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Abstract: In this study, we introduce a novel soft decoder, the first of 

its kind, for linear block codes, based on Simulated Annealing 

algorithm (SA). The main enhancement in our contribution which let 

our decoder over performs with large gain (about 3 dB at 7×10-4) the 

classical SA approach, is to take the most reliable information set of the 

received codeword as a start solution and also according to this 

reliability generate neighbor’s solutions. Besides, our algorithm 

performance is enhanced by reducing search space when we involve the 

code error correcting capability parameter. The performance of the 

designed algorithm is investigated through a parameter tuning process 

and then compared with other various decoding algorithms in terms of 

decoding performance and algorithmic complexity. Simulation results, 

show that our algorithm over performs its competitor decoders while 

keeping minimum computation cost. In fact, our algorithm has large 

gain over Chase-2 and GAMD, furthermore, it over performs the most 

efficient and up to date DDGA decoder by 2 dB at 10-5 for RS codes. 

 

Keywords: Error Correcting Codes, Simulated Annealing, Soft Decoding, 

Linear Codes, Metaheuristic 

 

Introduction  

After the emergence of error correcting codes 

theory, several researches were proposed to design 

"good" and practical decoders. The goal of these 

decoders is to minimize the probability of decoding 

error. Ideally, the Maximum Likelihood Decoding 

(MLD) is the best approach, but the decoding process 

is impracticable for large codes because all code 

words need to be analyzed. Scientists have designed 

techniques that convert this problem into graph 

optimization. These algorithms become impracticable 

or inefficient for large codes, although the use of long 

code is important in communication design to 

approach channel limit as proven by Shannon’s 

landmark paper (Shannon, 1948). When metaheuristic 

and probabilistic algorithms became widely used and 

recognized as efficient approaches for hard 

optimization problems, in the first instance, hard 

decoding was coupled with these techniques to design 

good decoders by making hard decision on the 

received signal then trying to find the most probable 

transmitted code using metaheuristic and probabilistic 

search. Prange (1962) proposed a decoding algorithm 

using information set, this method was enhanced and 

used later by several researchers (Lee and Brickell, 

1988), (Leon, 1988) and (Stern, 1989). Recently, 

Genetic Algorithms are widely introduced in this 

field, actually Cardoso and Arantes (1999) have 

proposed a hard decoder based on GA, also several 

papers have been published in the same context (De 

Bona and Junior, 2015) and (Hoffman et al., 2011). It 

is also convenient to cite the work of Aylaj and 

Belkasmi (2015) by proposing a hard decoder based on 

SA method. However, such model discards all 

information about the reliability of the received signal 

and therefore losing accuracy in decoding capability. 

In this paradigm, soft decoding decision was the 

alternative to take benefit from the information 

reliability directly from demodulation (Fig. 1), it uses 

the real values and decision uses euclidean distance, 

hence corrects more errors and reaches high 

performance, actually it can provide 2dB gain 

compared with the hard decoding (Proakis, 1995). 
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Fig. 1: Communication system model 
 

Soft-decoding is considered as a NP-hard problem 

(Berlekamp et al., 1978), in this case classical exhaustive 

search would not be practicable anymore in large space. In 

this context, several algorithms were proposed to overcome 

this handicap. Forney (1966) proposed a pseudo soft 

decoding system, called “Generalized Minimum Distance 

Decoding” GMDD. Chase (1972) proposed a soft decoder 

based on channel measurement information. After the 

emergence of Artificial Intelligence and metaheuristic 

methods, several works were published of decoders based 

on neural networks and Genetic Algorithms (GA). In fact 

GA seems to give good results which is proved by     

Maini et al. (1994), then several GA came after such as the 

SDGA (Azouaoui and Belkasmi, 2012), the AutDAG 

decoder by (Nouh et al., 2013) and Shakeel (2010) GA-

Based Decision Soft decoder. In contrast of the most 

decoders, other algorithms were proposed using dual code, 

such as CGAD (Azouaoui et al., 2012a), then recently two 

algorithms, CGAD-M and CGAD-HSP were proposed 

based on CGAD (Berkani et al., 2017), also Maini was 

enhanced to DDGA decoder (Azouaoui et al., 2012b), the 

SDGA was also extended to DSGA (Azouaoui et al. 

