

© 2017 Malik Qasaimeh and Raad S. Al-Qassas. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Randomness Analysis of DES Ciphers Produced with Various

Dynamic Arrangements

1
Malik Qasaimeh and

2
Raad S. Al-Qassas

1Department of Software Engineering,
2Department of Computer Science,

Princess Sumaya University for Technology, P.O. Box 1438 Amman 11941, Jordan

Article history

Received: 02-09-2017

Revised: 24-11-2017

Accepted: 14-12-2017

Corresponding Author:

Malik Qasaimeh,

Department of Software

Engineering, Princess Sumaya

University for Technology,

P.O. Box 1438 Amman 11941,

Jordan
Email: m.qasaimeh@psut.edu.jo

Abstract: Over the past few years, researchers have devoted efforts to

enhance the original DES encryption algorithm. These enhancements focus

on improving multiple perspectives of the algorithm through enhancing its

internal components to deliver a robust DES variant against different kinds

of typical attacks such as linear and differential crypto analysis, in addition

to the newly evolved attacks such as differential power analysis attacks. In

fact the output of existing solutions have enhanced the ciphertext

randomness. This paper introduces two encryption algorithms that enhance

the original DES named DDES and HDES. DDES is mainly based on a

secure selection of both S-boxes and P-box arrangements during each

encryption round, it has also extended the key length by adding two more

keys beside the original one to the encryption process. HDES, on the other

hand, uses a hash function to generate a random fingerprint for each

plaintext block. This fingerprint is used to generate the seed to produce

round seeds that are used to select secure S-boxes only for each round in

the encryption process. These two variants meet with certain demands that

are imposed by the user applications context. DDES provides a higher

ciphertext randomness with some added processing time, while HDES

provides a relatively secure variant with lower processing time. These two

variants can provide alternatives depending on the targeted applications that

require different levels of security and processing time. DDES and HDES

have been evaluated and compared against DES, DESX and 3DES, using a

number of metrics including chi-square test, cipher data difference,

hamming distance and processing time.

Keywords: DES, S-Boxes, P-Box, Encryption Algorithm, Chi-Square Test

Introduction

In 1975 the National Institute of Standards and

Technology (NIST) has released the Data Encryption

standard (DES) with a free license for its use. The first

official version of the encryption standard FIPS-46 was

released in 1977. The standard was revised three times

later: FIPS-46-1 in 1988, FIPS-46-2 in 1993 and FIPS-

46-3 in 1999 (De Cannière, 2011). Since the release of

DES, its mysterious S-boxes and its 56-bit secret key

resulted in controversy and some distrust among the

research community (Van Tilborg and Jajodia, 2011).

DES is a block cipher with 64-bit block size, it uses only

56 bits during the encryption process while the rest are

reserved for error detection and correction.

Studies in the literature (Biham and Shamir, 1991;

Kumar et al., 2006; Zodpe et al., 2012; Lee, 2013) claim

that the DES key length would make the algorithm

vulnerable for many kinds of attacks like brute force

attacks and more advanced attack such as linear

cryptanalysis and differential cryptanalysis. For example,

in 1990, Biham and Shamir (1991) proposed a

differential cryptanalysis method that could be used to

attack DES. The method would be more efficient than

exhaustively searching all possible keys if the algorithm

used at most 15 rounds instead of 16 rounds. However, a

few years later, IBM released some details about DES

design criteria, which showed that indeed the 16 rounds

of the standard had constructed the system to be resistant

to differential cryptanalysis. In 1998, the Electronic

Frontier Foundation (EFF) built deep crack machine in

Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747

DOI: 10.3844/jcssp.2017.735.747

736

response to DES challenge II. The deep crack

decrypted a DES encrypted message in only 56 hours.

Six months later, in response to DES Challenge III

and in collaboration with distributed.net, the EFF used

deep crack to decrypt another DES-encrypted

message, for which the operation took 22 h and 15

min (Kumar et al., 2006).

The design of data encryption algorithms should be

immune and robust against various types of attacks that

may threat the encryption algorithm including

differential power analysis (Kocher et al., 2011),

differential cryptanalysis (Biham and Shamir, 1991) and

linear cryptanalysis (Matsui and Yamagishi, 1993)

attacks. The Differential Power Analysis (DPA) is

applied on the crypto data and employs statistical

methods to reveal the encryption key. Attackers analyze

the power singles of the crypto-circuit and analyze the

part of crypto data during execution process to reveal the

key. Hiding and masking techniques can be used to

protect DES circuits from DPA attacks. However, the

hiding technique does not provide a full protection

against advanced DPA attacks such as second-order

attack.The differential cryptanalysis attack depends on

the obtainability of ciphertext and plaintext sets. The key

is derived by selecting pairs of plaintext related by a

particular difference, then differences of corresponding

ciphertexts are computed. The attacker analyses the

statistical patterns of the resulting pairs of differences in

order to discover the inner entries of the S-boxes used in

the encryption process. On the other hand, linear

cryptanalysis is based on the probability of occurrences

in linear expressions relating plaintext, ciphertext and

sub-key bits. It is known as plaintext attack, where the

attacker has information on plaintext sets and their

corresponding ciphertexts. In many scenarios and

applications it is rational to assume that the attacker has

knowledge of plaintext sets and their corresponding

ciphertexts (Matsui and Yamagishi, 1993; Matsui, 1993).

It should be noted that linear cryptanalysis and

differential cryptanalysis attacks rely on the order and

the content of the DES S-boxes (Schneier, 1996).

