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Abstract: Task resubmission and checkpoint are among several popular 

techniques used in providing fault tolerance in grid computing. However, 

due to the lack of side-by-side comparison, it is not certain of the best 

technique that would not degrade the system performance in addition to 

providing fault tolerance capability. This study proposed Dynamic ACS-

based Fault Tolerance in grid computing using resubmission to new 

resource, checkpoint technique and utilization of resource execution history 

with the aim to reduce execution and task processing time and to increase 

the success rate in grid environment. The proposed algorithm is compared 

with other relevant algorithms to measure the performance in terms of 

execution time, success rate and average processing time. The results 

suggest that the proposed algorithm with improved task resubmission, 

checkpoint and extended pheromone update formula gives better 

performance in managing execution failure as well as resource selection 

during task assignment or resubmission.  
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Introduction  

Fault tolerance is essential in a distributed system, 

specifically grid computing, where systems are allowed 

to recover and continue to operate despite failure 

occurrence during runtime. Fault tolerance consists of 

three main strategies, which are fault detection or 

identification, fault prediction and fault recovery. Fault 

detection or identification generally is for detecting the 

type of fault when it occurs before mitigating it with the 

most suitable solution. On the other hand, fault 

prediction focuses on predicting the probability of fault 

to occur based on historical data and applies a suitable 

scheduling policy to reduce fault probability. Last but 

not least, fault recovery consists of several popular 

techniques such as job replication (space-sharing) and 

check-pointing (time-sharing) (Altameem, 2013). The 

advantage of job replication is that it does not require re-

computation because each job has several simultaneous 

copies assigned to different resources and if one fails, the 

others can still be processed. However, this technique is 

not very effective because a copy of a job is considered as 

individual execution and may potentially congest the job 

queue. Checkpoint is another technique that requires the 

state of running tasks to be stored at a defined checkpoint 

and if the job fails, the execution will restart from the last 

saved state instead of from the beginning. This technique 

ensures that failed tasks will be reprocessed from the last 

saved state instead of from the beginning and eventually 

can greatly save the execution time. 

Fault tolerance is often integrated with the typical 

scheduling algorithm. Keerthika and Kasthuri (2011) 

proposed fault tolerance time to release the scheduling 

algorithm, which is based on transmission time and fault 

rate. Time to Release (TTR) is calculated for each 

resource, while expected deadline is calculated for each 

job. The job will only be submitted to the resource that 

has TTR lower than expected deadline. The application 

checkpoint was proposed by Bawa and Singh (2012) to 

eliminate the need to restart the job execution from the 

beginning during failure. The checkpoint information is 

stored by the central point, or known as the manager and 

will be retrieved back in the occurrence of failure. There are 

also several fault tolerance algorithms based on bio-inspired 

algorithms, specifically Ant Colony Optimization (ACO) as 

proposed by Wenming et al. (2009), Modiri et al. (2011), 

Mandloi and Gupta (2013), Vedulla et al. (2013) and 

Prashar et al. (2014). In ACO, pheromone is employed to 

indicate the fitness of routing path or resource used during 

path or resource selection process. 



Saufi Bukhari et al. / Journal of Computer Science 2017, 13 (8): 363.370 

DOI: 10.3844/jcssp.2017.363.370 

 

364 

 

 

 
(a) 

 

 (b) 

 

 

 

 
(c)  (d) 

 

Fig. 1. Illustration of the way ants find alternative resource during failure (a) A path to optimal resource Ra is established by Ant1 and 

task is submitted (b) Resource Ra fails to complete execution and resubmission flow is invoked (c) A new path to alternative 

resource Rb is established by Ant1 and task is submitted and processed completely (d) Following Ant2 from different source 

selects the optimal path to Rb constructed by previous Ant1 to assign the next task 

 

ACO is a biologically-inspired algorithm that 

provides an adaptive concept for solving optimization 

problems and designing metaheuristics algorithms 

(Dorigo and Stützle, 2004; Ferdaus et al., 2014). This 

algorithm is based on the evolutionary approach, 

where the best solution is searched by a group of ants 

that work together within the colony. The complete 

solution is built by combining all the individual 

solutions of each ant, which are also known as pheromone 

deposits on the chosen solution or path. The strength of 

the pheromone is used by other ants as a reference to 

choose the most optimized path. ACO is very effective 

when dealing with scheduling and load balancing, but the 

optimal path finding capability allows an alternative path 

to be constructed in the presence of fault as illustrated in 

Figure 1(a-d) respectively. 

