

© 2017 Saufi Bukhari, Ku Ruhana Ku-Mahamud and Hiroaki Morino. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Fault Tolerance Grid Scheduling with Checkpoint Based on

Ant Colony System

1
Saufi Bukhari,

2
Ku Ruhana Ku-Mahamud and

3
Hiroaki Morino

1,2School of Computing, Universiti Utara Malaysia, Malaysia
3Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan

Article history

Received: 15-05-2017

Revised: 25-08-2017

Accepted: 24-08-2017

Corresponding Author:

Saufi Bukhari

School of Computing,

Universiti Utara Malaysia,

Malaysia
Email: saufi@ahsgs.uum.edu.my

Abstract: Task resubmission and checkpoint are among several popular

techniques used in providing fault tolerance in grid computing. However,

due to the lack of side-by-side comparison, it is not certain of the best

technique that would not degrade the system performance in addition to

providing fault tolerance capability. This study proposed Dynamic ACS-

based Fault Tolerance in grid computing using resubmission to new

resource, checkpoint technique and utilization of resource execution history

with the aim to reduce execution and task processing time and to increase

the success rate in grid environment. The proposed algorithm is compared

with other relevant algorithms to measure the performance in terms of

execution time, success rate and average processing time. The results

suggest that the proposed algorithm with improved task resubmission,

checkpoint and extended pheromone update formula gives better

performance in managing execution failure as well as resource selection

during task assignment or resubmission.

Keywords: Grid Computing, Fault Tolerance, Task Resubmission, Task

Checkpoint, Ant Colony System

Introduction

Fault tolerance is essential in a distributed system,

specifically grid computing, where systems are allowed

to recover and continue to operate despite failure

occurrence during runtime. Fault tolerance consists of

three main strategies, which are fault detection or

identification, fault prediction and fault recovery. Fault

detection or identification generally is for detecting the

type of fault when it occurs before mitigating it with the

most suitable solution. On the other hand, fault

prediction focuses on predicting the probability of fault

to occur based on historical data and applies a suitable

scheduling policy to reduce fault probability. Last but

not least, fault recovery consists of several popular

techniques such as job replication (space-sharing) and

check-pointing (time-sharing) (Altameem, 2013). The

advantage of job replication is that it does not require re-

computation because each job has several simultaneous

copies assigned to different resources and if one fails, the

others can still be processed. However, this technique is

not very effective because a copy of a job is considered as

individual execution and may potentially congest the job

queue. Checkpoint is another technique that requires the

state of running tasks to be stored at a defined checkpoint

and if the job fails, the execution will restart from the last

saved state instead of from the beginning. This technique

ensures that failed tasks will be reprocessed from the last

saved state instead of from the beginning and eventually

can greatly save the execution time.

Fault tolerance is often integrated with the typical

scheduling algorithm. Keerthika and Kasthuri (2011)

proposed fault tolerance time to release the scheduling

algorithm, which is based on transmission time and fault

rate. Time to Release (TTR) is calculated for each

resource, while expected deadline is calculated for each

job. The job will only be submitted to the resource that

has TTR lower than expected deadline. The application

checkpoint was proposed by Bawa and Singh (2012) to

eliminate the need to restart the job execution from the

beginning during failure. The checkpoint information is

stored by the central point, or known as the manager and

will be retrieved back in the occurrence of failure. There are

also several fault tolerance algorithms based on bio-inspired

algorithms, specifically Ant Colony Optimization (ACO) as

proposed by Wenming et al. (2009), Modiri et al. (2011),

Mandloi and Gupta (2013), Vedulla et al. (2013) and

Prashar et al. (2014). In ACO, pheromone is employed to

indicate the fitness of routing path or resource used during

path or resource selection process.