The correlation between the plaintext and the

ciphertext has been investigated in (Yun-peng et al.,

2009; Matsui, 1994). The higher level of correlation

enable the attackers to infer the encryption key or

directly the original plaintext. Different modification can

be performed in general for the encryption algorithms to

de-coupling the high level of correlations between the

plaintext and the ciphertext. These recommendations

focus on the dynamic design of the substitution process

and the permutation function. Besides, some relevant

principles can be used to decrease the correlation between

the ciphertext and the plaintext and also the correlation

between the encrypted symbols. Verdult (2015) stated

that using parallel computing the amount of chosen

plaintext that is required to break the DES algorithm is

now considered very small with the high processing

power. Besides, the simple XOR and short key length

function are responsible for weaknesses in DES.

A number of studies (Biryukov and Wagner, 2000;

Zhuang et al., 2014; Biham and Biryukov; 1995, Verma

and Prasad, 2009; Sison et al., 2012; Kilian and

Rogaway, 2001) have been proposed to improve the

original DES against the attacks described above. Diffie

and Hellman proposed triple DES (Biryukov and

Wagner, 2000). The idea was to multiple encrypt the

block using DES with three different keys. However,

triple DES adds more constraints on the key sharing and

management protocols, besides triple DES is slower than

the original DES that was never designed to be used in

this way (NIST, 2012).

Zhuang et al. (2014) proposed an improvement on

DES circuit against DPA attack. The improvements

consist of two components which are secured S-boxes

and rotating masks that are implemented at hardware

level. To protect the linear parts of DES algorithm, the

masks are rotated after each encryption round and then

the hiding method is used by adding two extra inputs to

the S-boxes which are count and position. The count

input is used as a counter for the current encryption

round and the position is used as a pointer for the entries

in the S-boxes to perform changes on the S-boxes

position value based on the count value

Biham and Biryukov (1995) proposed a DES variant

that perform a key-dependent transformation to the S-

boxes to rearrange the original eight S-boxes in different

ways using the last 5 bits of the key. They showed that

not all the 8! Possible ways to arrange the eight boxes

are valid ones. In fact some of the S-boxes

combinations can make DES weaker against the linear

and differential cryptanalysis. The limitation of this

approach is the high probability of repeating the S-

boxes arrangement in different rounds.

Verma and Prasad (2009) proposed modifications to
DES by first dividing the expanded right part of 48 bits
into two parts each of 24 bits, then two different
functions are applied to each of these two part. The key
length was also increased to 112 bits by using tow keys.
An analysis of these modifications has shown that
modifying the F-function enhances the DES diffusion,
which means each input bit affects many output bits.
Also, an analytical proof has shown that the
modifications proposed on the key enhances confusion
in the difference. However, the proposed approach
requires 50% more time than the original DES.

The advancement of internet applications and new
technologies allow easier and quicker access to users’
sensitive data. The unauthorized disclosure, alteration or
destruction of the sensitive data could cause a significant
level of risk to the affiliates (Friedewald et al., 2010).
Sensitive data may include individual’s ethnic origin,

Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747

DOI: 10.3844/jcssp.2017.735.747

737

political opinions, religious beliefs physical or mental
health. Usually, the sensitive data are protected by laws,
regulations, or policies that require the adoption of
proper data encryption algorithm. For example, Health
Insurance Portability and Accountability Act (HIPAA)
security rule, requires in §164.308(a)(4) that health care
organizations should “Implement technical policies and
procedures for electronic information systems that
maintain electronic protected health information to allow
access only to those persons or software programs that
have been granted access rights”. Other regulations such
as Payment Card Industry (PCI) that regulate the process
of smart cards mentioned that “Sensitive information
must be encrypted during transmission over networks
that are easily accessed by malicious individuals.
Misconfigured wireless networks and vulnerabilities in
legacy encryption and authentication protocols continue
to be targets of malicious individuals who exploit these
vulnerabilities to gain privileged access to cardholder
data environments”. This requires fast and efficient
encryption process that is able to protect the individual
privacy. Any delay caused by the selected encryption
algorithm will disturb the associated verification processes
such as identity verification and authentication process.

The selection of the encryption algorithm for the

sensitive data in an organization is influenced by many

issues beside of the application type. Dong et al. (2015)

mentioned that efficient and sometime fast encryption

algorithm is required in a big data platform especially

when the data are transmitted from a data owner’s local

server over multiple transmission component, the

selection of the encryption algorithm should be made

based on the criticality and classification of the data. For

this reason, Sison et al. (2012) proposed an improved

DES variant that can be used to secure the smart card

data, the improvement made by odd-even substitution

component to DES. The average running time through

different attempts with the modified DES was 365.2

millisecond while 355.8 millisecond with the typical

DES. The authors conclude that such improvement

could be useful for smart cards applications since the

modified DES enhanced the typical DES with almost

equivalent average running time. Other research works

on cloud computing propose classification frameworks

to classify the data based on their level of sensitivity as

to select the suitable encryption algorithm for securing

the data before transmission (Tawalbeh et al., 2015;

Shaikh and Sasikumar, 2015).