ACO consists of multiple variants such as Ant 

System (AS), MAX-MIN Ant System (MMAS) and Ant 

Colony System (ACS) (Dorigo and Stützle, 2004). The 

ACO algorithm is suitable to be extended to include the 

fault tolerance capability because it can be easily adapted 

to solve both static and dynamic combinatorial 

optimization problems (Lorpunmanee et al., 2007; Ku-

Mahamud and Alobaedy, 2012; Goyal and Singh, 2012). 

ACO is flexible to be modified and combined with other 

nature-inspired swarm intelligence approaches such as 

Intelligent Water Drop (IWD) to speed up optimal 

scheduling, in addition to minimizing make span, 

balancing the load and utilizing resources efficiently 

(Mathiyalagan et al., 2013). Modiri et al. (2011) 

combined the ACS algorithm with the Directed 

Acyclic Graph (DAG) method to cater both load 

balancing and fault tolerance aspects whereby 

scheduling process adopted DAG method and fault 

tolerance adopted ACS algorithm.  

Most of related works cited in this article focus on 

improving the task assignment process to reduce the 

possibility of failure during execution. In addition to 

that, some related works focus on task resubmission but 

without checkpoint and with checkpoint but lack of 

proper validation. Related works in fault tolerance are 

presented in Section 2, while the proposed algorithm is 

covered in Section 3. The analysis on experimental 

results is covered in Section 4 and finally, the conclusion 

is provided in Section 5. 

Related Work 

Enhanced Ant Colony Optimization (EACO) was 

proposed by Ku-Mahamud and Nasir (2011) to improve 

the load balancing of grid scheduling by considering the 

capacity of each resource. Dynamic evaporation rate is 

introduced to determine the rate of pheromone 

evaporation based on the number of tasks and resources. 

This will ensure that whenever the number of tasks to be 

processed by each resource is high, the evaporation rate 

will be small, else, the evaporation rate will be high. 

Results showed that controlling the evaporation rate 

can effectively balance the load of all resources where 

the number of tasks assigned to each resource falls 

within very small margin from the expected number of 

tasks to be assigned. 
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Trust-based Ant Colony Optimization (TACO) for grid 

resource scheduling was proposed by Wenming et al. 

(2009) with the aim to minimize the completion time of 

jobs, balance all workloads on available resources and at the 

same time, to introduce the resource-oriented trust 

mechanism in handling the resource failure problem. 

Trustworthiness is considered during the resource 

selection process as it depicts the fitness level of a 

particular resource. High trust indicates that the resource 

is highly reliable and will lead to minimum probability 

of failure. In terms of the fault tolerance aspect, their 

proposed algorithm used resubmission to other available 

resources. Since the trust level is based on the execution 

history, it is possible that the recently failed resource 

may still be the most preferred resource in the next cycle. 

However, it would be effective if the checkpoint 

technique is adopted to eliminate the need to reprocess 

failed tasks from the beginning and reduce the 

processing time. 

