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Abstract: The development of efficient algorithms for variable selection 
becomes important to deal with large and complex datasets. Most works in 
quantitative chemical analysis have used Genetic Algorithms (GAs) as a 
reference method to select variables. On the other hand, new advances in 
metaheuristic techniques provide novel possibilities in this task Moreover, 
the application of Multi-Objective Optimization (MOO) may significantly 
contribute to efficiently construct an accurate model in the context of 
multivariate calibration. MOO has showed itself as an efficiently and 
successful tool to dealing with conflicting objective-functions. For instance, 
the use of MOO may be considered as a good choice to treat the reducing of 
prediction error and the number of selected variables in a calibration model. 
In this paper, we present a modern metaheuristic implementation called 
Multi-Objective Firefly Algorithm (MOFA) for variable selection in 
multivariate calibration models. The goal is to propose an optimization to 
reduce the prediction error of the property of interest in the analysed sample 
as well as reducing the number of selected variables. However, the 
outcomes are remarkably promising compared with the previous work. 
Based on the results obtained, it is possible to demonstrate that our proposal 
is a viable alternative in order to deal with such conflicting objectives. 
Additionally, we compare MOFA with a traditional GA implementation 
and show that MOFA is more efficient for the variable selection problem. 
 

Keywords: Variable Selection, Multivariate Calibration, Firefly Algorithm 
 

Introduction 

The variable selection problem arises when one 

requires to model the relationship between a variable of 

interest and a set of potential explanatory variables (or 

predictors). It has become the focus of many research in 

areas of application with large datasets as chemometrics, 

where devices such as spectrophotometers have 

generated thousands of variables for just one sample 

(Beebe et al., 1998). To solve this problem, the use of 

selection methods it is necessary to select variables that 

yield the best prediction. In this sense, the development 

of efficient algorithms for variable selection becomes 

important in order to handle large and complex datasets 

(Paula et al., 2014; 2016). 
Most works in quantitative chemical analysis have 

used Genetic Algorihms (GAs) as a reference to select 

variables (Niazi and Leardi, 2012; Ferrand et al., 2011; 

Cong et al., 2013; Yun et al., 2014; Sarkhosh et al., 

2014; Wang et al. 2015). As reviewed by Niazi and 

Leardi (2012), in the last decades GAs have been even 

more frequently used to solve different kinds of 

problems in chemistry data. For instance, Ferrand et al. 

(2011) used a GA combined with a Partial Least Squares 

(PLS) regression to produce models with a reduced 

number of wavelengths and a better accuracy. The 

authors showed that the number of wavelengths 

considered was reduced substantially by four and 

accuracy was increased on average by fifteen percent. 

Cong et al. (2013) proposed a variable selection method 

that combines a GA with PLS to select proper descriptor 

subset for Structure-Activity Relationship (QSAR) 

modeling in a linear model. Their outcomes 

demonstrated that it was possible to gain satisfactory 

prediction results and can be extended to other QSAR 

studies. Yun et al. (2014) presented a modified GA with 
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PLS (GA-PLS) for variable selection in multivariate 

calibration. Based on their results, the authors showed 

that GA-PLS was able to perform an improvement on 

variable selection compared to the original GA-PLS. 