This paper analysis the randomness of two DES variants

that are designed to support the security of different

applications that mandates variable characteristics of data

encryption requirements such as processing speed and

level of sensitivity. The first variant is called the

Dynamic Data Encryption Standard (or DDES for) that

is mainly based on a secure selection of both S-boxes

and P-box arrangements during each encryption round

(Alnoury et al., 2016). The S-boxes and P-box

arrangements selection depends on a random seed,

which results in dynamic selection of the secured

combination of S-boxes and P-box that differs each

round. In DDES we have extended the key length by

adding two more keys beside the original one. The

second variant is called Hashed Data Encryption

Standard (or HDES for short) that uses a hashing

component to produce a random fingerprint for each

plaintext block. This fingerprint is used along with the

encryption key to produce the seed to generate round

seeds that are used to select secure arrangements of S-

boxes for each round in the encryption process (Al-

Qassas et al., 2016). It is worth noting that although

some of the components of DDES and HDES hold the

same name, their internal processes are different.
The rest of this paper is organized as follows. Sections

2 and 3 illustrate the operation of DDES and explain its

components. Sections 4 and 5 describe the operation of

HDES and explain its components. Section 6 studies the

performance of the proposed methods against well-known

DES variants. Finally, Section 7 concludes the work and

provides potential future directions.

DDES Overview

The enhancements of DDES over the original DES

(Kim, 1991) can be described as follows. DDES

dynamically generates different permutations of the

S-boxes and P-boxes for each encryption round. This

approach overcomes the original DES where it selects

only one arrangement of the S-boxes for the sixteen

rounds. This is based on an optimization technique that

uses a random seed to organize the relationship between

the S-boxes and the generated P-box arrangements

during each round of the encryption process. The seed is

generated by mapping the plaintext using three keys

through the seed generator component. DDES then

selects the arrangements from a secure pool of S-boxes

and P-box in every encryption round, this pool has been

verified in (Biham and Biryukov, 1995; Brown and

Seberry, 1990). For the decryption process, the seed used

to select the S-boxes and P-box is embedded within the

ciphertext so that the receiver can use it to build the

boxes in the reverse order.

DDES uses secured combinations of S-boxes and

P-boxes to provide robustness against different types of

attacks such as differential attacks. Having S-boxes and

the P-box arrangements change every single round along

with key whitening, would make the attacks very

difficult, specially that even related texts which are

needed in differential attacks are not encrypted in the

same way. DDES has included extra strength against

brute force attacks as it has longer key (Rogaway, 1996).

Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747

DOI: 10.3844/jcssp.2017.735.747

738

The components of DDES are described as follows:

Pseudorandom generator (PRG), seed generator, boxes

generator, seed filter and seed distributor. The seed

generator creates a seed using the given three encryption

keys. The PRG uses this seed to produce random

numbers known as subseeds, which are fed into the

boxes generator to allow dynamic generation of S-boxes

and P-box arrangements for each round. After

completing all encryption rounds, the seed distributer

will insert the seed within the resulted ciphertext. At the

receiver side, in order to perform the decryption process,

the seed is extracted from the cihpertext using the seed

filter component. This seed is used to produce the same

arrangements of S-boxes and P-box used in the encryption

process, but in reverse order. Section 3 provides detailed

description for each of these components.

To illustrate the operation of DDES, the encryption

process is shown in Fig. 1 and its pseudocode is

presented in Fig. 2. An overview of the encryption

process in DDES is described in the following steps:

1. The seed generator generates a unique seed, based

on the plaintext and three encryption keys K1, K2

and K3. The seed then used for the process of

generating the S-boxes and P-box arrangements.

This seed is fed to PRG to produce a series of

subseeds. The PRG produces two subseeds for each

round, which are fed into the boxes generator to

select secured S-boxes and P-box arrangements

2. The plaintext is XORed with K1

3. Split the text from step 2 into two parts, left and

right, each of size 32 bits

4. The key scheduler generates a round key from K2.

The round key then XORed with the right part after

it is expanded to 48 bit. This step proceeds with

substituting the result to the S-boxes acquired from

the boxes generator, the resulting text then permuted

by the P-box and then XORed with the left part

5. The right 32 bits in step three will become the left

part of the new text and the 32 bit obtained from step

four will become the right part of the new text. The

new text will be XORed with K3 after the 16 rounds

of the encryption process to generate the ciphertext

6. Finally, in order to deliver the seed to receiver side,

the seed will be embedded within the ciphertext

using the seed distributer

Fig. 1: Overview of the DDES encryption process

Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747

DOI: 10.3844/jcssp.2017.735.747

739

Fig. 2: DDES encryption process

For the decryption process, the receiver feds the

ciphertext into the seed filter, which extracts the seed

from the ciphertext. The seed is used later to generate

the S-boxes and P-box arrangements in reverse order.

The right part of the text goes through the expansion

algorithm and XORed with the reversed order of

round keys. When the ciphertext reaches the

substitution of S-boxes and P-box in permutations

phase, the receiver will use the seed to generate the

same boxes used for the encryption process.

DDES Components

Seed Generator

The seed generator takes the three keys (K1, K2, K3)

and the plaintext each of size 64 bits. The aim of this

component is to obtain a seed of 8 bits that maps the

plaintext and the three keys. The plaintext is first XORed

with K1 and K3, then the resulted string is split into two

parts and each part is fed to the original DES P-box. The

reason for using the P-boxes is to create an avalanche

effect, where changing few bits in the plaintext or in one

of the keys, will result in a different seed and thus a

different boxes arrangements during the encryption

process. After that the resulting string is XORed with K2

resulting in a string of 8 bytes binary string named result.

To reduce this to one byte only to generate the needed

seed, K2 is used as follows: Divide K2 into 8 groups from

left right, each contains 6 bits. The decimal value of each

group will determine the location of the corresponding

bit in the seed. For example, let the first group of bits

contains the decimal value 10, then the first bit in the

seed is the 10th bit in the output. The pseudocode for the

seed generator is illustrated in Fig. 3.

Pseudorandom Generator

The pseudorandom generator in DDES receives a

seed of 8 bits as an input to generate two subseeds. The

subseeds are fed into the boxes generator to obtain a

secure combination from the S-boxes and the P-box

arrangements for each round.