A study by Modiri et al. (2011) proposed a new 

algorithm to manage fault in grid computing by 

combining the ACS algorithm and Directed Acyclic 

Graph (DAG) method. By using the DAG method, all 

tasks are sorted by their dependency. Thus, an offspring 

task may not begin its work until the parent task is 

completely executed. All the sorted tasks will go through 

the resource allocation process using ACS, where ants 

will try to find the optimal combination of tasks and 

resource. Once the resource allocation is done, tasks will 

be executed according to their sorted order. To balance 

the system load, local pheromone update is applied to 

route between current task and selected processor while 

global pheromone update is applied to the optimal route 

once all solutions are constructed. The main focus of 

their algorithm is to provide effective resource allocation 

but without recovery action such as resubmission. The 

effectiveness of this algorithm can be further improved 

by integrating recovery actions to ensure all the failed 

tasks are executed completely in the end of the session. 

Hybrid ACO with Genetic Algorithm (GA) was 

proposed by Mandloi and Gupta (2013) to overcome the 

uncontrolled nature of metaheuristics of AS, which could 

degrade the performance of grid allocation. GA is used 

to choose whether to increase or decrease pheromone 

update parameters in AS. At the start, ants will randomly 

select resources to be assigned into subsets. Then, each 

subset will be evaluated to find the lowest estimated 

error and will be sorted ascendingly. The best subset will 

be used to execute tasks in each iteration and the 

pheromone trail for the chosen subset will be updated. 

Resources within the best subset will have a high 

chance to be selected in the subsets of the next 

iteration. The algorithm can be further upgraded by 

considering the load balancing aspect and the way to 

handle job failure when it happens. 

Fault Tolerance ACO (FTACO) using checkpoint in 

grid computing was proposed by Prashar et al. (2014) 

with the aim to solve fault and load balancing problems. 

The ant-based approach was adopted in the checkpoint 

mechanism to effectively utilize dynamic resources in 

grid computing. Ants will move to find an optimal path 

to process a job and detect the occurrence of failure 

during job execution. The fault index manager is used to 

store the list of failures that have occurred in resources 

during job execution as a reference to the next job 

iteration. Based on the information in the fault index 

manager, jobs are re-scheduled to other optimal 

resources by using the checkpoint mechanism, where the 

job is restarted from the last saved checkpoint instead of 

from the beginning. The re-scheduling process considers 

load balancing on each resource, where a resource with 

low workload has a high probability to be chosen. The 

pheromone update mechanism is also used to solve the 

load balancing problem. Additionally, adding the 

resource recovery technique may further enhance the 

functionality of the proposed algorithm. However, due to 

the lack of experimental results, it is not certain on how 

good is the proposed algorithm. 
Job scheduling with fault tolerance in grid computing 

using ACO was proposed by Idris et al. (2017) to satisfy 
user’s Quality of Services (QoS) which employs 
resource failure rate and checkpoint-based roll back 
recovery strategy. During task execution, fault index 
manager will continuously interact with checkpoint 
handler to record resource failure rate. When job 
completion message is received, success index will be 
incremented. The same case applies whereby failure 
index will also be incremented when job failure message 
is received. The resource failure rate stored in fault index 
manager is used to control the occurrence and interval of 
checkpoint during scheduling process. In addition to 
that, for each occurrence of failure, rollback recovery 
technique will be applied to save the execution time. It is 
claimed that controlling the occurrence and interval of 
checkpoint can enhance the performance of fault 
tolerance system based on checkpoint. The results 
showed that the proposed algorithm reduces makespan, 
increases throughput and average turnaround time. 
Despite the effectiveness of controlling the checkpoint 
interval to improve QoS, it is also essential to consider 
load balancing aspect to reduce possibility of stagnation. 

ACO is considered as a potential algorithm in grid 

computing to solve fault problems. Several approaches 

have been identified to provide fault tolerance such as 

checkpoint, task resubmission and resource 

trustworthiness. Despite all these approaches, it is still 

unclear on how the recently failed resource will not be 

re-selected for a certain cycle count and how does the 

checkpoint approach can be effectively implemented 

using ACO with the structured validation process. 
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However, task resubmission to other resources and 

checkpoint can be further combined with the 

consideration of resource fitness to improve the fault 

tolerance aspect without disregarding the performance as 

well as to adapt with the dynamic grid environment. 