Finally, Sarkhosh et al. (2014) proposed an application 

of GAs for pixel selection in multivariate image analysis 

for a QSAR study of trypanocidal activity for quinone 

compounds and design new quinone compounds. They 

investigated the pixel selection effect by genetic 

algorithm application for PLS model. The resulted model 

showed a high prediction ability with low error values 

and the proposed QSAR model with GA-PLS was used 

for structure modification and their activity predicted. 
On the other hand, despite the success of GAs in these 
applications, new studies have demonstrated that the use 
of bio-inspired metaheuristics such as Firefly Algorithm 
(FA) may be an efficient optimization technique (Yang, 
2009; Paula et al., 2014; Paula et al., 2014). For 
instance, Yang (2010) proposed and used the FA for 
solving multimodal optimization applications. The 
author compared FA with Particle Swarm Optimization 
(PSO) and GA demonstrating superior performance of 
FA. According to Yang (2013), FA has two major 
advantages over other metaheuristics: (1) automatical 
subdivision: this means that the whole population can 
automatically subdivide into subgroups and each group 
can swarm around each mode or local optima; and (2) 
the ability of dealing with multimodality: that is, the 
subdivision allows the fireflies to be able to find all 
optima simultaneously if the population size is 
sufficiently higher than the number of modes. Thus, 
theses significant characteristics can be exploited to deal 
with complex search problems such as variable selection. 
Goodarzi and dos Santos Coelho (2014) presented a FA 
as a feature selection approach of Near Infrared (NIR) 
spectral information. Based on the results obtained, 
authors demonstrated that FA-PLS can improve 
prediction results in comparison to when only a PLS 
model was built using all wavelengths. However, in their 
approach a single-objective function was adopted in 
order to minimize the Root Mean Squared Error (RMSE). 
Finally, Paula et al. (2014) proposed a Graphics 
Processing Unit (GPU)-based FA with multi-objective 
formulation for variable selection in multivariate 
calibration problems. Their results showed that FA is a 
more suitable choice and a relevant contribution for the 
variable selection problem. Notwithstanding, authors 
applied a simple multi objective strategy in FA and used a 
relatively large number of fireflies. 
Often in multivariate calibration, it is performed a 

multi-objective analysis in the outcomes yielded by the 

variable selection algorithms. In such analysis, it is 

assessed the prediction error of the property of interest as 

well as the number of selected variables (Galvao et al., 

2011; Sofacles et al., 2012). Nevertheless, both 

objectives were not used in the proposal of Goodarzi and 

dos Santos Coelho (2014). Moreover, the strategy 

applied by Paula et al. (2014) does not provide the 

Pareto optimal front describing the relationship between 

both objectives. In general, multi-objective analysis is 

usually performed after the variable selection. In this 

context, the application of Multi-Objective Optimization 

(MOO) in metaheuristics can significantly contribute to 

efficiently construct an accurate model in multivariate 

calibration (Wang et al., 2015; Tan et al. 2014). 

Furthermore, MOO may be an efficient tool to deal with 

conflicting objective functions such as reducing the 

prediction error value and the number of selected 

variables. Therefore, this paper proposes an enhanced 

implementation of a Multi-Objective Firefly Algorithm 

(MOFA) for variable selection in multivariate calibration 

models using Multiple Linear Regression (MLR).  

It is important to highlight that a previous study was 

published in Paula et al. (2015). 

However, such paper provides only a simple MOFA 

implementation as well as a naive comparison against a 

standard GA. In this work, we aim to show how to adapt 

this metaheuristic, initially proposed for the continuous 

domain, into a binary problem (variable selection). 

Additionally, MOFA is capable of outperforming a 

traditional GA both in mono-objective as in multi-

objective formulation. Based on the results obtained, it is 

possible to demonstrate that MOFA is indeed a more 

efficient choice for the variable selection problem. 

The remainder of this paper is organized as follows. 

Section Firefly Algorithm depicts the original Firefly 

Algorithm. Section Proposal presents our proposed 

algorithm. The material and methods used to obtain 

results are described in Section Experimental. The 

results are discussed in Section Results. Finally, Section 

Conclusion shows the conclusion of the paper. 

Firefly Algorithm 

Nature-inspired metaheuristics have been a powerful 

tool in solving various types of problems (Yang, 2008; 

2009). FA is a recently developed optimization 

algorithm proposed by Yang (2009). It is based on the 

behaviour of the flashing characteristics of fireflies. A 

pseudocode for the original FA can be seen in the 

Algorithm 1. 