Saufi Bukhari et al. / Journal of Computer Science 2017, 13 (8): 363.370

DOI: 10.3844/jcssp.2017.363.370

364

(a)

 (b)

(c) (d)

Fig. 1. Illustration of the way ants find alternative resource during failure (a) A path to optimal resource Ra is established by Ant1 and

task is submitted (b) Resource Ra fails to complete execution and resubmission flow is invoked (c) A new path to alternative

resource Rb is established by Ant1 and task is submitted and processed completely (d) Following Ant2 from different source

selects the optimal path to Rb constructed by previous Ant1 to assign the next task

ACO is a biologically-inspired algorithm that

provides an adaptive concept for solving optimization

problems and designing metaheuristics algorithms

(Dorigo and Stützle, 2004; Ferdaus et al., 2014). This

algorithm is based on the evolutionary approach,

where the best solution is searched by a group of ants

that work together within the colony. The complete

solution is built by combining all the individual

solutions of each ant, which are also known as pheromone

deposits on the chosen solution or path. The strength of

the pheromone is used by other ants as a reference to

choose the most optimized path. ACO is very effective

when dealing with scheduling and load balancing, but the

optimal path finding capability allows an alternative path

to be constructed in the presence of fault as illustrated in

Figure 1(a-d) respectively.

ACO consists of multiple variants such as Ant

System (AS), MAX-MIN Ant System (MMAS) and Ant

Colony System (ACS) (Dorigo and Stützle, 2004). The

ACO algorithm is suitable to be extended to include the

fault tolerance capability because it can be easily adapted

to solve both static and dynamic combinatorial

optimization problems (Lorpunmanee et al., 2007; Ku-

Mahamud and Alobaedy, 2012; Goyal and Singh, 2012).

ACO is flexible to be modified and combined with other

nature-inspired swarm intelligence approaches such as

Intelligent Water Drop (IWD) to speed up optimal

scheduling, in addition to minimizing make span,

balancing the load and utilizing resources efficiently

(Mathiyalagan et al., 2013). Modiri et al. (2011)

combined the ACS algorithm with the Directed

Acyclic Graph (DAG) method to cater both load

balancing and fault tolerance aspects whereby

scheduling process adopted DAG method and fault

tolerance adopted ACS algorithm.

Most of related works cited in this article focus on

improving the task assignment process to reduce the

possibility of failure during execution. In addition to

that, some related works focus on task resubmission but

without checkpoint and with checkpoint but lack of

proper validation. Related works in fault tolerance are

presented in Section 2, while the proposed algorithm is

covered in Section 3. The analysis on experimental

results is covered in Section 4 and finally, the conclusion

is provided in Section 5.

Related Work

Enhanced Ant Colony Optimization (EACO) was

proposed by Ku-Mahamud and Nasir (2011) to improve

the load balancing of grid scheduling by considering the

capacity of each resource. Dynamic evaporation rate is

introduced to determine the rate of pheromone

evaporation based on the number of tasks and resources.

This will ensure that whenever the number of tasks to be

processed by each resource is high, the evaporation rate

will be small, else, the evaporation rate will be high.

Results showed that controlling the evaporation rate

can effectively balance the load of all resources where

the number of tasks assigned to each resource falls

within very small margin from the expected number of

tasks to be assigned.

Saufi Bukhari et al. / Journal of Computer Science 2017, 13 (8): 363.370

DOI: 10.3844/jcssp.2017.363.370

365

Trust-based Ant Colony Optimization (TACO) for grid

resource scheduling was proposed by Wenming et al.

(2009) with the aim to minimize the completion time of

jobs, balance all workloads on available resources and at the

same time, to introduce the resource-oriented trust

mechanism in handling the resource failure problem.

Trustworthiness is considered during the resource

selection process as it depicts the fitness level of a

particular resource. High trust indicates that the resource

is highly reliable and will lead to minimum probability

of failure. In terms of the fault tolerance aspect, their

proposed algorithm used resubmission to other available

resources. Since the trust level is based on the execution

history, it is possible that the recently failed resource

may still be the most preferred resource in the next cycle.

However, it would be effective if the checkpoint

technique is adopted to eliminate the need to reprocess

failed tasks from the beginning and reduce the

processing time.