Proposed Dynamic ACS-based Fault 

Tolerance with Checkpoint 

Dynamic ACS-based Fault Tolerance (DAFT) is 

inspired by the concept of ant searching for the optimal 

path to the most suitable resource to assign tasks. This 

basic concept is further extended for ants to have the 

ability to perform resource researching during the 

resubmission process to ensure that any failed task will 

be processed completely. In addition to that, the 

pheromone update technique is further improved as a 

mechanism to penalize unfit resources so that they 

become less attractive and eventually reduce the 

possibility of failure and properly control the task 

assignment based on resource fitness.  

Figure 2 illustrates the high-level workflow of 

DAFT. For each task, an ant will be generated, which is 

responsible to perform resource selection based on 

pheromone values. The initial pheromone value will first 

be initiated to determine the state of all resources before 

the first task in queue can be submitted. The selection of 

resources will be based on the amount of pheromone 

values either from the initial pheromone calculation or 

pheromone update process. During the execution, each 

task will be divided into several checkpoints, which will 

be processed in sequence to preserve the authenticity of 

the output. If the execution is successful, the global 

pheromone update will be applied by the ants to the 

resource to increase the pheromone after execution. 

However, in case of any failure during execution, the last 

checkpoint will be resubmitted to another suitable resource 

and local pheromone update will be applied. In addition to 

that, local pheromone update will also be applied in each 

successful checkpoint. Lastly, the resource will be released 

with updated pheromone for the next task assignment. 

 

Yes

START

Calculate initial pheromone 

value for each combination of 

task and resource

For each task in queue, ant 

checks for the best resource 

with highest pheromone

Is task completed?

STOP

Task execution by the 

best resource

Are all tasks 

completed?

Save checkpoint 

information

Apply global 

pheromone update

No

No

Yes

Apply local 

pheromone update

Increase resource 

success count

Is task failed?
No

Retrieve 

checkpoint 

information

Yes

Resubmit failed 

job from the last 

saved state

Apply local 

pheromone update

Increase resource 

failure count

Increase resource 

success count

Apply local 

pheromone update

 

 

Fig. 2. High-level workflow of DAFT 
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During the initial task submission, each resource 
should have pre-defined parameters such as processor 
speed, current load and bandwidth and number of 
processing elements. All these parameters will be used to 
calculate the initial pheromone value, PVij for each 
combination of resource i and task j. The initial 
pheromone value formula is given by the formula (1): 
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Where: 

Sj = The size of a given task j 

Bandwidthi = The available bandwidth of resource i 

Cj = The CPU time needed of task j 

MIPSi = The processor speed 

Loadi = The current load at resource i 
 

Note that the initial pheromone value is assigned 
during initialization, but after that, it is considered as 
a resource pheromone value. Since the initial 
pheromone value is calculated for each combination 
of task and resource, this information is stored in a PV 
matrix (2) as follows: 
 



















=

−

−−−−−

−

−

nmnmmm

nmnmmm

nn

nn

matrix

PVPVPVPV

PVPVPVPV

PVPVPVPV

PVPVPVPV

PV

,1,2,1,

,11,12,11,1

,21,22,21,2

,11,12,11,1

  (2) 

 
Where: 

n = Total number of tasks  

m = Total number of resources 

PVmatrix = A logical form of ant topology whereby an 

ant would move from one index to another 

index to find the best resource for task 

assignment 
 

It is assumed that all the resources are interconnected 

which means that if the task originates from a specific 

resource, it can be assigned to all other available 

resources. Each row in PVmatrix presents the list of 

possible tasks for resource i while each column 

represents the list of possible resources for task j. 