Boxes Generator

The boxes generator takes as input two subseeds of 8
bits each. One of the subseeds is used for the purpose of
generating different permutations of secured S-boxes in
each round. The P-box is generated using the other
subseed and the S-boxes arrangement. Having different
combinations of S-boxes and P-box arrangements for
each round is to prevent linear cryptanalysis attacks as
Biham and Biryukov (1995) shown. This enhancement is
based on the boxes generator component that provides a
secure S-boxes and P-box arrangements in every
encryption round as illustrated in in Fig. 4. For each
round, the boxes generator receives two new subseeds
generated from the PRG, which will determine the
selection of the S-boxes and P-box secure arrangements.
The secure arrangements are stored in a lookup table.
This secure arrangement is linked to another lookup
table that contains the secure compatible P-box
arrangements. These arrangements are proven to be
secure based on the work Brown and Seberry (1990) and
the work of Biham and Biryukov (1995). Afterwards,

Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747

DOI: 10.3844/jcssp.2017.735.747

740

based on the arrangements of the S-boxes and the P box
originated from the secured tables, the boxes constructor
part, will generate the S-boxes and P-box.

Seed Distributer

The seed distributer is used to insert the seed inside
the ciphertext. It takes as input the ciphertext, the second
key and the seed, to generate a ciphertext with the seed
embedded within it. The embedded seed will be used in
the decryption process since the receiver needs the
same seed used by the sender. This seed will be given
to the PRG at the receiver side. Figure 5 illustrates the
pseudocode for the seed distributer. In order for the
decryption to be possible, the sender and the receiver
must have the same seed to be able to generate the
same combinations of the S-boxes and P-box. In order

to make the process harder for the attacker, we embed
the seed generated using the three keys within the
ciphertext which is mapped using the second key. On
the receiver side, the seed filter will extract the seed
from the ciphertext.

Seed Filter

The aim of this component is to extract the seed from

the ciphertext, in order to perform the decryption

process. In fact, this component performs the reverse

operations that have been accomplished by the seed

distributor. It takes as an input ciphertext with the seed

embedded within it and the second key. The output will

be the ciphertext and the seed which is fed into PRG to

generate the sequence of sub-seeds in a reverse order.

Fig. 3: Pseudocode for the seed generator

Fig. 4: Pseudocode for the boxes generator

Fig. 5: Pseudocode for the seed distributer

Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747

DOI: 10.3844/jcssp.2017.735.747

741

HDES Overview

HDES uses a random seed derived from the plaintext.

For each round in the encryption process, the seed is used to

produce arrangements of secured S-boxes that are selected

from a secured pool, which has been verified in (Biham and

Biryukov, 1995; Brown and Seberry, 1990). In order to

emphasis on the dynamic generation of the S-boxes, the

plaintext is fed to a hashing component to produce a unique

fingerprint that is used to generate the required seed. For

each round in the encryption process a round seed is

produced based on the generated seed. After completing the

encryption process rounds, the seed will be embedded

within the generated ciphertext, which will be used in

decryption on the other side.

The main differences between DDES and HDES can

be summarized as follows. DDES generates secure

combinations of both S-boxes and P-box arrangements

during each round, while HDES generates only secure

arrangements of S-boxes. Furthermore, although some of

the components of DDES and HDES hold the same title,

their internal processes are different. For example the

seed in DDES is generated based on the three keys and

the plaintext. In HDES the seed is generated based on

the key and the hashed plaintext.

The HDES components are described as follows:

Hashing component, pseudorandom generator, seed

generator, S-boxes generator, seed insertion and seed

filter. The hashing component is used to produce a

fingerprint of the plaintext. The seed generator takes the

generated text from the hashing component and XOR it

with the encryption key to produce the seed. The

Pseudorandom Generator (PRG) in its turn produces

round seeds for each round in the encryption process.

The S-boxes generator takes the round seed to generate

S-boxes arrangements for each round. The seed insertion

component is used to produce a ciphertext with the seed

embedded within it. The filter component is used during

the decryption process to extract the seed from the

ciphertext in order to perform the decryption. A detailed

description of these component is provided in section 5.

The following steps provide illustration of the

encryption process in HDES in addition to the illustration

depicted in Fig. 6. A pseudocode that helps in

understanding the operation of HDES is given in Fig. 7:

1. The plaintext is fed into the hashing component

where it goes through the hash function. The output

from the hash functions is XORed with the

encryption key

2. The text resulted from the hashing component is

used by the seed generator to generate the seed

3. The PRG uses the seed to produce a series of round

seeds, which are used in producing the secured

arrangements of the S-boxes generated through the

S-boxes generator

4. The plaintext is split into two parts (L and R), each

of size 32 bits

5. The key scheduler generates a round key, which

will be XORed with the expanded R of size 48

bits. The resulting text is fed into the S-boxes and

then permuted. The resulting 32 bits text is then

XORed with L

6. A new text is produced of size 64 bits by joining the

text from step 5 with R. However, R will become

the left part

7. The generated text after completing the 16 rounds

represents the produced ciphertext

8. Finally, the seed insertion component embeds the

seed within the ciphertext

HDES Components

Hashing Component

The idea of using the hashing component is to create
a fingerprint of the plaintext. The main idea behind this
is to produce a unique string corresponding to every
plaintext at the initial round. The hash function takes as
input 64 bits representing the plaintext. The selection of
the hash function is governed by a number of factors and
constraints. For instance, the hash value produced by the
hash function should not be the same for different
plaintexts and the hashing result should provide low risk
of collision. However, hash functions with low degree of
collision can be considered acceptable. Another factor
that may affect the selection of the hashing algorithm is
the processing time, which is an essential factor that may
influence the performance of the proposed HDES. For
the design purpose of HDES, the selected hash function
should be fast and simple to reduce the overhead resulted
from using the hash function. Studies from the literature
(Szydlo and Yin, 2006; Ilya, 2005) show that short hash
functions are usually faster than long ones.

