

© 2016 Anuwat Dechvijankit, Hiroshi Nagahashi and Kota Aoki. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Constraints Optimization for Minimizing Stretch in Bounded-

Parameterization

1
Anuwat Dechvijankit,

2
Hiroshi Nagahashi and

2
Kota Aoki

1Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Japan
2Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama, Japan

Article history

Received: 18-05-2016

Revised: 12-07-2016

Accepted: 23-11-2016

Corresponding Author:

Anuwat Dechvijankit

Department of Computational

Intelligence and Systems

Science, Tokyo Institute of

Technology, Yokohama, Japan
Email: dech.anuwat@gmail.com

Abstract: In a mesh parameterization process that generates one-to-one

mapping information between a three-dimensional surface and a two-

dimensional plane, we need to set some constraint positions in the solving

system to define a specific location or size of the mapping plane. In this

study, we will discuss how to perform a bounded-parameterization that

minimizes distortion based on changing of constraints setting in the solving

system. We introduce a series of experiments focusing on constraints

optimization to deliver the optimal mapping information with less

computational cost and time. Our proposed methods can reduce more than

half of calculation costs and times from traditional method while

maintaining the optimal mapping information.

Keywords: Mesh Parameterization, Optimization, Heuristic, Computational

Geometry, Parallel Computing

Introduction

Mesh parameterization is formulated as a mapping

from a 3D triangulated surface to a certain 2D planar

domain. Parameterization between two domains

generally causes distortion errors. Hence, low

stretching is an important criterion for parameterization

and its applications.

To perform a mesh parameterization, we first need an

input mesh to be disk topology and then define a shape

of target planar. There are two categories of planar

shape, bounded and natural boundaries. However, both

of them need constraint values in their solving systems.

In bounded-parameterizations, all boundary vertices are

constrained into a certain shape in planar domain and

then solve remaining interior vertices. There are two

famous constraint shapes; circle and square.

Using a circular parameterization, different

constraints settings in a square parameterization can

generate different qualities of mapping information as

shown in Fig. 1. The easiest way to deliver the lowest

distortion is to do parameterizations with all possible

constraints settings then check the results. Although it

can guarantee the best result, it consumes a lot of

computation time and resources.

First, we will discuss how to set constraints positions

in both circular and square parameterizations. Then, we

present various approaches to get the lowest distortion in

square parameterization by avoiding the brute-force

scheme. Moreover, since multi-core CPU and GPU-

computing have been introduced and widely used

nowadays, the proposed approaches should support

parallel computing scheme as well.

Backgrounds

In 3D computer graphics or computational

geometry studies, there are many techniques and

applications that involve with a mapping information

between 3D and 2D domains.

Generating a mapping information between a 3D

surface and a 2D data such as a square image requires a

mesh parameterization process. A parameterization

result can be represented by planar coordinates (u, v),

indicating a position in 2D domain related to a position

(x, y, z) in 3D domain.

Many well-known parameterization methods have

been proposed to achieve good mapping information.

Tutte (1963) used a barycentric mapping theory and

created a conformal mapping. More improvement found

in Floater’s method (Floater, 1997), by using relative

angles as a weight in each interior vertex to create

barycentric mapping. Later on, stretch-minimizing

methods have been proposed to achieve low stretch as

possible. Yoshizawa et al. (2002) proposed a fast method

of stretch-minimizing by re-computing the weight of

linear energy-minimizing equations by using previous

stretch value as a divisor.

Anuwat Dechvijankit et al. / Journal of Computer Sciences 2016, 12 (9): 436.447

DOI: 10.3844/jcssp.2016.436.447

437

 (a) (b)

Fig. 1. Ustica models with checker-board texture mapping using the same square parameterization method with different constraints

settings, (a) shows the worst case that has the largest L2 stretch (1.320295), (b) shows the best case that has the smallest L2

stretch (1.175196)

Concerning the limitation of bounded-

parameterization, Least Squares Conformal Maps

(LSCM) by Levy et al. (2002) were presented as

alternative ways to optimize the boundary positions from

fixed-boundary into free-boundary. They used different

harmonic energy formulations found in harmonic map

(Eck et al., 1995) but still minimized angular distortion.

Intrinsic parameterizations (Desbrun et al., 2002) used

the same technique found in LSCM to preserve angle

distortion and preserved area distortion. Both of them

could significantly improve the distortions. However,

they aimed to optimize by changing bounded-boundary

into natural-boundary parameterization.

Sorkine et al. (2002) proposed a bounded-distortion

concept with simultaneous seam-cutting and they

generated a valid parameterization without local or

global fold overs and also controlled each mesh triangle

distortion not to exceed a certain threshold. Lipman

(2012) also proposed bounded-distortion mapping spaces

which can control worst-case conformal distortion,

orientation preserving and one-one mapping in various

existing mapping algorithms. However, they aimed to

control the mappings at unconstrained parts.
On the topic of error metric, Sander et al. (2001)

presented a method to minimize texture stretch to
balance sampling rates over all locations and directions
on the surface, called “progressive mesh”. To measure
the local stretch of mapping in every direction, they
defined a new “texture stretch” metric on triangle
meshes, known as �2

 stretch metric.