2012c). In other hand for LDPC codes GAMD decoder 

(Scandurra et al., 2006) was proposed. In this spirit, we 

propose in this paper, a novel soft decoder based on 

Simulated Annealing Algorithm (SASD). 

Simulated Annealing is a physical heating process 
used in metallurgy. Actually physical systems reach 
rapidly the equilibrium state (minimum energy) by 
decreasing slowly the temperature, this behavior is 

exploited to design an optimization algorithm. In this 
paper we will apply this technique on linear codes. The 
remainder of this article will be organized as follows: In 

section 2, we will introduce the Simulated Annealing 
Algorithm (SA), then in section 3 we will define the soft 
decision decoding problem context, then we will explain 
in details our proposed SA algorithm. In the next section 
we will investigate the simulation results firstly, by 
running parameter tuning process to find the best 

configuration for our decoder, afterward we compare our 
decoder with the classical SA algorithm and later we will 
focus on the SASD performances compared to its 
concurrent decoders. Finally we investigate the influence 
of the error correcting capability on our algorithm 
performance. In the last section we present the 

algorithmic complexity of our algorithm and its 
competitor. After all, we conclude our paper by 
summary of this work and the future perspectives. 

Materials and Methods 

Simulated Annealing 

Simulated Annealing algorithm is a metaheuristic 
method used in optimization problems. It is derived from 
the process of annealing in metallurgy. In this process a 
metal is heated and slowly cooled under specific 
conditions to increase the size of the crystals in the metal 
and reduce their defects. The heat increases the energy of 
the atoms while the slow cooling allows to reach 
equilibrium state with a low energy. Each state of metal 
represents a different energy level of the system mostly 
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modeled by Boltzmann distribution (Aarts and Korst, 
1989). Heating the system results in exploring different 
states of the metal. When the system is cooled, the 
acceptance criteria will lead the changes to convergence. 
Once the system has cooled, the configuration will 
represent a state at or close to a global optimum. 

This natural process was exploited to design an 

optimization algorithm used in several research fields. 

(Kirkpatrick et al., 1983) introduced SA in combinatorial 

problems, then several researches were published based 

on this approach (Hajek, 1988). In coding theory, (El 

Gamal et al., 1987) were among the first who used SA to 

design good codes. SA was also used to tackle the 

famous problem of finding the minimum distance of 

error correcting codes by Muxiang and Fullong (1994) 

then later by Aylaj and Belkasmi (2014). 

The SA algorithm is allowed during execution, with a 

probabilistic model, to accept solutions that are worse 

than the current one, this gives the ability to escape from 

local optimum and explore more the search space. The 

following pseudo code represents a simple 

implementation of Simulated Annealing: 

 

Parameter Initialization 
Ni: number of iterations 

Ts: starting temperature 

Tf: final temperature 

S0: start solution 

T←Ts 

S←S0 

While (T >Tf)  

{  
While (iteration <Ni)  

 {  
 Pick a random neighbor solution (sn);  

 Evaluate dE = E(sn) – E(s);  

 If dE≤ 0 then s←sn;  

 else if random(0,1) ≤ Exp(-dE/T) then 

 s←sn;  

 end if 

 iteration←iteration+1; 

 }  
T←cool(T);  

}  

 

The convergence proof suggests that with long 

enough cooling period this algorithm converges to the 

global optimum. In other hand the performance could be 

improved by using a good neighbor selection strategy, 

which we will show later in this paper. 