The processing speed of various cryptographic hash

functions such as the SHA family, the MD family and

many others has been investigated and analysed in

(Knopf, 2007; Gauravaram, 2007; Preneel, 2003). Many

factors were considered in the analysis including

compiler platform, hardware environment and round

functions, which may affect the processing time of the

hash function. The analysis has shown that SHA-1 is

better than MD5 in terms of processing speed and

similar to MD4. It has also revealed that SHA-1 is better

than both SHA-2 and SHA-256.
In this study, HDES selects SHA-1 as a hash

function. This selection considers the trade-offs between
the hashing speed and collision resistance of the hash
function (Szydlo and Yin, 2006). For the design
purposes of HDES, the speed of the hash function is
considered more important than the collision resistance,
since the hashing component is used as an inner component
and that is used only to generate an input for the seed
generator, which in turn will XOR the hashed text with the

Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747

DOI: 10.3844/jcssp.2017.735.747

742

key to produce the seed. HDES will then perform the 16
rounds of the encryption process, which means that the

frequency of using the hash function is very low and hence
the possibility of the collision to occur is low.

Fig. 6: Proposed HDES structure

Fig. 7: HDES encryption process

Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747

DOI: 10.3844/jcssp.2017.735.747

743

Pseudorandom Generator

The pseudorandom generator is used to produce a

series of random numbers based on a seed input of size 8

bits. These random numbers are fed into the S-boxes

generator to generate different arrangements of S-boxes

for each round.

Seed Generator

The seed generator takes the 64 bits hashed plaintext

and XOR it with the encryption key the resulted text will

be used to create a seed of 8 bits. The main idea behind

this is to get a random and unique string that has one to

many relationship with the plaintext and the key so we

can produce a unique seed to be fed into the PRG. Due

to the characteristics of the hashing function, any

alteration in the plaintext would produce a totally

different seed that would be random due to the XOR

operation. This comes from the interesting

characteristics of the XOR operation, when a fixed

distribution string is XORed with a uniform

distribution string (i.e., random string), the resulting

string would follow the uniform distribution. In order

to reduce the resulted 64 bits into 8 bits, to create the

needed seed, the 64 bits are divided into 8 groups from

left to right. To allow simplicity in the reduction

process while keeping the randomness, the initial bit of

each group will correspond to a bit in the seed.

S-Boxes Generator

The S-boxes generator generates dynamically, for

each round, secured permutations of S-boxes. The

dynamic nature comes from the fact that the S-boxes

generator takes, for encryption round, a round seed

obtained from the PRG, which is used to select the

secure arrangement of S-boxes. The secure arrangements

are stored in a lookup table where each entry represent a

secure arrangement of S-boxes. These arrangements are

proven to be secure based on the work Brown and Seberry

(1990) and the work of Biham and Biryukov (1995).

Seed Insertion

The seed insertion plays an important role in the
decryption process. Its role is to embed the seed in the
generated ciphertext in order to allow its decryption. The
seed is used to generate the same S-boxes used by the
sender in encryption process, so that the receiver can
decrypt the received ciphertexts. The seed bits are
distributed within the ciphertext. To allow unpredictable
distribution of the seed bits, the encryption key bits are
used to insert the seed within the ciphertext. The
insertion process is based on dividing the encryption key
into eight groups, each of size bits. The insertion
location within the ciphertext for a given bit in the seed
is associated with the decimal value of the corresponding
group in the key.

Filter

The filter component is used to extract the seed

embedded within the ciphertext in the decryption process.

It takes as input the key and the ciphertext to extract the

seed bits. The seed will be given to the PRG to produce

the same sequence of sub-seeds but in reverse order.

Evaluation

Encryption algorithms should be able to produce

unpredictable random string of ciphertext. However, in

many cases, the randomness of the ciphertext has been

analysed to break the system. For example, the poor

randomness quality of the digital signature algorithm in

the third version of the Sony PlayStation allowed the

attackers to recover the private key used in the signing

process (Lee, 2013). In best case scenarios, the

ciphertext should be unpredictable and the probability of

zeros and ones are equal to 50%. Therefore, we have

examined the quality of ciphertext randomness generated

form DDES, HDES, DESX, 3DES and DES. The

evaluation is conducted using four measures that

designed based on guidance of the NIST test statistical

suite of cryptographic applications (Rukhin et al., 2010):

Chi-square test, cipher data difference, hamming

distance and encryption time. The five algorithms have

been challenged to identical scenarios to encrypt various

files with sizes from 45 KB to 1 MB that have data

entropies ranging from 0.80 to 0.99. The platform used

in the evaluation is Xeon E3-1225 running Windows server

2008, with processor speed of 3.2GHz and 8 GB of RAM.

Chi-Square Test

The chi-square test is a statistical test that is used to

compare an observed data with what is expected to

obtain from a random generation system, based on pre-

defined hypothesis. The hypothesis usually initiated

early in the experiment, based on the evaluator

understanding and beliefs about the expected statistical

outcome of a specific experiment. The chi-square is used

to assess the likelihood that the hypothesis is true based

on the Equation 1 (Lee, 2013). Where O is the observed

data and E is the expected data. The chi-square is usually

useful to see if there is a difference between two or more

groups of data:

()
2

2 i i

i i

O E
x

E

−
=∑ (1)

In this measures, the chi-square of the ciphertext

generated from the DDES, HDES, DESX, 3DES and

DES has been computed to understand the randomness

of the ciphertext based on expected outcome using the

null hypothesis. In the null hypothesis there will be no

Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747

DOI: 10.3844/jcssp.2017.735.747

744

difference between the observed and the expected data.