Notation

Before explaining various algorithms, let us define
basic notations. We represent a disk topology mesh ℳ≔
(�,�,�), where �:= {��∈ℝ3

|� = 0,…,��−1} is a set of ��
vertices. �:= {�(��,��)|� = 0,…,�−1: ��, ��∈�:� ≠ �} is
a set of � edges and �:= {��(�,�,�)|� = 0,…,��−1:
�,�,�∈�: � ≠ � ≠ �} is a set of �� faces.

Let �:= {��∈�|� = 0,…,��−1} and �� = {(�0,�1),
(�1,�2),…,(���−1, �0)} be a set of �� boundary vertices
and boundary edges respectively. Let � equal to the total
length of �� and let a sequence of all boundary vertices be
�� = (�0,�1,…,���−1) sorted in the order of connection of ��.

Bounded Parameterization

In surface parameterization, there are two major shape
categories, i.e., bounded and natural boundaries. In natural
boundaries, we need to constrain two vertices in planar
domain to fix the rotation and translation of the result
(Desbrun et al., 2002), then perform the parameterization to
solve unconstrained vertices’ coordinates.

In bounded-parameterizations, we constrain all
boundary vertices into a certain shape in planar domain
then solve remaining interior vertices. There are two
famous shapes in bounded-parameterization; circle and
square. However, there are no specific algorithms for
defining constraint positions. Users can create their
own algorithm based on the length or numbers of
boundary edges and so on.

We will discuss our constraints setting algorithms in
both circular and square shapes from now.

Circular Parameterization

There are two appropriate schemes to constrain
boundary positions in circular shape. The first one is
averaging circle arc’s length by the number of boundary
edges and the second one is variation by the length of each
edge. Although averaging approach is a simple method, it
can have high distortion around boundary areas because the
constraints of boundary vertices are not balanced by their
edge’s lengths. A long edge can be assigned with too short
constraint positions and a short edge can be assigned with
too long constraint positions. Therefore, we use variation by
the length approach for circular constraints.

Suppose that circular plane has radius r and has
initial center at planar origin (0,0). First, we constrain
b0 ∈ B at (r,0) then map the boundary edges �� on the
circular arc in counter-clockwise direction (Fig. 2a). We
assign constraint positions of bi in planar as Ci (S, t) by
the following formula:

() () ()() ()
1

1

0

, cos 2 , sin 2 , /
i

i i i i k k

k

C s t r r b b dπδ πδ δ
−

+
=

= × × =∑

Since we can rotate circular mapping plane to any

degree, it has the same meaning as constraining b0 at

other positions in circle arc. Therefore, there is no

constraints optimization in circular parameterization.

Anuwat Dechvijankit et al. / Journal of Computer Sciences 2016, 12 (9): 436.447

DOI: 10.3844/jcssp.2016.436.447

438

 (a) (b)

Fig. 2. Constraints mapping sequences on planar points, (a) circular constraints, (b) square constraints

Square Parameterization

Constraining boundary vertices in a square shape is

similar to circular shape’s approach, i.e., averaging by

the number of boundary edges and variation by the

length of each edge. With the same reason with circular

constraints that we try to deliver the best result, variation

by the length approach is chosen.

We assign b0∈B as a reference starting point of Vb and

Eb. Let Pi,j be a corner position in square planar domain as

shown in Fig. 2b and µ be the length of each side of square

plane. We try to map some edges in Eb onto a side of the

plane. In order to achieve low stretch at boundary area as

much as possible, one side of square should be mapped on

a quarter length of Eb that is, 0.25d.

Let bj be a vertex in Vb that we want to constrain onto

P0,0. Let the total length of edges starting from vertex bj

to vertex bk be ()1

1,
k

i ii j
l b b

−

+−
=∑ where k = (j+m) mod nb.

We try to find the ending vertex �� that satisfy l = 0.25d

as a quarter length of Eb. However, in most cases it

cannot be equal exactly. Therefore, we find the ending

vertex that satisfy l ≈ 0.25d�. We map the boundary

edges (bj, bj + 1,⋅⋅⋅,bk) onto the square side from P0,0 to

P1,0 relatively on each edge length over µ.

For other sides of the square, we can follow the same

basis described above by considering bk as the starting

point from P1,0 corner and iterate the constraints setting

process to P1,1, P0,1 and finally back to P0,0.

When considering about constraints optimization

in square case, different constraints different bi onto

P0,0 can give different result. However, we cannot

rotate square plane to any degree like circle’s case.