A study by Modiri et al. (2011) proposed a new

algorithm to manage fault in grid computing by

combining the ACS algorithm and Directed Acyclic

Graph (DAG) method. By using the DAG method, all

tasks are sorted by their dependency. Thus, an offspring

task may not begin its work until the parent task is

completely executed. All the sorted tasks will go through

the resource allocation process using ACS, where ants

will try to find the optimal combination of tasks and

resource. Once the resource allocation is done, tasks will

be executed according to their sorted order. To balance

the system load, local pheromone update is applied to

route between current task and selected processor while

global pheromone update is applied to the optimal route

once all solutions are constructed. The main focus of

their algorithm is to provide effective resource allocation

but without recovery action such as resubmission. The

effectiveness of this algorithm can be further improved

by integrating recovery actions to ensure all the failed

tasks are executed completely in the end of the session.

Hybrid ACO with Genetic Algorithm (GA) was

proposed by Mandloi and Gupta (2013) to overcome the

uncontrolled nature of metaheuristics of AS, which could

degrade the performance of grid allocation. GA is used

to choose whether to increase or decrease pheromone

update parameters in AS. At the start, ants will randomly

select resources to be assigned into subsets. Then, each

subset will be evaluated to find the lowest estimated

error and will be sorted ascendingly. The best subset will

be used to execute tasks in each iteration and the

pheromone trail for the chosen subset will be updated.

Resources within the best subset will have a high

chance to be selected in the subsets of the next

iteration. The algorithm can be further upgraded by

considering the load balancing aspect and the way to

handle job failure when it happens.

Fault Tolerance ACO (FTACO) using checkpoint in

grid computing was proposed by Prashar et al. (2014)

with the aim to solve fault and load balancing problems.

The ant-based approach was adopted in the checkpoint

mechanism to effectively utilize dynamic resources in

grid computing. Ants will move to find an optimal path

to process a job and detect the occurrence of failure

during job execution. The fault index manager is used to

store the list of failures that have occurred in resources

during job execution as a reference to the next job

iteration. Based on the information in the fault index

manager, jobs are re-scheduled to other optimal

resources by using the checkpoint mechanism, where the

job is restarted from the last saved checkpoint instead of

from the beginning. The re-scheduling process considers

load balancing on each resource, where a resource with

low workload has a high probability to be chosen. The

pheromone update mechanism is also used to solve the

load balancing problem. Additionally, adding the

resource recovery technique may further enhance the

functionality of the proposed algorithm. However, due to

the lack of experimental results, it is not certain on how

good is the proposed algorithm.
Job scheduling with fault tolerance in grid computing

using ACO was proposed by Idris et al. (2017) to satisfy
user’s Quality of Services (QoS) which employs
resource failure rate and checkpoint-based roll back
recovery strategy. During task execution, fault index
manager will continuously interact with checkpoint
handler to record resource failure rate. When job
completion message is received, success index will be
incremented. The same case applies whereby failure
index will also be incremented when job failure message
is received. The resource failure rate stored in fault index
manager is used to control the occurrence and interval of
checkpoint during scheduling process. In addition to
that, for each occurrence of failure, rollback recovery
technique will be applied to save the execution time. It is
claimed that controlling the occurrence and interval of
checkpoint can enhance the performance of fault
tolerance system based on checkpoint. The results
showed that the proposed algorithm reduces makespan,
increases throughput and average turnaround time.
Despite the effectiveness of controlling the checkpoint
interval to improve QoS, it is also essential to consider
load balancing aspect to reduce possibility of stagnation.

ACO is considered as a potential algorithm in grid

computing to solve fault problems. Several approaches

have been identified to provide fault tolerance such as

checkpoint, task resubmission and resource

trustworthiness. Despite all these approaches, it is still

unclear on how the recently failed resource will not be

re-selected for a certain cycle count and how does the

checkpoint approach can be effectively implemented

using ACO with the structured validation process.

Saufi Bukhari et al. / Journal of Computer Science 2017, 13 (8): 363.370

DOI: 10.3844/jcssp.2017.363.370

366

However, task resubmission to other resources and

checkpoint can be further combined with the

consideration of resource fitness to improve the fault

tolerance aspect without disregarding the performance as

well as to adapt with the dynamic grid environment.