The cipher data is expected to have 50% of zeroes and

50% of ones, because in a truly random function the

ratio between zeros and ones are equal. Table 1

illustrates the average chi-square test probability based

on the chi-square values and their corresponding p-

values with degree of freedom of one. The chi-square

test probability has been computed after encrypting files

with data entropies ranging from 80% to 99%. Based on

(Fahmy et al., 2005; Lee, 2013) if the probability is

greater than 99% or less than 1%, the ciphertext is

almost certainly not random. If the probability is

between 99% and 95% the ciphertext is randomly

suspect. If the probability between 90% and 95%

indicate the ciphertext is almost random. As Table 1

illustrates, DDES shows the best level of randomness

compared to its counterparts with an average probability

of 93.7%, which indicates that the ciphertext obtained

from DDES is almost random. Whereas HDES average

probability is 97.7% which indicates that its randomness

fall under the randomly suspect level, which is also the

case of DES, DESX and 3DES, although 3DES shows

better performance than that of HDES.

Hamming Distance

The hamming distance is an important measure to

capture the diffusion effect for the encryption

algorithms. The higher degree of diffusion is always

preferable for the encryption algorithm, which indicates

that each plaintext bit or key bit change, affects many

bits of the ciphertext bits. The hamming distance is the

number of bits which needs to be changed to turn one

string into the other. The hamming distance between two

ciphertexts is calculated using Equation 2, where X is the

first ciphertext which consists of several bits say x1, x2,

…, xn, Y is the second ciphertext which consists of

several bits say y1, y2, …, yn.The hamming distance is

calculated by flipping a number of bits in the plaintext:

{ }(,) | i iHD X Y i x y= ≠
 (2)

The hamming distance is computed between the

generated ciphertexts corresponding to the plaintext with

flipped bits. This is done by flipping 1 bit, 2 bits, 3 bits

and 4 bits as shown in Fig. 8. This process is performed

on each of DES, DESX, 3DES, HDES and DDES. As

the figure illustrates, DDES has higher hamming

distance than its counterparts in most cases. Besides, the

HDES hamming distances are also higher than the

hamming distances of DES, DESX and 3DES.

This means that the diffusion effect for DDES and

HDES is higher than that of DES, DESX and

3DES.However, the reason for this is the ability of DDES

and HDES to change the internal permutations each round.

Table 1: The chi-square probability values for the

encryption algorithms

Encryption algorithm Chi-square test (%)

DES 98.3

DESX 98.1

3DES 95.9

DDES 93.7

HDES 97.7

Cipher Data Difference

The cipher data difference is proposed to find the

randomness of the data encryption algorithms. It is

computed by finding the absolute difference of ones and

zeros in the plaintext and the absolute difference of ones

and zeros in the ciphertext. The lower the value of this

metric indicates higher level of randomness. Figure 9

shows the cipher difference of DDES, HDES, DES,

DESX and 3DES. Different data entropies are used to

evaluate the cipher difference of the selected encryption

algorithms. The data entropies are represented in the x-axis

and the cipher data difference is represented the y-axis.

The points in Fig. 9 present an average of 30 runs
that has confidence interval of 95%. As the figure shows,
DDES demonstrates lower cipher difference in most of
the cases followed by HDES. This indicates that the
randomness obtained from DDES and HDES
outperforms their counterparts. The data encryption
algorithms show close performance for files with data
entropies between 0.80 and 0.84, where 3DES shows the
lowest cipher data difference in this interval. However,
as the data entropy increase, DDES outperforms the
other algorithms. It is also noted that HDES show
better randomness results than DES, DESX and 3DES
in the interval of 0.90 and 0.99 of data entropies. This
means, in the case of low data entropy the algorithms
have analogous outcome of randomness, however
DDES and HDES exhibit better randomness for the
higher values of data entropies.

Encryption Time

Figure 10 shows the time required for the encryption
process for DDES, HDES, DES, DESX and 3DES. As
the figure illustrates, 3DES has the highest encryption
processing time, this is due to the fact that 3DES repeats

the encryption process of the original DES but using
three different encryption keys. Moreover, the cipher
data difference achieved by 3DES was higher than
DDES and HDES, which means that 3DES requires
more time of processing while providing less
randomness to the cipher. On the other hand, the

encryption time for DDES is higher than DES, DESX
and HDES. This is due to the extra processing to enable
DDES to use secure combinations of the S-boxes and the
P-box on each round of the encryption process that
results on a lower cipher data difference than its
counterparts as shown in Fig. 9.

Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747

DOI: 10.3844/jcssp.2017.735.747

745

Fig. 8: Hamming distance of the data encryption algorithms

Fig. 9: Cipher data difference

Fig. 10: Encryption processing time

Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747

DOI: 10.3844/jcssp.2017.735.747

746

Conclusion

This paper proposes two variants of DES named
DDES and HDES. The objective of DDES and HDES is
to overcome the flaws in the original DES, by
redesigning and combining several techniques and
components to enhance the original DES. The main
characteristics of DDES is its larger key size and its
internal components based on secure combinations of S-
boxes and P-box arrangements. HDES, on the other
hand, uses a hash function to obtain a unique fingerprint
for each plaintext block that is used to select secure S-
boxes only for each round in the encryption process. The
rationale behind the two variants is to meet the trade-off
between robustness of the ciphertext and processing
speed. The two variants have been evaluated extensively
using a number of metrics: Chi-square test, cipher data
difference, hamming distance and processing time and
their performance has been compared against DES,
DESX and 3DES. DDES and HDES provide options for
the security professionals to deploy the required security
level and processing time based on the user application
context. This have been confirmed by the conducted
experiments that show DDES with higher degree of
randomness in terms of chi-square test, cipher data
difference and hamming distance while having a
relatively acceptable encryption time. HDES, on the
other hand, shows acceptable randomness levels.
Although it has lower levels of randomness than that of
DDES, its encryption time outperforms DDES. As part
of our future work, we plan to investigate other
randomness measures including linear Complexity test,
discrete Fourier transform (spectral) test and
approximate entropy test of DDES and HDES against
AES and blowfish.

Author’s Contributions

Malik Qasaimeh: Contributed to research design,

algorithms implementation, randomness analysis, result

discussion and analysis. In addition to writing, editing

and reviewing of the manuscript.

Raad S. Al-Qassas: Contributed to algorithms design,

implementation, discussion and analysis of the results. In

addition to writing, editing and reviewing of the manuscript.

Ethics

The corresponding author confirms that all of the

other authors have read and approved the the manuscript

associated with no ethical issues involved.

References

Alnoury, H.A., M. Qasaimeh and R.S. Al-Qassas,
2016. Improved DES with dynamic S-boxes and
P-box arrangements. J. Next Generat. Inform.
Technol., 7: 14-26.

Al-Qassas, R.S., M. Qasaimeh and H. Al-Nouri. 2016. A

fingerprint featured data encryption algorithm.

Proceedings of the 7th International Conference on

Information and Communication Systems, Apr. 5-7,

IEEE Xplore Press, Jordan, pp: 227-232.

 DOI: 10.1109/IACS.2016.7476116

Biham, E. and A. Biryukov. 1995. How to strengthen

DES using existing hardware. In: Advances in

Cryptology — ASIACRYPT'94, Pieprzyk, J. and R.

Safavi-Naini (Eds.), Springer, Berlin, Heidelberg,

ISBN-10: 978-3-540-59339-3, pp: 398-412.

Biham, E. and A. Shamir, 1991. Differential

cryptanalysis of DES-like cryptosystems. J.

Cryptol., 4: 3-72. DOI: 10.1007/BF00630563

Biryukov, A. and D. Wagner, 2000. Advanced Slide

Attacks. In: Advances in Cryptology —

EUROCRYPT 2000, Preneel, B. (Ed.), Springer,

Berlin, Heidelberg, ISBN-10: 978-3-540-67517-4,

pp: 589-606.

Brown, L. and J. Seberry, 1990. On the Design of

Permutation P in des Type Cryptosystems. In:

Advances in Cryptology — EUROCRYPT ’89,

Quisquater, J.J. and J. Vandewalle (Eds.), Springer,

Berlin, Heidelberg, ISBN-10: 978-3-540-53433-4,

pp: 696-705.

De Cannière, C., 2011. Triple DES. In: Encyclopedia of

Cryptography and Security, Van Tilborg, H.C.A.

and S. Jajodia (Eds.), Springer US, Boston, MA.

Dong, X., R. Li, H. He, W. Zhou and Z. Xue et al., 2015.

Secure sensitive data sharing on a big data platform.

Tsinghua Sci. Technol., 20: 72-80.

 DOI: 10.1109/TST.2015.7040516

Fahmy, A., M. Shaarawy, K. El-Hadad, G. Salama and

K. Hassanain, 2005. A proposal for a key-dependent

AES. Proceedings of the 3rd International

Conference on Sciences of Electronic, Technologies

of Information and Telecommunications, Mar. 27-31,

IEEE Xplore Press, Tunisia.

Friedewald, M., D. Wright, S. Gutwirth and E. Mordini,

2010. Privacy, data protection and emerging

sciences and technologies: Towards a common

framework. Innovation Eur. J Soc. Sci. Res., 23:

61-67. DOI: 10.1080/13511611003791182

Gauravaram, P., 2007. Cryptographic hash functions:

Cryptanalysis, design and applications. Published

dissertation in partial fulfillment of the

requirements for the degree of Doctor of

Philosophy Thesis, Queensland University of

Technology, Queensland, Australia.

Ilya, M., 2005. Hash functions: Theory, attacks and

applications. Proceedings of Microsoft Research,

Silicon Valley Campus, (SVC’05), pp: 1-22.

Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747

DOI: 10.3844/jcssp.2017.735.747

747

Kilian, J. and P. Rogaway, 2001. How to protect DES

against exhaustive key search (an analysis of DESX).

J. Cryptol., 14: 17-35. DOI: 10.1007/s001450010015

Kim, K., 1991. Construction of DES-like S-boxes Based

on Boolean Functions Satisfying the SAC. In:

Advances in Cryptology — ASIACRYPT '91, Imai,

H., R.L. Rivest and T. Matsumoto (Eds.), Springer,

Berlin, Heidelberg, ISBN-10: 978-3-540-57332-6,

pp: 59-72.

Knopf, C., 2007. Cryptographic Hash Functions. Leibniz

Universität Hannover, Germany.

Kocher, P., J. Jaffe, B. Jun and P. Rohatgi, 2011.

Introduction to differential power analysis. J.

Cryptographic Eng., 1: 5-27.