The optimization problem is how to determine

constraints setting that gives the lowest distortion

parameterization result.

Square Constraints’ Optimization

Considering the problem of square constraints
optimization, we map the boundary vertices in the mesh
domain onto the square’s boundary in the planar domain

with some conditions. The method is trying to map a
quarter length of the total boundary edges onto one side
of the square as mentioned in the previous section. With
this condition, a new complexity arises. That is, a
constraints setting can have a different number of edges
on each side of the square. It is impossible to incorporate
these boundary conditions into a linear solving system.

The simplest way to perform is a brute-force approach

using a stretch-minimizing parameterization. When

considering constraints setting, brute-force approach

means every vertex in Vb is mapped onto P0,0 then

performs a stretch-minimizing parameterization. Although

it guarantees the best result, one-time stretch-minimizing

parameterization on a fine details mesh can use a lot of

computation time and resources. Applying parallel-

processing may help on time issue, however it only suits

for an environment that has many computation resources.

To find the optimal boundary constraints, we did

experiments observing the stretch of the unit square

boundary by various fast solving parameterization methods

i.e., shape-preserving (Floater, 1997), Tutte’s barycentric

(Tutte, 1963), mean-value (Floater, 2003) and harmonic-

map (Eck et al., 1995). L
2
 stretch (Sander et al., 2001)

values were compared between the fast solving methods

and the stretch-minimizing method by Yoshizawa et al.

(2002) approach. There was not any relationships among

them. Constraints setting that give the lowest stretch in fast

solving methods do not guarantee the lowest stretch from a

stretch-minimizing method. We should use stretch-

minimizing parameterization directly for optimization.

Experimental Environment

We did experiments with two systems with different

computing performances. There were a high-

performance system (Intel Xeon™ 10 cores running at

2.50-3.30 GHz with 64 GB memory) and a moderate-

performance system (Intel Core i7™ 4 cores running at

2.40-3.40 GHz with 8 GB memory).

Experiment Models Information

See Table 4 for details.

Anuwat Dechvijankit et al. / Journal of Computer Sciences 2016, 12 (9): 436.447

DOI: 10.3844/jcssp.2016.436.447

439

 (a) (b)

Fig. 3. A similarity of square constraints after shifting constraint at P0,0 for a quarter of the total length of boundary edges, (a) b0 onto

P0,0, (b) b0 onto P0,1

25 Percent of Brute-Force

Let the first boundary constraints be b0 onto P0,0, bσ

onto P1,0 and bτ onto P1,1 (b0, bσ, bτ ∈ Vb) that are

assigned by the boundary constraints algorithm. It means

the distance from b0 to bσ should be approximately

0.25d, also the same for distance from bσ to bτ.

By starting from b0, we sequentially constrain a vertex bi

onto P0,0 and constrain the following boundary vertices onto

the square domain [P0,0, P1,0]. After repeating the

constraints for interval of a quarter of boundary edges, then

the vertices bσ and bτ might be mapped onto P0,0 and P1,0

respectively. It is the same as we rotate the first constraints

(b0 onto P0,0) 90 degree as shown in Fig. 3.
Even though, we can reduce the number of calculations

in brute-force approach to be around 25%. It still takes a lot
of calculation time. A single stretch-minimizing
parameterization on a fine details mesh could take
calculation time more than one minute on a present day
high performance computer. That means multiple
parameterizations using 25% brute-force approach could
take time more than hours or half a day to complete.

From this reason, we set our goal to reducing the

number of calculations. If we can pursue an optimization

by doing parameterizations with few testing cases, then

it will surely be better than 25% brute-force method.

Heuristics

When dealing with a computational optimization
problem, it is good to check with other well-known
optimization techniques. There are many techniques and
generally they are divided into 3 categories.
Optimization algorithms such as a Simplex algorithm are
suited for linear or quadratic programming solving.
Iterative methods such as Newton and Quasi-Newton
methods suit for non-linear programming solving.
Heuristic algorithms such as genetic algorithms or hill
climbing suit for solving the problems that cannot be
solved or too slow by classic methods.

Considering the mentioned problem, it concluded that

a heuristic algorithm may be the best one for boundary

optimization problem. The reason is that the boundary

optimization problem has the difficulty of two sub-

problems connected together. One sub-problem is

concerned with our main problem, i.e., finding best

constraints of boundary vertices and edges. Another is a

parameterization problem about solving planar locations

of interior vertices. It is too difficult to combine the two

sub-problems in a problem-solving system since it has

the unique conditions for the boundary constraints.

Hence, a heuristic method should suit for solving our

constraints optimization problem.

We chose a well known “Particle Swarm

Optimization” algorithm (PSO) by (Kennedy and

Eberhart, 1995) for solving our optimization problem. It

is a swarm intelligent technique, originally inspired by

social behavior of animal flocking. PSO has been used

mainly to solve unconstrained, single-objective

optimization problems.

