
End Date

© 2015 Douglas Hiura Longo, Beatriz Wilges, Patrícia Vilain and Renato Cislaghi. This open access article is distributed

under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Fixture Setup through Object Notation for Implicit Test

Fixtures

1
Douglas Hiura Longo,

2
Beatriz Wilges,

1
Patrícia Vilain and

2
Renato Cislaghi

1Department of Informatics and Statistic, Federal University of Santa Catarina, Florianópolis, Brazil
2Department of Engineering and Knowledge Management, Federal University of Santa Catarina, Florianópolis, Brazil

Article history

Received: 18-02-2015

Revised: 21-5-2015

Accepted: 02-06-2015

Corresponding Author:

Douglas Hiura Longo

Department of Informatics and

Statistic, Federal University of

Santa Catarina, Florianópolis,

Brazil
Email: douglashiura@gmail.com

Abstract: This paper presents an approach to the development of fixture

setup code through an objects notation that is applied on implicit test

fixtures. This approach is integrated with a management mechanism to call

the fixture setup code from the JUnit test framework. The objective of this

work is to enable the reuse of fixtures across multiple test classes avoiding

the management and the creation of fixtures within the test itself. The

evaluation of this proposal was performed during test-driven development of

a Web-based system. Results present approximately 190 fixture setups with a

reutilization average of about 13 times, observed in an analysis with 2200 h

of development. Initial results show the growing reutilization of fixture setups

during test development, with significant test code volume reduction.

Keywords: Fixture Setup, Test Fixture, JUnit, Test-Driven Development,
Object Notation

Introduction

Modern practices of software development
encourage extensive code testing during development
stages (Bagge et al., 2010). Additionally, Beck (2003)
stated that automatized testing for Test-Driven
Development (TDD) is a key factor as it influences
the success and improvement of productivity during
software design and development (Stober and
Hansmann, 2010; Hunt et al., 2014). However,
automatized testing often depends on the testability of
Systems Under Test (SUT) (Blackburn et al., 2004).

The xUnit family of automatized tests is widely
known for TDD. Each test in the xUnit framework is
represented by a test method, which implements 4
stages: Test fixture configuration, SUT exercise, results
verification and fixture clean up (Meszaros, 2007).

An important part of the test is the code initializing
the SUT (Greiler et al., 2013a; 2013b), named fixture
setup, which puts all elements on the required state to
perform SUT (Beck, 2003; Meszaros, 2007; Louridas,
2005). The necessary elements to perform SUT are
called test fixtures (Meszaros, 2007).

Developers find in the xUnit framework several types of
builds for fixture setup. Usually, the code to build test
fixtures is: In-line setup, delegate setup and implicit setup.

The code for in-line setup is written directly onto the
test method. In this sense, fixture setup isolates tests,

resulting in code duplication. Duplicate code can be
moved onto an auxiliary method. According to Meszaros
(2007), auxiliary method can be called by a few test
methods named delegate setups.

The xUnit framework also has mechanisms dedicated
to the management of calls in code fixture setup. These
mechanisms call auxiliary methods by giving them
specific names (e.g., setup), annotations (e.g., “@before”
in JUnit), or method attributes (e.g., “[Setup]” in NUnit)
(Meszaros, 2007; Greiler et al., 2013a; 2013b). The calling
of the auxiliary method occurs implicitly at a specific
moment. According to (Greiler et al., 2013a), this is called
implicit setup.

This study proposes to involve object notation
language to set up fixtures, as well as a mechanism to
call and manage implicit fixture setups. Our main
objective is to seek a strategy which diminishes code
redundancy used in fixture setup, ultimately resulting in
a clearer and more cohesive code.

The main contribution of this article is the
implementation of this proposal through a tool integrated
to the JUnit test automation framework. For its
assessment, the tool was used by 5 developers applying
TDD on the development of a Web-based system. This
article shows how, in practice, fixture setup is
increasingly reutilized with the tool during development
stage. The greatest impact resulting from the tool is
lower maintenance on test code volume.

Douglas Hiura Longo et al. / Journal of Computer Sciences 2015, 11 (6): 794.803

DOI: 10.3844/jcssp.2015.794.803

795

Our article is organized as follows: Presents studies
related to this research; The proposal in detail; The
implementation; The assessment method used in
verifying the proposal; The results obtained with this
study; Discussion about study case and, lastly, final
remarks on the proposal are presented.

Related Works

According to Beck (2003), it is recommended to
apply TDD with simple tests of test code complexity 1,
that is, no method or loop calls. According to Fraser et al.
(2003) tests must be as simple as possible, written
mainly for design and specifications.

Beck (2003), presents two test fixture creation styles
named by Meszaros (2007), of in-line and implicit fixture
setups. Implicit fixture setup is a style strategy that
considers test framework mechanisms for fixture setup.
This strategy avoids fixture setup code redundancy,
implicitly sharing called auxiliary methods.