Soft Decision Decoding as an Optimisation 

Problem 

let F2 the binary field and note C(n,k,d) a linear 

code of length n, dimension k and minimum distance d, 

we note also t the error correcting capability of C. This 

code can be represented by a k × n matrix G over F2 

called generator matrix, a message m can be then 

encoded as follows: 

 

c mG=  (1) 

 

In other side, we define a parity check (n-k) ×n 

matrix noted H which satisfies HG
T 
= 0, then we define 

for every vector 
2

n
x F∈  a syndrome S(x): 

 

( ) T
S x xH=  (2) 

 

If the codeword x contains no error then the 

syndrome S(x) is zero. 

In our study, the source generates a message m which 

is encoded to a codeword c = (c1,c2,…cn) using (1), then 

BPSK-modulated to a signal u = (u1,u2,…un) where: 

 

2 1
i i

u c= −  (3) 

 
This signal is sent over a Gaussian channel, perturbed 

by an AWG noise which is modeled by a random n-

vector n = (n1,n2,…nn), with iid components given by 

ni~N (0, N0 /2). In the receiver side the received signal is 

r = (r1,r2,…rn) such that r = u + n. The likelihood 

probability is given by: 

 

( )
2

/ / 2 1

0 0

1
exp

( )

n i i

r u n i

r u
f

N Nπ
=

 − −
 =
 
 
∑   (4) 

 

Clearly MLD can be formally expressed as an 

optimization problem as follows: 

Given a received word r, what is the codeword c ∈ C 

which maximizes the likelihood probability fr/u? 
 

} ( ){ }2

1
/ min /

n

i ii
c C r u c C

=

∈ ↔ − ∈∑  (5) 

 
Consequently, this problem is reduced to finding the 

minimum euclidean distance to the received word r 

overall codewords c ∈ C, this optimization has n variables 

out of which only k form a generator base, hence we could 

restrict search space to k variables, in preference we select 

the most k independent reliable bits, this will initialize the 

search closer to the global optimum. 

Proposed Algorithm 

We conceptualize the Euclidean distance between the 

received word and a codeword as the energy level and the 

state as the k bits vector, then the lowest energy state 

corresponds to the closest code word to the received word. 

The mapping between physical Simulated Annealing and 

our algorithm is summarized in the Table 1. 
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Table 1: Mapping between physical Simulated Annealing and our algorithm 

Physical SA SASD 

State k-bit vector 
Energy Euclidean distance between the received word and a codeword 
Final State Decoded word 

 

When receiving a word r = (r1,r2,…rn) our algorithm 

starts processing as follows: 
 

1. Make a hard decision ( )1 2
, ,

n
r r r r= … of received 

signal r = (r1,r2,…rn): 
 

0, 0

1, 0

i

i

i

r

r

r

<
= 

≥
  (6) 

 

2. Calculate the syndrome ( ) T
S r rH= , if ( ) 0S r = , 

then r  is estimated as the sent codeword and stop, 

otherwise continue 

3. Sort the sequences r = (r1,r2,…rn) in decreasing 

order based on reliability (|ri|≥|ri+1|) to obtain new 

sequences ( )1 2
, ,

n
r r r r′ ′ ′ ′= … , let’s note π the 

permutation r’ = π(r), we apply π to G to obtain G’. 

The most k reliable ( )1 2
, ,

k
r r r′ ′ ′… , will be the start 

solution of our algorithm, in fact this solution is 

estimated to be very close to the optimum solution, 

because if the received signal contains errors it’s 

probable to happen in the (n-k) least reliable bits 

4. Apply Gaussian elimination to G’ to obtain a 

systematic matrix 

5. We apply the SASD algorithm to obtain the best 

close word to the received signal and in 

consequence the estimated sent codeword c’. This 

algorithm is detailed afterwards 

6. The code c’ is related to the G’ matrix, thus our 

estimated transmitted codeword is then: 

 
1ˆ ( )c cπ

−

′=  (7) 

 