From experiment results, PSO method could reduce

the calculation time to around 50 to 75% comparing to

“25% brute-force” approach. By changing user-defined
parameters, we could improve calculation time in some

mesh models. However, we could not gain an expected
results from the turning of these user-defined parameters

yet. The number of particles plays important roles; more
particles could secure the best result (same as brute-

force’s result) but calculation cost increases. The

algorithm itself is based on random processes and it may
give the unstable optimal answer if we use a small

number of particles. Increasing the number of particles
will cost almost the same calculation time as “25%

brute-force” approach. Moreover, PSO has a

disadvantage point on parallel computing because it
updates particle positions based on the global-best

position in each iteration which prevents from doing
large numbers of parallel-processing simultaneously.

Anuwat Dechvijankit et al. / Journal of Computer Sciences 2016, 12 (9): 436.447

DOI: 10.3844/jcssp.2016.436.447

440

It could conclude that PSO or other heuristic
optimizations can improve computation time when using
an appropriate number of particles. Even, the
performance was still not good as our expectation but its
algorithm of checking few positions and focusing around
potential optimal answers seem to be appropriate to the
optimization problem. The main bottleneck of PSO is a
procedure of random search. Avoiding the random
search while checking few positions should generate
better performance stably.

Step-Sampling

When analyzing square parameterization by looking

at brute-force results, the most of the test mesh models’

L
2
 stretches are changed gradually when we changed bi

at P0,0 along Vb (Fig. 5). From this characteristic, we can

reduce the number of calculations by focusing on the

boundary constraints settings that has high potential to

give an optimal result. In order to do such thing, we need

to know its appropriate searching scope as potential

optimal constraints.

The problem is how to determine the searching

scope. A sampling approach is used as a survey of

stretch values. Sampling is the reduction of a signal.

A common example is the conversion of a sound wave

(a continuous signal) to a sequence of samples (a

discrete-time signal).

Step-Sampling Algorithm

We propose a simple algorithm named “step-

sampling”. It samples stretch values from selected

boundary constraints. Boundary constraints will be

selected by a step defined by a user and performed a

stretch-minimizing parameterization. After the

sampling is completed, we will get a constraints setting

that gives the lowest stretch as the center of the

searching area. Then, we do deep-checking in that area.

We check its neighbors that are still unchecked for

stretch values. The parameterization that has the lowest

stretch is the optimal result.

The following Algorithm 1 is the pseudo-code of the

step-sampling algorithm.

Algorithm 1. Pseudo-code of step-sampling algorithm
 Step = 2,3,…
 m = number of vertices in first 0.25d of Eb
 stretch [] ← ∞ //m size array
 for (i ← 0 to m−1)

 if (i mod step = 1)

 stretch [i] ← square-param(bi on P0,0)

 end if

 end for

 ω ← index that gives MIN(stretch [])

 \\Indicate initial optimum and searching scope
 J[] = [...,ω-2, ω-1, ω+1, ω+2,...] where stretch [] =

∞ and close to ω

 for (j ← each J) //deep checking
 stretch [j] ← square-param (bj on P0,0)
 end for
 optimum ← MIN(stretch [])

Step Value

In the step-sampling algorithm, a proper step value

can minimize the calculation time. However, a too large

step may result in missing correct searching scope or

spending more calculation time than a smaller step

because larger step means larger deep-checking

processes. Let m be the total test cases (boundary

constraints) that can be calculated from the number of

vertices in the first 0.25d interval. From empirical

experiments, the formula for a proper step value is:

/v fstep n m n≈ ×

This formulated step value is suitable for high details

models. For low details models, if the parameterizations

are performed on a high-performance system then it

might be better to use brute-force method or small step

value that can guarantee the best result while the

computation time is almost the same with high step

numbers’ results.

Experiment Result

We tested 25% brute-force and our step-sampling

algorithms on two systems to see how the performances

of proposed methods are on various computation

resource conditions. We tested 25% brute-force and our

step-sampling algorithms on two systems to see how the

performances of proposed methods are on various

computation resource conditions as mentioned above.

Both algorithms were optimized to use parallel

processing (OpenMP
®
) as much as possible. However,

the number of maximum threads was limited to the

number of physical cores. All parameterizations were

performed by using the algorithm from Yoshizawa et al.

(2002) method. For the testing models, if the original

models are not disk topology, we need to convert them

into disk topology patches before performing the

parameterization. We used several methods found in

papers by (Gu et al., 2002; Dechvijankit et al., 2012;

2015) for converting a mesh into topological disk patch.

Step values were calculated by proposed formula for

all models even coarse-details ones. We recorded the

number of how many times stretch-minimizing

parameterizations were performed (test counts) and L
2

stretch errors of the optimal results from 25% brute-force

and step-sampling approaches. The results are shown in

Table 1. Also, computation times on the both systems

were measured. The results are shown in Table 3.