Another strategy to avoid code redundancy is
delegated fixture setup (Meszaros, 2007). In this
strategy, duplicated code is extracted onto a method,
which some may call a test.

Depending on the fixture setup build strategy adopted
during test code development and evolution, problems may
appear. Some of these problems are called test smells
(Meszaros, 2007; Greiler et al., 2013a; 2013b).
According to Van Deursen et al. (2001), factoring the
test code involves factoring other tests and that may
cause a set of bad smells. Greiler et al. (2013a) has
developed a test smell potential analysis tool named
Test Hound. In order to avoid test fixture smells
during software evolution, (Greiler et al., 2013b)
proposed a tool named Test Evo Hound.

According to Schuh and Punke (2003), standards
such as Object Mother and Test Data Builder are used in
fixture setup codes for object creation. These standards
promote object reutilization; however, they are written as
a set of calls that are often difficult to understand.

Proposal

The proposal developed in this study is named Picon.
Picon is a fixture setup strategy that allows the
organization and reutilization of test fixtures during TDD.
The technique proposed by Picon is a mark-up mechanism
for test fixtures implicit in test classes. Therefore, fixture
setup is defined through object notation language, which
can be shared among several test cases.

Figure 1 presents two test classes with implicit fixtures

(Test Flight by Field Setup and Test Flight by Method

Setup). Note that the from Brazil to Roma fixture used in

these tests was configured with Picon notation language and

is illustrated on Fig. 2.
As can be seen in Fig. 1, test class codes Test Flight by

Field Setup and Test Flight by Method Setup have not

explicitly stated fixture setup within their codes.
Alternatively, these test classes have only implicit test
fixture mark-ups. These mark-ups are made in two ways:

• Stated attribute within the test class (line 3, Fig. 1
from Brazil To Roma); or

• Parameter (line 13, Fig. 1“from Brazil To Roma”)
for the get method within the test method

In this sense, the from Brazil to Roma attribute and

the “from Brazil to Roma” parameter in the get method
are considered implicit test fixtures. Implicit fixture
setup is defined by the Picon notation, as shown in Fig.
2. Thus, the fixture setup of Picon for test performance is
linked to the implicit fixtures of the Test Case class.
Running of the Test Case class with fixtures is detailed
in Subsection A. Specificities in the Picon notation
language for fixture setup are presented in Subsection B.

A. Test Case Class Running with Implicit Fixtures

An application which instances a Test Suite object
running its Test Case objects is defined in order to run
the Test Case class (Meszaros, 2007). However, in order
to properly run the Test Case object, at the initial SUT
time fixtures defined by the Picon notation are created.
Thus, the test automation framework is responsible for
managing and properly creating the implicit test fixtures,
according to the Test Case class.

Figure 3 is adapted from Meszaros (2007), presenting
the mechanism to run the Test Case class according with
the proposal of this study.

Test Context object performs the creation of implicit
test fixtures. In addition, implicit test fixtures of Test
Case class are created only to run the Test Case object.
The Picon strategy is to provide a Test Context object for
the Test Suite object to run the Test Case object. During
test run, the implicit test fixtures are objects properly
created according with the fixture setup through the
notation. In this sense, the implicit test fixtures of a Test
Case class are created as objects by a Test Context object.

Picon fixture setups are named uniquely, which
allows links with the implicit test fixtures stated on the
Test Case class. This link is made during runtime, when
objects are created by reflection according with the
Picon fixture setup and later installed onto the Test Case
object. Thus, the Test Case object runs properly without
the fixture setup code within the Test Case class.

B. The Picon Notation Language for Fixture Setup

Implicit test fixtures are configured using an object

notation language based on JSON or ECMA-262, as

shown in Fig. 2. Picon fixture setups are completely

independent of the programming language, free from

algebraic operations, conditions, loops and procedures,

utilized specifically for data statement.

Douglas Hiura Longo et al. / Journal of Computer Sciences 2015, 11 (6): 794.803

DOI: 10.3844/jcssp.2015.794.803

796

Fig. 1. Implicit test fixture in test class

Fig. 2. Fixture setup by the Picon object notation language

They are created in .picon extension files. Each file

must be structured as seen in the example of Fig. 2.
Fixtures are listed for each class and for each of these
fixtures a set of name/value pairs is defined. In the
example on Fig. 2, the “Flight” class (line 1) contains the
fixture “from Brazil To Roma” and the fixture “from
Brazil To Roma” contains the set of name/value pairs
date="2015/04/13", from="BRA", to="ROMA".
Therefore, the notation language grammar is structured
in classes containing a set of fixtures, which, in turn,
store a set of name/value pairs.

Figure 4 illustrates the grammar of a class, starting
with its name, followed by the opening bracket, a set of
fixtures and a closing bracket. Figure 5 presents the
grammar of a Picon fixture.