In the original algorithm, there are two important 

issues to be treated: (i) the variation of light intensity; 

and (ii) the attractiveness formulation. The attractiveness 

of a firefly is determined by its brightness or light 

intensity, which is associated with the encoded objective 

function (Yang, 2009). The brightness I of a firefly at a 

particular location x can be chosen as I(x)⇒ f(x). The 

light intensity I(r) varies with the distance r monotonically 

and exponentially as shown by Equation (1): 

 
r

o
I I e

γ−
=  (1) 
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where, Io is the original light intensity and γ is the light 

absorption coefficient. 

As a firefly's attractiveness is proportional to the light 

intensity seen by adjacent fireflies, one can define the 

attractiveness w of a firefly by: 

 
2

,

r

o
w w e

γ−
=  (2) 

 

where, ωo is the attractiveness at r = 0. 

The distance between any two fireflies is calculated 

using Cartesian distance in Equation (3): 

 
2 2

,
( ) ( ) .

i j i j i j
r x x y y= − + −   (3) 

 

According to Yang (2013), a firefly i is attracted to a 

brighter firefly j and its movement is determined by: 

 
2
,

0

1
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2
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γ
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 (4) 

 
Algorithm 1: Original Firefly Algorithm 

1.  Initialize a population of fireflies xi, i = 1, 2,..., n 

2.  Calculate objective function f(xi) for each firefly 

3.  Define light absorption coefficient γ  

4.  while t < MaxGeneration 

5.  for i = 1: n 

6.  for j = 1: n 

7.  Light intensity Ii at xi is determined from f(xi) 

8.  if (Ij > Ii) 

9.  Calculate the attractiveness between i and j 

which varies with distance r via exp[−γr] 

10.  Move firefly i towards j in all d dimensions 

according to the attractiveness between i and j 

11.  end if 

12.  Evaluate the new fireflies and update light 

intensities 

13.  end for j 

14.  end for i 

15.  Rank the fireflies and find the current best 

16. end while 

17.  Postprocess results 

 

Proposal 

Paula et al. (2014a) demonstrated that FA can be 

used for variable selection to solve multivariate 

calibration problems. The original formulation of FA 

uses the evaluation of a single objective and does not 

exploit additional features such as multi-objective 

optimization. However, previous works have showed 

that multi-objective algorithms can use fewer variables 

with a less prediction error (Lucena et al., 2013). Thus, 

this paper presents a Multi-Objective Firefly Algorithm 

(MOFA) for variable selection in multivariate 

calibration. Section Codification: A numerical example 

presents a numerical example in order to describe our 

strategy applied in the FA to adapt it for variable 

selection. Section Multi-Objective Optimization explains 

the multi-objective optimization strategy used in our 

proposed algorithm. 

Codification: A Numerical Example 

Let us consider a short variable selection problem 

with five variables available and only three fireflies. 

Initially, the fireflies (F1, F2 and F3) are uniformly 

distributed random numbers in the range [0, 1]: 

 

1

2

3

{0.83,0.35,0.31,0.42,0.95}

{0.16,0.75,0.22,0.71,0.89}

{0.98,0.84,0.78,0.86,0.26}

F

F

F

=

=

=

 

 

The variable selection problem may be considered as 

a binary problem. Therefore, each firefly must be 

encoded. In our algorithm, each variable information 

greater than 0.7 was encoded to 1. This means that such 

variable will be used in the regression model. The others 

one that are less or equal to 0.7 was encoded to 0, 

meaning that the variable will not be used: 

 

1

2

3

{1,0,0,0,1}

{0,1,0,1,1}

{1,1,1,1,0}

Encoded F

Encoded F

EncodedF

=

=

=

 

 

Soon after coding, each firefly is evaluated using 

Equation (5): 

 
1( ) ,T T

X X X yβ −

=  (5) 

 

where, X is the matrix of samples and independent 

variables, y is the vector of dependent variables and β is 

the vector of regression coefficients. 