The SASD algorithm which is used to estimate the 

codeword will start from an initial state represented by a 

vector 
2

k
s F∈  and uses the euclidean distance as 

objective function to evaluate the quality of the solution 

which corresponds to the energy of the system and as we 

know the SA algorithm tries to converge toward a state 

with minimum energy, which is equivalent in our space 

to the closest codeword to the received word. In other 

side, in contrast with classical SA which generates 

neighbor’s solution by random bit flipping, our 

algorithm takes again advantage of information 

reliability of the start solution vector ( )1 2
, ,

n
r r r r′ ′ ′′ = …  the 

hard decision of sequences ( )1 2
, ,

n
r r r r′ ′ ′ ′= … , to generate 

next solution as follows: 

pick_neighbor () 

{ 

 For each bit i = k to 1 

 If ( )

0

1
0,1

1 exp 2 i

rand
r

N

>
 ′

+ − 
 

 then 

 flip the bit 
k
r′  

 end if 

end for 

} 

 

In the end The SASD algorithm could be expressed 

in the following pseudo code: 

 

Parameter Initialization 
Ni: number of iterations 

Ts: starting temperature 

Tf: final temperature 

a: cooling ratio 

S0: start solution 

T←Ts 

S←S0 

 

While (T >Tf)  

{  
While (iteration <Ni)  

 {  
 sn←pick_neighbor(); 

Evaluate dE = E(sn) – E(s); 

Err=EvaluteCorrectedError(); 

 If err<t then break;  

 If dE≤ 0 then s←sn; 

else if random(0,1) ≤ Exp(-dE/T)  

 then 

s←sn;  

 end if 

 iteration←iteration+1 

 }  
T←a*T;  

}  

 

For every s = (s1, s2,…sk) let’s note c = (c1,c2,…cn) 

the code word of s using (1). The energy E(s) of s = 

(s1,s2,…sk) is expressed as follows: 

 

( ) ( )( )
2

1
2 1

n

i ii
E s r c

=

′= − −∑  (8) 
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Results and Discussion 

SASD Parameter Tuning 

In order to select the most suitable set of 

parameters {α,Ni,Ts,Tf} we may choose some 

probabilistic models for estimation (MacKay, 2003). 

However in our case we assume that our parameters 

are independent and for this reason, we run several 

simulations of performance which is the Bit Error 

(BER) expressed as function of Signal to Noise Ratio 

(SNR), with different SASD parameters values. For 

every parameter optimization we set the remaining to 

default values according to the Table 2. 

Parameter Ni 

The number of iterations setting is often problem 

specific and estimated based on experiments. The 

simulations from the above Fig. 2, shows that the best 

performance is almost achieved when Ni = 250. 

Parameter α 

From the Fig. 3 α = 0.95, is almost the best choice for 

cooling ratio. In practice, slow cooling mechanism 

allows low euclideancodewords to be discovered and 

exploited. 

Parameter Ts 

Based on simulation results of Fig. 4, the best value 

for initial temperature Ts is 0.2. This parameter could 

impact accuracy, many methods have been proposed to 

estimate Ts (Ben-Ameur, 2004). 

Parameter Tf 

Intuitively, freezing temperature is used in physics to 

achieve equilibrium, this finding is confirmed by our 

simulations in Fig. 5, where we observe that the best 

performance is reached for almost all SNR values at the 

slowest temperature Tf = 0.001. 

Comparison of the Proposed Algorithm Versus 

Classical Version 

The proposed algorithm, SASD, was compared 

against the classical SA. The simulations where made 

with default parameters outlined in Table 2. The 

performances are given in terms of BER (bit error rate) 

as a function of Signal to Noise Ratio Eb/N0 (SNR). 

 
Table 2: Parameters setting 

Parameter Value 

Default code BCH(63,45,7) 

Channel AWGN 

Modulation BPSK 

Minimum number of bit error 200 

Minimum number of blocs 1000 

Ni 250 

Ts 0.2 

Tf 0.001 

α 0.95

 

 
 

Fig. 2: Number of Iteration variation 
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Fig. 3: Variation of parameter α 

 

 
 

Fig. 4: Variation of parameter Ts 
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Fig. 5: Variation of parameter Tf 
 

 
 

Fig. 6: Code BCH(31,21,5) 
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Fig. 7: Code BCH(63,45,7) 
 

 
 

Fig. 8: Code RS(60, 28, 9) 
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The Fig. 6 and 7 compares the performances of 
SASD and classical SA for 2 BCH codes. We notice the 
superiority of our algorithm over the classical algorithm. 
In fact at 10-4 we have a gain of 2 dB using SASD for 
BCH (63,45,7) and 1dB for BCH(31,21,5). 