Proposed Dynamic ACS-based Fault

Tolerance with Checkpoint

Dynamic ACS-based Fault Tolerance (DAFT) is

inspired by the concept of ant searching for the optimal

path to the most suitable resource to assign tasks. This

basic concept is further extended for ants to have the

ability to perform resource researching during the

resubmission process to ensure that any failed task will

be processed completely. In addition to that, the

pheromone update technique is further improved as a

mechanism to penalize unfit resources so that they

become less attractive and eventually reduce the

possibility of failure and properly control the task

assignment based on resource fitness.

Figure 2 illustrates the high-level workflow of

DAFT. For each task, an ant will be generated, which is

responsible to perform resource selection based on

pheromone values. The initial pheromone value will first

be initiated to determine the state of all resources before

the first task in queue can be submitted. The selection of

resources will be based on the amount of pheromone

values either from the initial pheromone calculation or

pheromone update process. During the execution, each

task will be divided into several checkpoints, which will

be processed in sequence to preserve the authenticity of

the output. If the execution is successful, the global

pheromone update will be applied by the ants to the

resource to increase the pheromone after execution.

However, in case of any failure during execution, the last

checkpoint will be resubmitted to another suitable resource

and local pheromone update will be applied. In addition to

that, local pheromone update will also be applied in each

successful checkpoint. Lastly, the resource will be released

with updated pheromone for the next task assignment.

Yes

START

Calculate initial pheromone

value for each combination of

task and resource

For each task in queue, ant

checks for the best resource

with highest pheromone

Is task completed?

STOP

Task execution by the

best resource

Are all tasks

completed?

Save checkpoint

information

Apply global

pheromone update

No

No

Yes

Apply local

pheromone update

Increase resource

success count

Is task failed?
No

Retrieve

checkpoint

information

Yes

Resubmit failed

job from the last

saved state

Apply local

pheromone update

Increase resource

failure count

Increase resource

success count

Apply local

pheromone update

Fig. 2. High-level workflow of DAFT

Saufi Bukhari et al. / Journal of Computer Science 2017, 13 (8): 363.370

DOI: 10.3844/jcssp.2017.363.370

367

During the initial task submission, each resource
should have pre-defined parameters such as processor
speed, current load and bandwidth and number of
processing elements. All these parameters will be used to
calculate the initial pheromone value, PVij for each
combination of resource i and task j. The initial
pheromone value formula is given by the formula (1):










−
+=

)1(ii

j

i

j

ij
loadMIPS

C

bandwidth

S
PV (1)

Where:

Sj = The size of a given task j

Bandwidthi = The available bandwidth of resource i

Cj = The CPU time needed of task j

MIPSi = The processor speed

Loadi = The current load at resource i

Note that the initial pheromone value is assigned
during initialization, but after that, it is considered as
a resource pheromone value. Since the initial
pheromone value is calculated for each combination
of task and resource, this information is stored in a PV
matrix (2) as follows:



















=

−

−−−−−

−

−

nmnmmm

nmnmmm

nn

nn

matrix

PVPVPVPV

PVPVPVPV

PVPVPVPV

PVPVPVPV

PV

,1,2,1,

,11,12,11,1

,21,22,21,2

,11,12,11,1

 (2)

Where:

n = Total number of tasks

m = Total number of resources

PVmatrix = A logical form of ant topology whereby an

ant would move from one index to another

index to find the best resource for task

assignment

It is assumed that all the resources are interconnected

which means that if the task originates from a specific

resource, it can be assigned to all other available

resources. Each row in PVmatrix presents the list of

possible tasks for resource i while each column

represents the list of possible resources for task j.