In Equation (5), only the columns of X indicated by 

encoded fireflies are used in the regression model. The 

outcomes obtained by calculating Equation (5) represents 

the brightness for each firefly. Then, a firefly i is moved 

towards a firefly j always when the light intensity of 

firefly j is greater than light intensity of firefly i (In case of 

MOO, a firefly i is moved towards firefly j when the error 

prediction and selected variables obtained by firefly j are 

lower than those obtained by firefly i). For this purpose, 

the distance between fireflies must be calculated using 

Equation (3). With the distance between fireflies, one can 

calculate the attractiveness using Equation (2). As a result, 

all fireflies and encoded fireflies are updated. 

Iterations are repeated until all solutions have been 

updated. The updates allow solutions moving towards to 

the current optimal solution. Solution that produces the 
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best fitness (the lowest RMSEV (In this paper, RMSEV 

means Root Mean Squared Error of prediction on the 

Validation set) or the lowest number of selected 

variables) may be choosen by decision maker as the 

global best solution.  

Multi-Objective Optimization 

A Multi-objective Optimization Problem (MOP) 

deals with more than one objective function. MOP has a 

number of objective functions which are to be minimized 

or maximized (Deb, 2001). In this sense, a MOP may be 

described in its general form: 
 

 1
\ ( ) ( ( ),..., ( ))T

m
Minimize Maximize F x f x f x

subjcet to x

=

∈Ω
 (6) 

 

where, Ω is the decision space; F: Ω→ R
m
 consists of m 

real-valued objective functions; and R
m
 is called the 

Objective space. The attainable objective set is defined 

as the set {F(x)|∈ Ω}. 

In general, there is no point (or vector) in Ω that is 

capable of maximize (or minimize) all the objectives 

simultaneously. Thus, it becomes necessary to balance 

them. The best tradeoffs among the goals can be defined 

in terms of Pareto optimality (Zhang and Li, 2007). 

In mathematical terms, let u, v∈R
m
 be two random 

vectors. In case of minimization, vector u is said to 

dominate v if and only if (All the inequalities should be 

reversed if the goal is to maximize the objectives in 
Equation (6)):  
 

1. ui≤vi for every i ∈{1,..,m} 

2. uj≤vj for at least one index j ∈{1,..,m} 
 

A point x
*
∈ Ω is Pareto-optimal to Equation (6) if 

there is no point x∈Ω such that F(x) dominates F (x
*
). In 

this sense, a feasible solution x1∈Ω is said to dominate 

another solution x2∈Ω if and only if: 
 

1. fi(x1)≤ fi(x2) for every i ∈{1,..,m} 

2. fj(x1)≤ fj(x2) for at least one j ∈{1,..,m} 
 

In the multi-objective formulation of FA (MOFA), 

the choice of current best solution is based on these two 

steps. A solution x1∈Ω is called Pareto-optimal if there 

does not exist another solution that dominates it. Among 

non-dominated solutions, it is applied a multi-objective 

decision maker method described by Lucena et al. 

(2013) to choose the current best. Algorithm 2 shows a 

pseudocode for the proposed MOFA. In line 10 of 

Algorithm 2, a firefly i dominates another firefly j when 

its prediction error value and number of selected 

variables are lower. 

Algorithm 2: Proposed Multi-Objective Firey 

Algorithm 

1. Parameters: XN×m, yN×1 

2. s ← number of fireflies 

3. for n = 1: MaxGeneration 

4. Generate randomly a population Pops×m of fireflies 

5. Compute Equation (5) for each firefly 

6. Compute Equation (7) for each firefly 

7. Compute the number of selected variables for each 

firefly 

8. for i = 1: s 

9. for j = 1: s 

10. if firefly i dominates firefly j 

11. Move firefly j towards firefly i using Equation 

(4) 

12. end if 

13. end for j 

14. end for i 

15. end for n 

16. Calculate RMSEV and variable selected for all 

fireflies 

17. Visualize the variables indicated by them 

18. Select the best firefly by decision maker (Algorithm 

3) 