The largest pheromone value in each column will be 

considered by the ant as the most fit resource and the 

task will be assigned to the resource referenced by the 

selected index for processing. As soon as the task is 

assigned, the pheromone value in PVmatrix at respective 

row will be updated by the global pheromone update (3) 

to decrease the amount of pheromone assigned to the 

current resource, so that it becomes less attractive by the 

next ant and leads to the exploration of other resources: 
 

ijijij τρτρτ ∆+−= .).1(  (3) 

τij is the amount of pheromone on the resource, while 

∆τij is 1/Lbest, where Lbest denotes the length of global best 

tour or otherwise (no global best tour found), ∆τij=0. ρ is 

the evaporation rate that is dynamically controlled by 

using the following formula (4) with m and n as the total 

number of resources and tasks respectively: 
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The task assignment will continue while the 

previously assigned task is being executed. However, if 
the execution is not successful, the task will be 
resubmitted from the last saved checkpoint to another 
suitable resource. On the other hand, the checkpoint 
information will be recorded during the execution for each 
task being executed and this information is also used to 
update  the   execution   history t able  for  each  resource. 

In every checkpoint, another round of local 
pheromone update (5) will be applied to reduce more 
pheromone value by considering the execution history to 
influence the reduction of pheromone; the success status 
would slightly reduce pheromone, while the failure 
status would reduce more pheromone: 
 

)(.).1( 0 iijij Eτρτρτ +−=  (5) 

 
τ0 is the initial pheromone value of resource i, while Ei is 

the execution history of resource i and calculated by 
dividing the number of successful checkpoints with 
the total number of checkpoint calls (failure + 
successful) at resource i.  

 

 
 
Fig. 3. High-level pseudocode of DAFT 

1. Initialization 

1.1 All the parameters are set 

1.1 Calculate the initial pheromone value for each resource 

1.2 Spawn an individual ant for each task 

1.3 Identify the resource with the highest initial pheromone 

value for the first iteration 

2. Main loop begins 

2.1 The ant finds the best the resource with the highest 

pheromone value 

2.2 Once found, the ant gives a signal for task submission and 

applies formula (3) 

2.3 Task submission and processing begins 

2.4 While task assignment status = false 

2.4.1 Repeat step 2.1 

2.5 While task execution status = false 

2.5.1 If task execution does not fail, save checkpoint, 

increase success count and apply formula (5) 

2.5.2 Else if task execution failed, retrieve the last 

checkpoint, increase failure count, apply formula (5) 

and repeat step 2.1 

2.5.3 Else if task execution status = true, increase success 

count and apply formula (5) 

3. Terminate the execution when both task assignment  

status = true and task execution status = true 
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The execution history Ei (or defined as resource 

fitness) is extended to existing local pheromone update 

formula and will be used by ants to control the amount 

of pheromone reduction; the better the execution history 

is, the lower the pheromone is reduced. In contrast, low 

execution history leads to higher reduction of pheromone 

in each resource. 

The high-level pseudocode of DAFT is further 

illustrated in Figure 3 in which every step that requires 

computation is properly mapped to respective formula. 

Experimental Results 

To validate the performance of the proposed DAFT 

algorithm, the mean success rate is defined at 70% (0.7) 

with the error range represented by a standard deviation 

of ± 0% (0.0) up to ± 30% (0.3). The success rate is 

assigned using the pseudorandom algorithm with a 

standard deviation to define the range to each individual 

resource during the initialization process. Each resource 

has different success rate and this information is not known 

by the ants during the resource assignment. To ensure that 

the experiment on failure is reliable, each individual 

resource is set to have the same processing capability 

(except for success rate) as shown in Table 1. Grid resource 

characteristics such as PE rating, bandwidth, and number of 

machine per resource are defined based on parameters used 

by Idris et al. (2017). DAFT algorithm is compared with 

TACO proposed by Wenming et al. (2009) and fault 

tolerance FTACO proposed by Prashar et al. (2014) which 

are reimplemented in GridSim Toolkit based on published 

flowchart, pseudocode and formulation. Each scenario is 

executed 10 times where the average is taken for a more 

accurate measurement. 