The largest pheromone value in each column will be

considered by the ant as the most fit resource and the

task will be assigned to the resource referenced by the

selected index for processing. As soon as the task is

assigned, the pheromone value in PVmatrix at respective

row will be updated by the global pheromone update (3)

to decrease the amount of pheromone assigned to the

current resource, so that it becomes less attractive by the

next ant and leads to the exploration of other resources:

ijijij τρτρτ ∆+−= .).1((3)

τij is the amount of pheromone on the resource, while

∆τij is 1/Lbest, where Lbest denotes the length of global best

tour or otherwise (no global best tour found), ∆τij=0. ρ is

the evaporation rate that is dynamically controlled by

using the following formula (4) with m and n as the total

number of resources and tasks respectively:

1
2

−



















=
m

n
ρ (4)

The task assignment will continue while the

previously assigned task is being executed. However, if
the execution is not successful, the task will be
resubmitted from the last saved checkpoint to another
suitable resource. On the other hand, the checkpoint
information will be recorded during the execution for each
task being executed and this information is also used to
update the execution history t able for each resource.

In every checkpoint, another round of local
pheromone update (5) will be applied to reduce more
pheromone value by considering the execution history to
influence the reduction of pheromone; the success status
would slightly reduce pheromone, while the failure
status would reduce more pheromone:

)(.).1(0 iijij Eτρτρτ +−= (5)

τ0 is the initial pheromone value of resource i, while Ei is

the execution history of resource i and calculated by
dividing the number of successful checkpoints with
the total number of checkpoint calls (failure +
successful) at resource i.

Fig. 3. High-level pseudocode of DAFT

1. Initialization

1.1 All the parameters are set

1.1 Calculate the initial pheromone value for each resource

1.2 Spawn an individual ant for each task

1.3 Identify the resource with the highest initial pheromone

value for the first iteration

2. Main loop begins

2.1 The ant finds the best the resource with the highest

pheromone value

2.2 Once found, the ant gives a signal for task submission and

applies formula (3)

2.3 Task submission and processing begins

2.4 While task assignment status = false

2.4.1 Repeat step 2.1

2.5 While task execution status = false

2.5.1 If task execution does not fail, save checkpoint,

increase success count and apply formula (5)

2.5.2 Else if task execution failed, retrieve the last

checkpoint, increase failure count, apply formula (5)

and repeat step 2.1

2.5.3 Else if task execution status = true, increase success

count and apply formula (5)

3. Terminate the execution when both task assignment

status = true and task execution status = true

Saufi Bukhari et al. / Journal of Computer Science 2017, 13 (8): 363.370

DOI: 10.3844/jcssp.2017.363.370

368

The execution history Ei (or defined as resource

fitness) is extended to existing local pheromone update

formula and will be used by ants to control the amount

of pheromone reduction; the better the execution history

is, the lower the pheromone is reduced. In contrast, low

execution history leads to higher reduction of pheromone

in each resource.

The high-level pseudocode of DAFT is further

illustrated in Figure 3 in which every step that requires

computation is properly mapped to respective formula.

Experimental Results

To validate the performance of the proposed DAFT

algorithm, the mean success rate is defined at 70% (0.7)

with the error range represented by a standard deviation

of ± 0% (0.0) up to ± 30% (0.3). The success rate is

assigned using the pseudorandom algorithm with a

standard deviation to define the range to each individual

resource during the initialization process. Each resource

has different success rate and this information is not known

by the ants during the resource assignment. To ensure that

the experiment on failure is reliable, each individual

resource is set to have the same processing capability

(except for success rate) as shown in Table 1. Grid resource

characteristics such as PE rating, bandwidth, and number of

machine per resource are defined based on parameters used

by Idris et al. (2017). DAFT algorithm is compared with

TACO proposed by Wenming et al. (2009) and fault

tolerance FTACO proposed by Prashar et al. (2014) which

are reimplemented in GridSim Toolkit based on published

flowchart, pseudocode and formulation. Each scenario is

executed 10 times where the average is taken for a more

accurate measurement.

