Dec. 21-23, IEEE Xplore press, India,
pp: 1-5. DOI: 10.1109/R10-HTC.2016.7906845

Kuryla, S. and J. Schönwälder, 2011. Evaluation of the

Resource Requirements of SNMP Agents on
Constrained Devices. In: Managing the Dynamics of
Networks and Services, Chrisment I., A. Couch, R.
Badonnel and M. Waldburger (Eds.)., Springer,
Berlin, Heidelberg, pp: 100-111.

Marques, G. and R. Pitarma, 2016. An indoor

monitoring system for ambient assisted living based
on internet of Things architecture. Int. J. Environ.
Res. Public Health, 13: 1152.

 DOI: 10.3390/ijerph13111152.
Moui, A. and T. Desprats, 2011. Towards Self-Adaptive

Monitoring Framework for Integrated Management.
In: Managing the Dynamics of Networks and
Services, Chrisment I., A. Couch, R. Badonnel and
M. Waldburger, (Eds.). Springer, Berlin,
Heidelberg, pp: 160-163.

Levi Costa Mota et al. / Journal of Computer Science 2018, 14 (9): 1238.1246

DOI: 10.3844/jcssp.2018.1238.1246

1246

Mukhtar, H., K. Kang-Myo, S.A. Chaudhry, A.H. Akbar
and K. Ki-Hyung et al., 2008. LNMP-management
architecture for IPv6 based low-power wireless
Personal Area Networks (6LoWPAN). Proceedings
of the IEEE Network Operations and Management
Symposium NOMS 2008-2008, April, 7-11, IEEE
Xplore press, Brazil, pp: 417-424.

 DOI: 10.1109/NOMS.2008.4575163
Paventhan, A., S. Krishna, H. Krishna, R. Kesavan and

N. M. Ram, 2013. WSN monitoring for agriculture:
Comparing SNMP and emerging CoAP approaches.
Proceedings of the Texas Instruments India
Educators’ Conference 2013, April 4-6, IEEE
Xplore press, India, pp: 353-358.

 DOI: 10.1109/TIIEC.2013.69
Salvador, E.M. and L.Z. Granville, 2008. Using

visualization techniques for SNMP traffic analyses.
Proceedings of the IEEE Symposium on Computers
and Communications, July, 6-9, IEEE Xplore press,
Morocco, pp: 806-811.

 DOI: 10.1109/ISCC.2008.4625672
Sehgal, A., V. Perelman, S. Kuryla, J. Schonwalder and

O. In, 2012. Management of resource constrained
devices in the internet of things. IEEE
Communications Magazine, 50: 144-149.

 DOI: 10.1109/MCOM.2012.6384464

Sheng, Z., C. Mahapatra, C. Zhu and V.C.M. Leung,

2015a. Recent advances in industrial wireless sensor

networks toward efficient management in IoT. IEEE

Access, 3: 622-637.

 DOI: 10.1109/ACCESS.2015.2435000

Sheng, Z., H. Wang, C. Yin, X. Hu, S. Yang and V.

Leung, 2015b. Lightweight Management of

Resource-Constrained Sensor Devices in Internet of

Things. IEEE Internet Things J., 2: 402-411.

 DOI: 10.1109/JIOT.2015.2419740

Wang, Q., Y. Zhu and L. Cheng, 2006. Reprogramming

wireless sensor networks: Challenges and

approaches. IEEE Network, 20: 48-55.

 DOI: 10.1109/MNET.2006.1637932

Wu, X., Y. Zhu and X. Deng, 2008. Design and

implementation of embedded SNMP network

management manager in web-based mode.

Proceedings of the 2008 IEEE Asia-Pacific Services

Computing Conference, Dec. 9-12, IEEE Xplore

press, Taiwan, pp: 1512-1516.

 DOI: 10.1109/APSCC.2008.151