 
The number of variables can be treated as a problem 

constraint. In this case, the algorithm would minimize 
only the prediction error of the model, as proposed by 
Goodarzi and dos Santos Coelho (2014). Consequently, 
the number of variables to be selected should be 
informed by user which would depend on a prior 
knowledge about the database and a fortuitous number 
over a range of the ideal number of variables. On the 
other hand, the advantage of MOO consists on the fact 
that the algorithm can optimize this number as a free 
parameter which is independent of prior knowledge. 
In the multi-objective optimization, the algorithms 

must search solutions with a maximum spread as 
possible to explore the search space considering the 
objectives of the problem. In the end, a set of solutions 
are provided, generally they are non-dominated, that is, 
does not exist another feasible solution better than the 
current one in some objective function without 
worsening other objective function. Our MOFA yields 
a set of solutions, that explored the search space, in its 
final population. However, in practical terms, an 
analyst probably should choose at least one solution to 
be used. In this sense, we proposed a decision maker to 
help in this task. The final choice from a multi-
objective optimization is an open problem because it 
depends strongly of the problem and the objectives 
considered. As far as we know, there is no proposals 
considering multi-objective optimization for the 
variable selection problem in chemometrics neither a 
decision maker to choose a final solution considering 
the aspects of the application. 
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In order to help choosing a solution within this set, 

we used the Wilcoxon signed-rank Ramsey et al. (1993) 

as a decision maker (Lucena et al., 2013). Wilcoxon 

Signed-Rank is a nonparametric hypotheses test used 

when comparing two related samples to evaluate if the 

rank of the population means are different. Instead of 

choosing a solution from one of the extremes of the 

Pareto front, this test can be used to choose the best 

solution on an optimized manner. Moreover, it can be 

used as an alternative to the Paired t test for small 

dependent samples when the population cannot be 

assumed as a normal distribution (Ramsey et al., 1993). 

Algorithm 3 describes the decision maker. The test is 

applied on the residuals values calculates over the 

validation dataset. It is note-worthy that the first 

condition in line 7 of Algorithm 3 (h = 0) refers to a 

value returned by the Matlab built-in function 

(wilcoxonSignedRank). Furthermore, the second 

condition (Nj<Nbest) indicates the number of selected 

variables by firefly j and best, respectively. 

Although proposing a method that in the end makes a 

choice primarily based on the prediction error, the 

number of options have solutions that have been 

optimized in both parameters (RMSEV and number of 

variables).  

 

Algorithm 3: Decision Maker 

1. Parameters: Pops×m.  

2. best ← index of firefly that has the lowest RMSEV 

3. e1 ← Residuals calculated in the validation dataset 

using firefly 1 

4. for j = 2 to s 

5. ej ← Residuals calculated in the validation dataset 

using firefly j 

6.  h ← wilcoxonSignedRank (e1, ej) 

7. if h = 0 and Nj < Nbest 

8.  e1 ← ej 

9. best ← j 

10. end if 

11. end for 

12. Return firefly best 

 

Experimental 

Data Set 

The real dataset employed in this work consists of 

whole grain wheat samples, obtained from vegetal 

material from occidental Canadian producers. The 

standard data were determined at the Grain Research 

Laboratory as in works of Paula et al. (2014b) and 

Soares et al. (2010; 2013). The data set for the 

multivariate calibration study consists of 1090 Near-

Infrared (NIR) spectra of whole-kernel wheat 

samples, which were used as shoot-out data in the 

2008 International Diffuse Reflectance Conference 

http://www.idrcchambersburg.org/shootout.html). 

The Kennard and Stone (1969) algorithm was applied 

to the resulting spectra to divide the samples into three 

sets: calibration, validation and prediction. Calibration 

set contained 389 samples (Each sample in calibration, 

validation and prediction sets contains 690 

wavelengths) and was used to calculate the regression 

coefficients. The validation and prediction sets 

contained 193 samples both. The validation set was 

employed to guide the variable selection in FA, GA, 

MOFA and NSGA-II. The prediction set was only 

employed in the final performance assessment of the 

resulting MLR models. In this paper, we used two 

different terms: RMSEV and RMSEP. The former 

indicates that the validation set was used in the error 

assessment and the latter indicates the prediction set. 