The Fig. 8 presents the performances of SASD and 
classical SA for RS(60,28,9) code. According to this 
figure, we remark that our algorithm outperforms the 
classical decoder by 3 dB at 10-3. 

In the Fig. 9, our decoder presents a gain of about 2 
dB at 10-3 compared to classical SA. 

For the LDPC (60,30), the Fig. 10, shows that our 
algorithm over performs classical SA. According to this 
figure, we remark that we have about 2.5 dB gain at 10-3. 

Comparison of the Proposed Algorithm Versus 

other Decoders 

In this subsection, we compare our SASD decoder 
with the some known and efficient decoders: Chase-2, 
OSD-1(Fossorier and Lin, 1995), Maini, SDGA, SIHO, 
(Chana et al., 2011), DDGA, AutDAG, cGA-HP, cGA-
M, CGAD and GAMD. For this purpose we run our 
simulations on several codes as a base of comparison, 
these simulations where made with default parameters 
outlined in Table 2. The performances are given in terms 
of BER (bit error rate) as a function of SNR (Signal to 
Noise Ratio Eb/N0).  

The Fig. 11, shows that our algorithm performs better 

than AutDAG, SDGA, cGA-HSP, cGA-M and slightly 

the most efficient decoder DDGA for medium and low 

noise level. 
In Fig. 12, the SASD has better performance than 

Chase-2, OSD-1, SDGA and SIHO for medium and low 
noise level. The Maini decoder is more efficient than our 
decoder for high noise level, however starting from 
3.5dB SASD has a little edge over Maini. 

The performance of SASD, Chase-2, CGAD, Maini 
and DDGA algorithms, for the code BCH (31,21,5) 
code, is shown in Fig. 13. 

We notice that our algorithm has almost same 
performance as Maini and DDGA. 

The Fig. 14 compares the performance of our decoder 

with other decoders for BCH(63,51,5) code. From this 

figure, we see that our algorithm is the most efficient. 

Besides at 10-5 it has a gain of 1dB over Chase-2. 
Simulations of the non-binary RS(15,7,9), in Fig. 15, 

reveal the decoding power of SASD over the most 
efficient decoder DDGA, in fact at 10-5 we have a gain 
of 1dB, in other hand at 10-3 we gain about 2.5dB over 
SDGA and CGA-M. In Fig. 15, our algorithm is 
definitely more efficient than Chase-2, CGAD and cGA-
HSP. In fact at 10-3 our decoder has a gain of 3dB over 
Chase-2 and at 5. 10-3 using SAD we gain about 2dB 
compared to cGA-HSP. 

 

 
 

Fig. 9: Code RM(32,16,8) 
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Fig. 10: Code LDPC(60, 30) 

 

 
 

Fig. 11: Code BCH (63, 45, 7) 
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Fig. 12: Code BCH(63,45) 
 

 
 

Fig. 13: Code BCH(31,21,5) 



Lahcen Niharmine et al. / Journal of Computer Science 2018, 14 (8): 1174.1189 

DOI: 10.3844/jcssp.2018.1174.1189 

 

1185 

 
 

Fig. 14: Code BCH(63,51,5) 
 

 
 

Fig. 15: Code RS(15,7,9) 
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Fig. 16: Code RS(15,7,9) 
 

 
 

Fig. 17: Code LDPC(60,30) 
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Fig. 18: Code RM(32,16) 

 

The above Fig. 17, shows that for the above LDPC, 

SASD is applicable for non-cyclic codes and is indeed 

better than GAMD, actually we can gain about 1 dB by 

using SASD. 