Figure 4 shows that the execution time slightly 
decreases when the error range is increased for both 
checkpoint scenarios (FTACO and DAFT), while it 
greatly decreases for scenario without checkpoint 

(TACO). Both FTACO and DAFT have relatively 
equivalent performance. However, as the range 
increases, the heuristic capability of the ant algorithm 
can make better decisions on resource selection during 
resubmission, whereby it will be influenced to assign to 
the resource with the highest pheromone value and 

ultimately shortens the execution time. This is aligned 
with the actual distributed scenario that has many non-
homogeneous resources with different fitness. 

Figure 5 shows that the success rate increases in 

parallel with the standard deviation, where DAFT has 

the highest success rate as compared to TACO and 

FTACO. Again, this supports the fact that better decision 

making during the resource assignment with 

consideration of execution history can reduce the 

possibility of failure. Furthermore, with the application of 

checkpoint technique, the need for the failed task to be 

restarted from the beginning is eliminated and eventually 

reduces the exposure of task execution to possible failure. 

 
Table 1. Simulation parameters 

Parameter Value 

Number of tasks 10000 

Number of resources 100 

PE rating 50 MIPS 

Bandwidth 5000 B/S 

Number of machine per resource 1 

PE per machine 5 

Mean success rate 0.7 

Range of resource success rate 0-0.3  

(Interval: 0.05) 

 

 
 
Fig. 4. Results of execution time 
 

 
 

Fig. 5. Results of success rate 
 

 
 
Fig. 6. Results of average processing time per task 
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Figure 6 shows that the average processing time per 
individual task decreases along with error range 
increment. DAFT has the best performance at a standard 
deviation of 0.3 (each resource having a possibility of 
success from 40% up to 100%). Another significant 
output from the results is that the heuristic capability of 
the ant algorithm during the resource assignment can 
select the best resource according to its fitness regardless 
of whether the checkpoint is applied or not. This fact 
ultimately reduces the processing time for each task. 

In real grid environment, each available resource will 
have different fitness in addition to processing 
capability. In this case, the minimum and maximum 
fitness value can be used to form fitness range. The 
results suggest that the wider the range is, the better 
heuristic capability can improve task assignment process 
and eventually improve the performance in grid 
environment with high probability failure. Consideration 
on the resource execution history is proven to be 
effective as ants can make better decisions in selecting 
the most fit resource. In other words, as the execution 
goes on, the success and failure counts will be recorded 
and will eventually affect the evaporation of resource 
pheromone values and dynamically distribute the task 
according to resource fitness. For example, if the 
resource has 0% success rate (100% failure rate), it will 
have the least number of tasks assigned to it. On the 
other hand, if the resource has a very high success rate, it 
will be assigned with the most number of tasks. 

In addition to consideration of resource fitness during 

scheduling or resubmission process, the checkpoint 

allows the failed task to be resubmitted from the last 

saved state. This greatly reduces the processing time as 

the task does not need to be restarted from the beginning. 

It is highly recommended that the checkpoint 

information is stored by independent components such 

as checkpoint manager placed outside of task or 

resource. Storing the checkpoint information at task or 

resource level is not reliable as failure may corrupt the 

checkpoint information. 

Conclusion 

It can be concluded that DAFT gives better average 

execution time per task and success rate compared to 

TACO and FTACO. However, since the heuristic 

capability of the ant algorithm relies on historical record, 

it is still possible that a recently failed resource will be 

assigned with tasks right after failure (should the 

resource have high pheromone values) and this may still 

lead to a higher possibility of failure. To prevent this 

from happening, there should be a mechanism to 

suspend recently failed resources temporarily so that 

they will not be selected as soon as they fail. Thus, 

future work can focus on the application of temporary 

resource suspension should the resource fail to complete 

task execution in addition to checkpoint-based 

resubmission technique. This can potentially be extended 

in the resource selection algorithm, but the suitability of 

the amount of suspension should be further explored so 

that sufficient amount of suspension can be applied. 
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