 DOI: 10.1007/s13389-011-0006-y

Kumar, S., C. Paar, J. Pelzl, G. Pfeiffer and A. Rupp et al.,

2006. How to break DES for euro 8,980. Proceedings

of the 2nd Workshop on Special-Purpose Hardware for

Attacking Cryptographic Systems, Apr. 3-4, Ruhr

University Bochum, Germany.

Lee, M., 2013. Investigating modern cryptography.

Published dissertation in partial fulfillment of the

requirements for the degree of Master of Science

Thesis, Universty of Windsor, Ontario, Canada.

Matsui, M. and A. Yamagishi, 1993. A New Method for

Known Plaintext Attack of FEAL Cipher. In:

Advances in Cryptology—EUROCRYPT’92,

Rueppel, R.A. (Ed.), Berlin, Heidelberg, ISBN-10:

978-3-540-56413-3, pp: 81-91.

Matsui, M., 1993. Linear Cryptanalysis Method for DES

Cipher. In: Advances in Cryptology—

EUROCRYPT’93, Helleseth, T. (Ed.), Springer,

Berlin, Heidelberg, ISBN-10: 978-3-540-57600-6,

pp: 386-397.
Matsui, M., 1994. On Correlation Between the Order of S-

Boxes and the Strength of DES. In: Advances in
Cryptology—EUROCRYPT'94, De Santis, A. (Ed.),
Springer, ISBN-10: 978-3-540-60176-0, pp: 366-375.

NIST, 2012. Recommendation for the Triple Data
Encryption Algorithm (TDEA) block cipher. NIST
Special Publication 800-67 Revision 1, National
Institute of Standards and Technology, United States.

Preneel, B., 2003. Analysis and design of cryptographic
hash functions. Published dissertation in partial
fulfillment of the requirements for the degree of
Doctor of Philosophy Thesis, Katholieke
Universiteit Leuven, Belgium.

Rogaway, P., 1996. The security of DESX. RSA
Laboratories Cryptobytes, 2: 8-11.

Rukhin, A., J. Soto, J. Nechvatal, M. Smid and
E. Barker et al., 2010. Statistical test suite for
random and pseudorandom number generators for
cryptographic applications. Special Publication 800-
22: Revision 1a. National Institute of Standards and
Technology, United States.

Schneier, B., 1996. Applied Cryptography: Protocols,
Algorithms and Source Code in C. 2nd Edn., John
Wiley & Sons, Inc., Indianapolis, IN, ISBN-10:
0471128457, pp: 758.

Shaikh, R. and M. Sasikumar, 2015. Data classification
for achieving security in cloud computing.
Procedia Comput. Sci, 45: 493-498.

 DOI: 10.1016/j.procs.2015.03.087
Sison, A.M., B.T. Tanguilig III, B.D. Gerardo and Y. Byun,

2012. Implementation of Improved DES Algorithm
in Securing Smart Card Data. In: Computer
Applications for Software Engineering, Disaster
Recovery and Business Continuity, Communications
in Computer and Information Science, Kim, T.,
C. Ramos, H. Kim, A. Kiumi and S. Mohammed et al.
(Eds.), Springer, Berlin, Heidelberg, ISBN-10:
978-3-642-35266-9, pp: 252-263.

Szydlo, M. and Y.L. Yin, 2006. Collision-Resistant
Usage of MD5 and SHA-1 Via Message
Preprocessing. In: Topics in Cryptology–CT-RSA
2006, Pointcheval D. (Ed), Springer, Berlin,
Heidelberg, ISBN-10: 978-3-540-31033-4, pp: 99-114.

Tawalbeh, L.A., N.S. Darwazeh, R.S. Al-Qassas and F.
Aldosari, 2015. A secure cloud computing model
based on data classification. Procedia Comput. Sci.,
52: 1153-1158. DOI: 10.1016/j.procs.2015.05.150

Van Tilborg, H.C.A. and S. Jajodia, 2011. Encyclopedia
of Cryptography and Security. 2nd Edn., Springer
US, ISBN-10: 978-1-4419-5907-2, pp: 1416.

Verdult, R., 2015. The (in) security of proprietary
cryptography. Published dissertation in partial
fulfillment of the requirements for the degree of
Doctor of Philosophy Thesis, Radboud University
Nijmegen, Netherland.

Verma, J. and S. Prasad, 2009. Security Enhancement in
Data Encryption Standard. In: Information
Systems, Technology and Management, Prasad,
S.K., S. Routray, R. Khurana and S. Sahni (Eds.),
Springer, Berlin, Heidelberg, ISBN-10: 978-3-642-
00405-6, pp: 325-334.

Yun-peng, Z., L. Wei, C. Shui-ping, Z. Zheng-jun and N.
Xuan et al., 2009. Digital image encryption algorithm
based on chaos and improved DES. Proceedings of the
International Conference on Systems, Man and
Cybernetics, Oct. 11-14, San Antonio, TX,
pp: 474-479. DOI: 10.1109/ICSMC.2009.5346839

Zhuang, Z., J. Chen and H. Zhang, 2014. A countermeasure
for DES with both rotating masks and secured S-boxes.
Proceedings of the 10th International Conference on
Computational Intelligence and Security, Nov. 15-16,
IEEE Computer Society, Washington, pp: 410-414.
DOI: 10.1109/CIS.2014.43

Zodpe, H.D., P.W. Wani and R.R. Mehta, 2012. Design
and implementation of algorithm for des
cryptanalysis. Proceedings of the 12th International
Conference on Hybrid Intelligent Systems, Dec. 4-7,
IEEE Xplore Press, Pune, pp: 278-282.

 DOI: 10.1109/HIS.2012.6421347