Anuwat Dechvijankit et al. / Journal of Computer Sciences 2016, 12 (9): 436.447

DOI: 10.3844/jcssp.2016.436.447

441

Table 1. Brute-force and step-sampling results

 25% brute-force Step-sampling

 -- ---

Model Test count L2 stretch Step value Test count L2 stretch

Torus 16 1.337377 3 11 1.338278

Torus 3 holes 23 1.643867 3 13 1.643867

Hand 17 1.449979 3 10 1.459317

Head 20 1.235226 3 12 1.235226

Eight 45 1.466127 5 18 1.466127

Chains 153 1.452289 8 35 1.452289

Cow 440 14995.2 14 59 14995.2

Bunny 5 holes 166 1.370189 9 36 1.370189

Bunny no hole 108 1.226405 7 29 1.226405

Armadillo 655 1.416241 18 72 1.416241

As the experiment results, our step-sampling

approach spent less time and computations comparing to

brute- force one. Time different margins were dependent

on models’ complexity, the step-sampling method could

reduce the computational time much more in higher-

detail meshes. Also it could deliver optimal results

same as brute-force. There were some cases (torus and

hand) which step sampling could not deliver the same

optimal result compared with brute-force one.

However, they were low-detail meshes cases that

should use brute-force approach or smallest step value

2 rather than the formulated one.

Circular Mapping Analysis

While different square constraints settings give different

results, circular constraints settings have a singular result.

Therefore, we analyze the circular parameterization

(circular mapping) at its boundary vertices’ stretch. We

investigated at the boundary vertex that has that the highest

stretch in circular parameterization and the best square

parameterization’s constraints mapping. We noticed that

the highest stretch boundary vertex (in the circle) is likely

near to a corner in the optimal square parameterization.

Therefore, we can use this information to perform square

constraints optimization.

There are two approaches for the optimization using

the circular stretch. The first one is to constrain the

largest stretch boundary vertex in the circle to a corner in

the square. Another one is to constrain high stretch

boundary vertices to around all four corners of the square

as much as possible.

Highest Stretch Boundary Vertex at Corner

This optimization “single highest” can be done by a

simple process. First, we perform circular

parameterization. Then, we analyze L
2
 stretch errors and

find the highest stretch vertex. Finally, we analyze all

possible square boundary constraints mappings (without

doing parameterizations). We assume that the constraints

mapping which the largest stretch vertex in the circle be

constrained to a corner in the square may be an optimum.

High Stretch Boundary Vertices around Corners

This optimization “many high” is more complex than
single highest approach. We need to define a cost function
of a square constraints setting. The cost should indicate
how high stretch vertices in circular parameterization are
mapped in square constraints. If many high stretch
vertices were assigned around corners’ vicinity, then the
cost function should give a high cost value.

In the cost function, the distance between circle’s arc

and square’s side-line is used as the weight in the cost

function. Here, we assume that circle’s radius r = 1 and

square side length µ = 2. A vertex be mapped on a corner

should have the maximum weight and a vertex be mapped

on a middle of a side-line should have the minimum

weight. Let ui be the distance between assigned position of

bi and the nearest corner point (normalized relatively to µ),

stretchv (bi) be L
2
 stretch value of a boundary vertex in

circular parameterization also let wi be the weight of

analyzing vertex as the distance from the point on square

to circle’s arc with 45 degrees angle. Fig. 4 shows the

meanings of variables. The cost function of each

constraints mapping is formulated as:

()
1

2

0

2 2
cos ()

2

nb
i i

v i i i

i

u u
t stretch b w w

−

=

− − −
= × =∑

Fig. 4. “High stretch boundary vertices around corners” cost

function’s variables meaning based on the distance

between circle's arc and square’s side-line

Anuwat Dechvijankit et al. / Journal of Computer Sciences 2016, 12 (9): 436.447

DOI: 10.3844/jcssp.2016.436.447

442

 (a) (b)

 (c) (d)

 (e) (f)

Fig. 5. L2 stretch values graphs of 25% brute-force approaches. Red circle markers indicate the lowest stretch constraints. Yellow

triangle markers indicate constraints defined by “single highest” approach. Green square markers indicate constraints defined

by “many high” approach. The x-axes represent constraints mapping ID, the y-axes represent L2 stretch errors. (a) hand, (b)

eight, (c) chains, (d) cow, (e) bunny 5 holes, (f) armadillo

Experiment Result

We tested both approaches with same experimental
conditions that be described before. In each testing
model, L

2
 stretch values from 25% brute-force

approach were recorded. Then, stretch-minimizing
circular parameterization was performed on it. We

analyzed L
2
 stretch values and classified which

constraints mappings satisfied the conditions on both
approaches. The results from some experiments are
shown in Fig. 5.