Metrics 

As shown in Equation (7), predictive ability of MLR 

models comparing predictions with reference values for 

a test set from the squared deviations can be calculated 

by Root Mean Squared Error of Prediction: 

 
2

1
ˆ( )

,

N

i i i
y y

RMSEP RMSEV
N

=

−

= =

∑
 (7) 

 

where, y is the reference value of the property of interest, 

N is the number of observations and 
1 2

ˆ ˆ ˆ ˆ{ , ,..., }T
N

y y y y=  is 

the estimated value calculated as: 

 

 ŷ Xβ=  (8) 

 

Another criteria that may be used to determine the 

predictive ability of MLR models is the Mean Absolute 

Percentage Error (MAPE) Hibon and Makridakis (1995). 

MAPE is a relative measure to express errors as a 

percentage of the actual data defined as: 

 

ˆ

(100) (100),

i i i

i i

y y e

y y
MAPE

N N

−

= =

∑ ∑
 (9) 

 

Setup of the Algorithms 

The proposed MOFA was implemented using α = 

0.2, γ = 1 and ω0 = 0.97 as proposed by (Yang, 2010). 

The number of fireflies was defined empirically as 100 

and the number of generations as 300. A presents the 

convergence analysis for MOFA implementation. In the 

mono-objective formulation the fitness is the Root Mean 

Square Error of Validation (RMSEV) and in the MOFA 

the objectives are (1) the RMSEV and (2) the number of 

selected variables.  
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We have used for comparison the Non-dominated 

Sorting Genetic Algorithm (NSGA-II), in particular, the 

same implementation of Lucena et al. (2013). The main 

difference between NSGA-II and a simple GA is how the 

selection operator is applied. This operator is divided 

into two processes: (i) Fast Non-dominated Sorting; and 

(ii) Crowding Distance. Table 1 presents the 

configuration for NSGA-II and GA. For GA the fitness 

is the Root Mean Square Error of Validation (RMSEV) 

and for NSGA-II the objectives are (1) the RMSEV and 

(2) the number of selected variables. The number of 

maximum number of generations for NSGA-II was 

defined using convergence analysis presented in the A. 
In the Partial Least Square (PLS) study, the 

calibration and validation sets were joined into a single 
modeling set, which was used in the leave-one-out cross-
validation procedure. The number of latent variables was 
selected on the basis of the cross-validation error by 
using the F-test criterion of Haaland and Thomas (1988) 
with α= 0.25. The prediction set was only employed in 
the final evaluation of the PLS model. 
All calculations were carried out by using a desktop 

computer with an Intel Core i7 2600 (3.40 GHz), 8 GB 
of RAM memory and Windows 7 Professional. The 
Matlab 8.1.0.604 (R2013a) software platform was 
employed throughout. 
Regarding the outcomes, it is important to note that all of 

them were obtained by averaging twenty executions. 

Multi-Objective Evaluation 

According with literature Jiang et al. (2015; 
Azevedo et al., 2011; Auger et al., 2012), in the multi-
objective optimization, two key issues are important: 
first, a solution that is better than another solution in all 
objectives should be preferred over the latter. Second, 
the diversity of solutions should be supported. The 
hypervolume metric offers one possibility to achieve 
the two aspects (Jiang et al., 2015). 
The hypervolume indicator corresponds to the 

integral of a weight function over the set of objective 
vectors that are weakly dominated by a solution set and 
in addition weakly dominate the reference point 
(Auger et al., 2012). A reference point was set in 150 
and 15 for number of variables and RMSEP, respectively. 
 
Table 1: NSGA-II and GA Configuration 

 NSGA-II and GA 

Population Size 100 and 100 

Maximum Number 500 and 300 

of Generations 

Selection Operator Binary Tournament 

Mutation Operator Flip 

Mutation Probability 0.3 in the individual and 0.05 in the gene 

Crossover Operator Uniform Crossover and One Point 

Crossover Probability 0.5 and 1  

Maximum Number 300 and 300 

of Variables 

We used a implementation obtained in file exchange 

website of the matlab 

(http://www.mathworks.com/matlabcentral/leexchang

e/19651-hypervolumeindicator). 