The Fig. 18 compares the performances of SASD, 

SDGA and the classical BPSK decoding for the non-

cyclic RM(32,16) code. We notice the superiority of 

SASD over the other algorithms. Using our algorithm at 

10-4, we have a gain of 0.5 dB over SDGA and about 

3.5 dB over BPSK decoding. 

Influence of Error Correcting Capability 

In order to enhance our algorithm we used the code 

error correcting capability t as a stop criterion, we will 

compare in this section the influence of the parameter 

t, below the algorithm without involving this 

enhancement: 

 

Parameter Initialization 
Ni: number of iterations 

Ts: starting temperature 

Tf: final temperature 

a: cooling ratio 

S0: start solution 

T←Ts 
S←S0 

While (T >Tf)  

{  

While (iteration <Ni)  

 {  

sn←pick_neighbor(); 

 Evaluate dE = E(sn) – E(s);  

IfdE≤ 0 then s←sn;  

else if random(0,1) ≤ Exp(-dE/T) then s←sn;  

end if 

iteration←iteration+1 

 }  

T←a*T;  

}  

 

To measure the gain we get from introducing the 

parameter t we made simulations of the number of 

explored codewords for both algorithm (with t and 

without t) in different SNR values, the Fig. 19 

summarizes the results. 

We can notice that for small and medium noise level, 

the search space is greatly reduced for example for SNR 

= 4, we reduce our space by 88%. 
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Fig. 19: Codewords for both algorithms (with t and without t) 

 
Table 3: Comparison of algorithm complexity with the 

concurrent decoders 

Algorithm Complexity 

Chase-2 O(2tn2logn)  

OSD-1 O(n2) 

DDGA O(NiNg[k(n-k) + log(Ni)])  

AutDAG O(NiNgkn)  

SDGA O(2t(NiNg[kn
2 + kn + log(Ni)]))  

CGAD O(Tck(n-k))  

Chana dec. O(2p +1(k log n[n + log(n-k)]))  

Maini O(NiNg[kn + logNi]) 

SASD O(NiNckn) 

 

Complexity Analysis 

The Table 3 recapitulates our algorithm complexity 

with the concurrent decoders. 
Let a linear code C(n,k) and t be the error correction 

capability of the code C, Ni be the population size which 
is the total number of individuals in the population, Ng be 
the number of generations and let LNg be the number of 
generations of local search for Genetic Algorithm, while 
Ni represents the number of iterations for SASD, Nc is a 
constant which represents the number of iterations 
needed for SASD to reach final temperature Tf starting 
from Ts. Tc a parameter used in CGAD called the average 
number of generations. The parameter p in Chana 
decoder is the number of test sequences. 

The Chase-2 and SDGA algorithms increase 
exponentially with t and OSD increases with p, hence for 
code with large error capability they have the worst 
complexity. However in terms of code sizes, SASD, 
DDGA, CGAD, Maini and AutDAG algorithms, the 
complexity is linear either in k or n. OSD-1, SDGA, 
Chana and Chase-2 have poor performance in terms of n. 

Conclusion 

In this study, we have proposed a novel Simulated 
Annealing based algorithm for soft decision decoding, as 
far as we know our decoder is the first soft algorithm 
based on SA. Then we focus on parameter tuning throw 
several experiments and later show the superiority of our 
proposed algorithm over the classical SA and over the 
most famous and up to date decoders, in fact it beats the 
DDGA by 2dB at 10-5. Furthermore we investigate the 

enhancement introduced by the error correcting 
capability parameter in our decoder and we show that 
we can reduce the search space by 88% for high noise 
level. Besides, the main advantage of the SASD is that 
it take advantage of the information reliability of the 
received word to start search and to generate neighbor 
solutions, in other side our decoder can be used for 
non-cyclic and non-binary codes without any complex 
change. We also compare the algorithmic complexity 
of our decoder with its concurrent. 

The obtained results let us hope to implement this 

decoder for dual code and try to find other neighbor’s 

search strategies to enhance performance. 
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