As the results, the prediction using circular
parameterization approach could indicate a square
boundary constraints mapping which is close to the

Anuwat Dechvijankit et al. / Journal of Computer Sciences 2016, 12 (9): 436.447

DOI: 10.3844/jcssp.2016.436.447

443

best result. Either “single highest” constraints
mapping or “many high” constraints mapping is close
to the 25% brute-force one. However, it still cannot
guarantee the same result yet.

Select a Better One

From experiment results, either “single highest”

constraints setting or “many high” constraints setting

gives a potential to deliver an optimal result. Therefore,

these two approaches could be used for square

constraints optimization.

By comparing the stretches of both approaches, the

one that gives a better result is chosen to be the optimal

result. The benefit of this overall approach is to reduce a

lot of the computation to one circular parameterization

and two square parameterizations. However, it does not

give the best result same as 25% brute-force one in most

cases but approximately optimal one.

Step-Sampling with Circular Mapping Analysis

In previous sections, two main approaches for square

constraints optimization were proposed; step-sampling

optimization and prediction-based optimization from

circular mapping. Both have advantages and disadvantages.

The first one uses a sampling technique to define an

optimal area and then performs deep-checking of the area.

The performance is good when running with parallel

processing, however it still has high computation cost on

high-details models. It is not suitable for a system that has

limited computation resource environment.

The second one uses L
2
 stretch values of each vertex

in circular parameterization and then performs two

square parameterizations to get a better result. Although

it reduces a lot of computation, it mostly does not deliver

the best result same as brute-force or step-sampling yet.

Hybrid Approach

To reduce the computation cost and get the optimal
result same as 25% brute-force approach, we can have a
constraints optimization method by combining two
previous approaches together. We use the advantage of
prediction-based optimization using circular mapping to
cut the computation cost of finding an optimal area in
step-sampling.

First, an initial optimal constraint is defined by the

circular mapping analysis approach. Then, the optimal

area is defined by searching around the initial optimal

constraints. However, the optimal area might not contain

the initial optimal constraints.
To define the actual optimal area, we adapted step-

sampling technique by sampling the neighbors of the
initial optimal constraints. We select to check specific
neighbors’ constraints by a constant interval. We
terminate the sampling if their stretches are increasing.
The constant interval is important, for properly and

convergently constraints investigation. Too small interval
might cause mistakenly termination of sampling process
too early before detecting the actual optimal area. Too big
interval might cause too large searching scope.

From empirical experiments, a formula to get a proper

constant interval is based on the step number formula (see

step-value section). The formula for the interval is:

-1 / 1v finterval step n m n≈ ≈ × −

After the end of sampling processes, we detect the

lowest stretch constraints mapping and define it as a

center of the optimal area. As well as the step-sampling

basis, we perform deep-checking constraints mappings

around the optimal area to get the final optimal result.
The following Algorithm 2 is a pseudo-code of the

hybrid algorithm. Also, Fig. 7 shows the flowchart of our
hybrid algorithm.

Algorithm 2. Pseudo-code of the hybrid algorithm
 m = number of vertices in first 0.25d of Eb
 stretch [] ← ∞ //m size array

 interval ← / 1v fn m n× −

 stretch [γ] ← optimum for
 prediction-from-circular-param()
 //γ is index number that represent as
 // square-param(bγ on P0,0)
 γl, γr ← γ
 do

l l
γ γ←

 γl ← γl - interval

 stretch [γl] ← square-param(b�l on P0,0)

 until ()l lstretch stretchγ γ <

 do

r r
γ γ←

 γr ← γr - interval

 stretch [γr] ← square-param (
r

b
γ

on P0,0)

 until (stretch [γr]< stretch rγ)

 ω ← index that give MIN(stretch [])
 J[] = [...,ω-2, ω-1, ω+1,ω+2,...] where stretch [] =

∞ and close to ω
for (j ← each J) //deep checking
 stretch [j] ← square-param(bj on P0,0)
 end for
 optimim ← MIN(stretch [])

Experiment Results

We tested our hybrid approach with the same
experimental conditions that be described before. The
results are shown in Table 2 and 3. We used formulated
constant interval values that used for sampling the
neighbors of the initial optimal constraints to find actual
optimal area phase.