Results 

Mono-Objective Formulation 

For comparison of mono-objective implementations, 
both algorithms GA and FA use the same randomly 
generated initial solutions in 30 trials. The results are 
showed in Table 2. One can see that FA generates a 
model with better generalization (in average) when 
compared with GA and PLS. However, the number of 
variables is still large.  

Multi-Objective Formulation 

As proposed, the number of variables can be 
optimized in the same time as error of prediction. 
However, since the optimal Pareto front is unknown, the 
best way to proceed the evaluation of multi-objective 
optimization is to test the proposed approach on the same 

problem against other established Multi- Objective 
algorithm, in this case, the NSGA-II. Table 3 presents the 
hypervolume obtained for 30 trials for each algorithm. In 
this case, each trial correspond to one set of randomly 
initial solutions. The average hypervolume of MOFA 
was approximately 7.88% better than NSGA-II. The 

maximum value (1274) were obtained by MOFA while 
the minimum value  (1120)  was  obtained  by NSGAII. 
From this result we can conclude that MOFA covers in a 
better way the multi-objective search space of the problem. 
 
Table 2: Results for FA, GA and PLS algorithms with mono-

objective 

 Number of 

 variables  RMSEP  MAPE 

 ---------------------- ----------------------- ------------------------- 

 Average Lowest Average Lowest Average Lowest 

FA 99 84 0.06 0,05 0.70% 0.66% 

GA 305 261 0.08 0.07 0.76% 0.72% 

PLS 3* - 0.07 - 0.75% - 

 

Table 3: Hypervolume comparison for NSGA-II and MOFA 

 Maximum Minimum Average 

NSGA-II  1120 904 989 

MOFA 1274 925 1067 

 

Table 4: Comparisons between NSGA-II and MOFA 

 Average  Lowest 

 ------------------------- ------------------------------ 

Algorithm Error Num. Var. RMSEP num. var. 

NSGA-II 0.12 125 0.09 (124+) 86 (0:11_) 

MOFA 0.07 62 0.05 (37+)  1 (0:12_) 

+Number of variables 

*RMSEP 
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Table 4 presents the results for MOFA 
implementation. The multi-objective formulation in the 
FA optimized both RMSEV and number of variables, 
therefore MOFA improved the results compared to 
mono-objective formulation. When compared with 
NSGA-II implementation, MOFA presents the lowest 
RMSEV as well as the lowest number of selected 
variables. The best solution obtained by MOFA has 0.05 
of error using only 37 variables. 

Conclusion 

The use of Firefly Agorithm (FA) has been widely 
used to solve several types of optimization problems. 
However, it has not been commonly used for variable 
selection in multivariate calibration model. Moreover, 

the application of Multi-Objective Optimization in FA 
has demonstrated that it is possible to achieve viable 
outcomes when conflicting-objective functions are 
present in the problem. In this context, this paper 
proposed an enhanced implementation of the Multi-
Objective Firefly Algorithm (MOFA) for variable 

selection involving NIR spectrometric analysis of wheat 
samples. The objective was to propose an optimization 
procedure to reduce the prediction error value of the 
property of interest as well as reducing the number of 
selected variables. Additionally, we presented a 
comparison between our proposed MOFA and a 

traditional genetic algorithm called NSGA-II. Based on 
the results obtained, it was possible to demonstrate that 
MOFA can be indeed a better solution for obtaining a 
calibration model with an adequate prediction ability and 
a reduced number of variables. 
Future works may present the use of other 

bioinspired metaheuristics such as Bat Algorithm for 
variable selection in multivariate calibration. 
Furthermore, a comparison between MOFA and other 
metaheuristics may be performed. It is worth mentioning 
that the choice of a set of non-dominated solutions is an 
open problem in multi-objective optimization and other 
options may be presented in contrast to what we 
proposed in this paper. 
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