Figure 4 shows that the execution time slightly
decreases when the error range is increased for both
checkpoint scenarios (FTACO and DAFT), while it
greatly decreases for scenario without checkpoint

(TACO). Both FTACO and DAFT have relatively
equivalent performance. However, as the range
increases, the heuristic capability of the ant algorithm
can make better decisions on resource selection during
resubmission, whereby it will be influenced to assign to
the resource with the highest pheromone value and

ultimately shortens the execution time. This is aligned
with the actual distributed scenario that has many non-
homogeneous resources with different fitness.

Figure 5 shows that the success rate increases in

parallel with the standard deviation, where DAFT has

the highest success rate as compared to TACO and

FTACO. Again, this supports the fact that better decision

making during the resource assignment with

consideration of execution history can reduce the

possibility of failure. Furthermore, with the application of

checkpoint technique, the need for the failed task to be

restarted from the beginning is eliminated and eventually

reduces the exposure of task execution to possible failure.

Table 1. Simulation parameters

Parameter Value

Number of tasks 10000

Number of resources 100

PE rating 50 MIPS

Bandwidth 5000 B/S

Number of machine per resource 1

PE per machine 5

Mean success rate 0.7

Range of resource success rate 0-0.3

(Interval: 0.05)

Fig. 4. Results of execution time

Fig. 5. Results of success rate

Fig. 6. Results of average processing time per task

Saufi Bukhari et al. / Journal of Computer Science 2017, 13 (8): 363.370

DOI: 10.3844/jcssp.2017.363.370

369

Figure 6 shows that the average processing time per
individual task decreases along with error range
increment. DAFT has the best performance at a standard
deviation of 0.3 (each resource having a possibility of
success from 40% up to 100%). Another significant
output from the results is that the heuristic capability of
the ant algorithm during the resource assignment can
select the best resource according to its fitness regardless
of whether the checkpoint is applied or not. This fact
ultimately reduces the processing time for each task.

In real grid environment, each available resource will
have different fitness in addition to processing
capability. In this case, the minimum and maximum
fitness value can be used to form fitness range. The
results suggest that the wider the range is, the better
heuristic capability can improve task assignment process
and eventually improve the performance in grid
environment with high probability failure. Consideration
on the resource execution history is proven to be
effective as ants can make better decisions in selecting
the most fit resource. In other words, as the execution
goes on, the success and failure counts will be recorded
and will eventually affect the evaporation of resource
pheromone values and dynamically distribute the task
according to resource fitness. For example, if the
resource has 0% success rate (100% failure rate), it will
have the least number of tasks assigned to it. On the
other hand, if the resource has a very high success rate, it
will be assigned with the most number of tasks.

In addition to consideration of resource fitness during

scheduling or resubmission process, the checkpoint

allows the failed task to be resubmitted from the last

saved state. This greatly reduces the processing time as

the task does not need to be restarted from the beginning.

It is highly recommended that the checkpoint

information is stored by independent components such

as checkpoint manager placed outside of task or

resource. Storing the checkpoint information at task or

resource level is not reliable as failure may corrupt the

checkpoint information.

Conclusion

It can be concluded that DAFT gives better average

execution time per task and success rate compared to

TACO and FTACO. However, since the heuristic

capability of the ant algorithm relies on historical record,

it is still possible that a recently failed resource will be

assigned with tasks right after failure (should the

resource have high pheromone values) and this may still

lead to a higher possibility of failure. To prevent this

from happening, there should be a mechanism to

suspend recently failed resources temporarily so that

they will not be selected as soon as they fail. Thus,

future work can focus on the application of temporary

resource suspension should the resource fail to complete

task execution in addition to checkpoint-based

resubmission technique. This can potentially be extended

in the resource selection algorithm, but the suitability of

the amount of suspension should be further explored so

that sufficient amount of suspension can be applied.

Acknowledgement

The authors wish to thank the Ministry of Higher

Education Malaysia in funding this study under the

Trans Disciplinary Research Grant Scheme (TRGS), S/O

code 13164 and RIMC, Universiti Utara Malaysia,

Kedah for the administration of this study.

Author’s Contributions

All authors are equally contributed in this work and

the article.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Altameem, T., 2013. Fault tolerance techniques in grid

computing systems. Int. J. Comp. Sci. Inform.