Anuwat Dechvijankit et al. / Journal of Computer Sciences 2016, 12 (9): 436.447

DOI: 10.3844/jcssp.2016.436.447

444

Table 2. Hybrid approach results. Test numbers in bracket indicate step-sampling test counts

Model Interval Test count L2 stretch

Torus 2 5 (11) 1.337377
Torus 3 holes 2 6 (13) 1.643867
Hand 2 6 (10) 1.449979
Head 2 5 (12) 1.235226
Eight 4 10 (18) 1.466127
Chains 7 18 (35) 1.452289
Cow 13 28 (59) 14995.2
Bunny 5 holes 8 20 (36) 1.370189
Bunny no hole 6 14 (29) 1.226405
Armadillo 17 36 (72) 1.416241

Table 3. Time consuming results on two systems. All time units are second

 High performance system (Xeon): Time Moderate performance system (i7): Time
 -- ---
Model 25% brute-force Step-sampling Hybrid 25% brute-force Step-sampling Hybrid

Torus 0.016 0.009 0.016 0.016 0.016 0.016
Torus 3 holes 0.032 0.015 0.016 0.031 0.031 0.016
Hand 0.062 0.060 0.110 0.110 0.079 0.109
Head 0.047 0.031 0.078 0.078 0.062 0.047
Eight 0.078 0.047 0.063 0.125 0.062 0.063
Chains 4.376 1.125 1.891 14.126 2.969 2.328
Cow 619.438 83.710 50.597 2723.050 357.925 175.010
Bunny 5 holes 130.729 28.393 27.439 573.890 125.255 71.347
Bunny no hole 90.976 25.799 20.251 395.943 105.850 52.847
Armadillo 11298.100 1384.340 904.433 41632.200 5102.450 2903.420

Table 4. Experiment models information

Model Vertices Faces Boundary edges

Torus 233 404 59
Torus 3 holes 246 393 86
Hand 1082 2002 159
Head 713 1357 66
Eight 863 1548 175
Chains 6885 13164 603
Cow 38658 75618 1695
Bunny 5 holes 35073 69465 662
Bunny no hole 35068 69662 471
Armadillo 174296 345952 2637

Fig. 6. Percentage of time-consuming reduction on both step-sampling and hybrid approaches compare with 25% brute-force time.

The y-axes represent percentage unit, a higher value means more time-consuming reduction (higher is better)

Anuwat Dechvijankit et al. / Journal of Computer Sciences 2016, 12 (9): 436.447

DOI: 10.3844/jcssp.2016.436.447

445

Fig 7. Flowchart of our hybrid algorithm

Anuwat Dechvijankit et al. / Journal of Computer Sciences 2016, 12 (9): 436.447

DOI: 10.3844/jcssp.2016.436.447

446

From the results, our hybrid approach could deliver

the best result same as 25% brute-force one. The total

amount of square parameterizations was reduced from

step-sampling around than half. About the time-

consuming, our hybrid algorithm spent time more than

step-sampling on low-details models because the hybrid

approach must wait until the circular parameterization

was finished before performing square

parameterizations. On the high-details models such as

bunny and armadillo, the hybrid approach could deliver

much faster results, especially on a moderate-

performance system. Fig. 6 shows the comparison of

both approaches comparing to 25% brute-force.

Conclusion

We presented various approaches for constraints

optimization in bounded-parameterization especially

square one to deliver the lowest stretch error as possible.

The easiest way to delivering the lowest stretch square

parameterization is to do brute-force approach with a

stretch-minimizing method. However, it will consume a

lot of computation time and resources.

We proposed our “step-sampling” concept which

reduces much calculation time while maintaining a stable

optimal result. Although it is a simple algorithm, we can

have great performance that reduces computations more

than half from brute-force approach. We also proposed a

formula to calculate suitable step number based on

mesh’s complexity that will minimize the calculation

time. However, the computational cost is still high and

might not suit for running in an environment that has

limited resources.

Then, we analyzed stretches in circular

parameterization for an optimal square parameterization.

We found that constraining the highest stretch boundary

vertex in circular mapping onto a square corner or high

stretch boundary vertices in circular mapping onto

around square corners’ vicinity, could give an optimal

constraints mapping. Although it could reduce

calculation costs to only one circular and two square

parameterizations, it still cannot guarantee the best

constraints mapping same as brute-force result yet.

Finally, we proposed a hybrid approach by

combining step-sampling and circular

parameterization analysis approaches. By narrowing

the searching scope of the constraints by analyzing

circular mapping’s stretches, we could get the best

result as brute-force, while reducing a lot of

computation cost. Our hybrid approach is suitable for

applying in a limited resources environment.

For open topics and future works, there are some

parts that can be improved more such as how to reduce

parameterization time using fast-solving with step-

sampling or circular mapping analysis approaches. Also,

there are other parameterizations that involve

optimization interior vertices such as conformal

optimizations in brain surfaces (Gu et al., 2003; Lui et al.,

2010). We can combine our exterior vertices

(constraints) optimization with an interior optimization

to deliver the optimal mapping in both ways.

Acknowledgement

Models are courtesy of the AIM@SHAPE

repository and Stanford University. Special thanks are

given to Shin Yoshizawa for parameterization code, to

Hugues Hoppe for filled holes bunny and hand models

data and to the anonymous reviewers for comments

and suggestions.

We acknowledge the support of JSPS KAKENHI

(Grant Number 24300035).

Author’s Contributions

Anuwat Dechvijankit: Designed, implemented and

performed research, wrote manuscript and acted as

corresponding author.

Hiroshi Nagahashi: supervised development of

research, manuscript evaluation and correction.

Kota Aoki: Supervised development of research.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Dechvijankit, A., H. Nagahashi and K. Aoki, 2012. Fast

way to create seam boundary for square

parameterization with low-distortion. Proceedings of

the International Conference on Computer Graphics

Theory and Applications and International

Conference on Information Visualization Theory

and Applications, Feb. 24-26, Scitepress, Italy, pp:

185-188. DOI: 10.5220/0003811701850188

Dechvijankit, A., H. Nagahashi and K. Aoki, 2015. A

homotopy surface cutting using paths crossing in

geodesic distance. Proceedings of the 10th

International Conference on Computer Graphics

Theory and Applications, Mar. 11-14, Scitepress,

Germany, pp: 130-137.

 DOI: 10.5220/0005302601300137

Desbrun, M., M. Meyer and P. Alliez, 2002. Intrinsic

parameterizations of surface meshes. Comput.

Graph. Forum, 21: 209-218.

 DOI: 10.1111/1467-8659.00580

Anuwat Dechvijankit et al. / Journal of Computer Sciences 2016, 12 (9): 436.447

DOI: 10.3844/jcssp.2016.436.447

447

Eck, M., T. DeRose, T. Duchamp, H. Hoppe and

M. Lounsbery et al., 1995. Multiresolution analysis

of arbitrary meshes. Proceedings of the 22nd Annual

Conference on Computer Graphics and Interactive

Techniques, Aug. 06-11, Los Angeles, CA, USA,

pp: 173-182. DOI: 10.1145/218380.218440
Floater, M.S., 1997. Parametrization and smooth

approximation of surface triangulations. Comput.
Aided Geomet. Des., 14: 231-250.

 DOI: 10.1016/S0167-8396(96)00031-3
Floater, M.S., 2003. Mean value coordinates. Comput.

Aided Geomet. Des., 20: 19-27.
 DOI: 10.1016/S0167-8396(03)00002-5
Gu, X., S.J. Gortler and H. Hoppe, 2002. Geometry

images. ACM Trans. Graph., 21: 355-361.

 DOI: 10.1145/566654.566589

Gu, X., Y. Wang, T.F. Chan, P.M. Thompson and

S.T. Yau, 2003. Genus zero surface conformal

mapping and its application to brain surface

mapping. Proceedings of the 18th International

Conference on Information Processing in Medical

Imaging, Jul. 20-25, Ambleside, UK, pp: 172-184.

DOI: 10.1007/978-3-540-45087-0_15

Kennedy, J. and R. Eberhart, 1995. Particle swarm

optimization. Proceedings of IEEE International

Conference on Neural Networks, Nov. 27-Dec. 1,

IEEE Xplore Press, Australia, pp: 1942-1948.

 DOI: 10.1109/ICNN.1995.488968

Levy, B., S. Petitjean, N. Ray and J. Maillot, 2002. Least

squares conformal maps for automatic texture atlas

generation. ACM Trans. Graph., 21: 362-371.

 DOI: 10.1145/566654.566590

Lipman, Y., 2012. Bounded distortion mapping spaces

for triangular meshes. ACM Trans. Graph., 31: 1-13.

DOI: 10.1145/2185520.2185604

Lui, L.M., S. Thiruvenkadam, Y. Wang, P.M. Thompson

and T.F. Chan, 2010. Optimized conformal surface

registration with shape-based landmark matching.

SIAM J. Imag. Sci., 3: 52-78.

 DOI: 10.1137/080738386

Sander, P.V., J. Snyder, S.J. Gortler and H. Hoppe, 2001.

Texture mapping progressive meshes. Proceedings

of the 28th Annual Conference on Computer

Graphics and Interactive Techniques, Aug. 12-17,

Los Angeles, CA, USA, pp: 409-416.

 DOI: 10.1145/383259.383307

Sorkine, O., D. Cohen-Or, R. Goldenthal and D. Lischinski,

2002. Bounded-distortion piecewise mesh

parameterization. Proceedings of the Conference on

Visualization, Oct. 27-Nov. 1, IEEE Xplore Press,

USA, pp: 355-362.

 DOI: 10.1109/VISUAL.2002.1183795

Tutte, W.T., 1963. How to draw a graph. Proc. London

Math. Society, s3-13: 743-767.

 DOI: 10.1112/plms/s3-13.1.743

Yoshizawa, S., A. Belyaev and H.P. Seidel, 2002. A fast

and simple stretch-minimizing mesh

parameterization. Proceedings of the Shape Modeling

International, Jun. 7-9, IEEE Xplore Press, USA, pp:

200-208. DOI: 10.1109/SMI.2004.1314507