Technol., 4: 858-862.

Bawa, R.K. and R. Singh, 2012. Comparative analysis of

fault tolerance techniques in grid environment. Int.

J. Comput. Appli., 41: 21-25.
 DOI: 10.5120/5505-7520
Dorigo, M. and T. Stützle, 2004. Ant colony

optimization. MIT Press, Cambridge.

Ferdaus, M.H., M. Murshed, R.N. Calheiros and R.

Buyya, 2014. Virtual Machine Consolidation in

Cloud Data Centers using ACO Metaheuristic. In:

Euro-Par 2014 Parallel Processing, F. Silva, I. Dutra

and V.S. Costa (Eds.), Springer International

Publishing, Porto, pp: 306-317.

Goyal, S.K. and M. Singh, 2012. Adaptive and dynamic

load balancing in grid using ant colony optimization.

Int. J. Eng. Technol., 4: 167-174.

Idris, H., A.E. Ezugwu, S.B. Junaidu and A.O.

Adewumi, 2017. An improved ant colony

optimization algorithm with fault tolerance for job

scheduling in grid computing systems. PLOS ONE,

12: 1-24. DOI: 10.1371/journal.pone.0177567
Keerthika, P. and N. Kasthuri, 2011. A new proactive

fault tolerant approach for scheduling in

computational grid. Proceedings of the International

Conference on Web Services Computing

(ICWSC’11), IJCA, pp: 55-59.

Saufi Bukhari et al. / Journal of Computer Science 2017, 13 (8): 363.370

DOI: 10.3844/jcssp.2017.363.370

370

Ku-Mahamud, K.R. and H.J.A. Nasir, 2011.

Enhancement of ant colony optimization for grid

load balancing. Eur. J. Sci. Res., 61: 42-50.

Ku-Mahamud, K.R. and M.M. Alobaedy, 2012. New

heuristic function in ant colony system for job

scheduling in grid computing. In: Mathematical

Methods for Information Science and Economics,

Mastorakis, N., E. Zaitseva, D. Randjelovic, K.K.F.

Yuen and C.G. Carstea et al. (Eds.), WSEAS,

Montreux, pp: 47-52.

Lorpunmanee, S., M.N. Sap, A.H. Abdullah and C.

Chompoo-inwai. 2007. An ant colony optimization

for dynamic job scheduling in grid environment.

World Academy Sci. Eng. Technol., 29: 314-321.

Mandloi, S. and H. Gupta, 2013. Adaptive job

scheduling for computational grid based on ant

colony optimization with genetic parameter

selection. Int. J. Advanced Comp. Res., 3: 66-71.

Mathiyalagan, P., S.N. Sivanandam and K.S. Saranya,

2013. Hybridization of modified ant colony

optimization and intelligent water drops algorithm

for job scheduling in computational grid. ICTACT J.

Soft Comput., 4: 651-655.
 DOI: 10.21917/ijsc.2013.0093

Modiri, V., M. Analoui and S. Jabbehdari, 2011. Fault
tolerance in grid using ant colony optimization and
directed acyclic graph. Int. J. Grid Comp. Appli., 2:
14-26. DOI: 10.5121/ijgca.2011.2102

Prashar, T., Nancy and D. Kumar, 2014. Fault tolerant
ACO using checkpoint in grid computing. Int. J.
Comp. Appli., 98: 44-49. DOI: 10.5120/17223-7465

Vedulla, A., A. P. Reddy and B.K. Prasad, 2013. Fault
recovery in optimal task scheduling and grid service
reliability. Int. J. Comput. Sci. Inform. Technol., 4:
147-151.

Wenming, H., D. Zhenrong and W. Peizhi, 2009. Trust-
based ant colony optimization for grid resource
scheduling. Proceeding of the 3rd International
Conference on Genetic and Evolutionary
Computing, Oct. 14-17, IEEE, pp: 88-292.

 DOI: 10.1109/WGEC.2009.180