The grammar of a Picon fixture starts with its name,

followed by its configuration stated within the opening

and closing brackets. The configuration is comprised by

a set of key/value brackets. The bracket must be a class

attribute of the fixture, which is configured with a value.

The types of values can be: Strings, integers, floats, dates,

booleans, arrays, enums and references for other fixtures.

Fixture references resolve during the test runtime,

that is, there must be fixtures linked for each reference.

This linking is made when the reference value is equal to

the name of a fixture. Therefore, references allow for the

composition among fixtures.

Implementation

The Picon proposal was implemented through a tool
integrated to the JUnit test automation framework that is
available for download. The tool implements an API for
.picon file processing and integration with JUnit.

The API developed is based on JSON, which aids
file manipulation and object creation. Files are found
within the test project and objects are created
according to fixture setups.

The objective of integrating JUnit is to create a
mechanism to manage and run the test appropriately. To
this end, some JUnit framework classes were modified,
in which we have overwritten the create Test method of
the Block JUnit 4 Class Runner class. This method then
began supplying a Test Context object for the
framework. The Test Context object is a Test Case
object proxy. The Test Context object memorizes the
Test Case object through reflection, according with the
fixtures supplied by the file manipulation API. After
fixtures are built, the test is run by JUnit.

The JUnit framework integrated with the tool can
also be used with Eclipse IDE. In this sense, there are no
changes on the traditional fixture setup build, only on the
availability of the proposed strategy.

Figure 6 presents two test examples run by the

Eclipse development IDE with the JUnit framework

integrated to the tool.

Douglas Hiura Longo et al. / Journal of Computer Sciences 2015, 11 (6): 794.803

DOI: 10.3844/jcssp.2015.794.803

797

Fig. 3. Picon mechanism for fixture setup of implicit tests during the SUT run

Fig. 4. Grammar of a class with Picon fixture

Fig. 5. Grammar of a class with Picon fixture

Fig. 6. Example of test run with implicit fixtures configured by object notation

Douglas Hiura Longo et al. / Journal of Computer Sciences 2015, 11 (6): 794.803

DOI: 10.3844/jcssp.2015.794.803

798

Assessment Method

In order to evaluate the applicability and utility of the
proposal, the following questions have been investigated:

• RQ1: Which is the fixture setup reutilization rate?

• RQ2: What is the proposal tendency (frequency) of
utilization during development?

• RQ3: What is the test code volume with Picon in
relation to test code volume without Picon?

The Picon proposal was assessed in the development

of a Web-based system. This system was developed to
evaluate and follow up on the e-Tec Brasil network
courses (Cislaghi et al., 2014). The system holds a data
base with questionnaires and results on the evaluations
of Brazilian federal institutes on Education, Science and
Technology. The system was developed through Java for
Web technologies, as well as with the PostgreSql Data
Base management system.

The tool integrated to the test automation framework

was applied during system development, followed by the

TDD practices. The development team was composed of

5 programmers with little to no experience with TDD. In

this sense, the programmers were trained for 80 h in

order to obtain TDD practice. After the training period,

system development activities were started. The

development team dedicated an average of 22 h/day.

During development, the programmers were

supervised and advised in relation to TDD practices,

coding in pairs. In addition, tests were developed

through system requirement statements. Thus, fixtures

were used in almost every test in order to follow

previous conditions for test run. Programmers were

advised to write simple tests during development

maintenance and evolution state, refactoring both tests

code and their application code.
During development, developers have applied other

hybrid fixture setup strategies supported by the Junit

framework, such as the implicit setup and the in-line
setup presented in Fig. 3.

Proposal assessment considered development
evolution of a midrange project. According to Ress et al.
(2003), a midrange project has between 2000 and 3999 h
of development. Thus, proposal assessment was
performed in 10 intervals of 220 h each, totalizing 2200
h of development. That is, data was collected in the
following time intervals:

Time = {220, 440, 660,…, 2200}

For each interval during development, the following

variables were extracted:

• Test Case = amount of test cases

• Fixture Setup = amount of fixture setups related to
the proposal

• Test Fixture = amount of reutilized fixture setups

• Application code = numbers of application code lines

• With Picon = number of test code lines with Picon

• Without Picon = number of test code lines
without Picon

The strategy to obtain the number of test code lines

without Picon was to replace a fixture setup proposed by
traditional fixture setups.

Thus, the number of lines in test code without Picon
was collected through existing test classes. These classes
were changed to calculate the number of lines in test
code without Picon. The change of the test classes
required the addition of more lines in the code. This
addition of lines was performed using an algorithm.
From this code it is possible to extract the number of
lines to perform the necessary comparisons. Figure 7
shows an example of a test code to illustrate the
operation of the algorithm, which obtains the code of the
tests without Picon. Figure 8 shows the Picon Fixture
Setup used in the code from Figure 7. Figure 9 shows the
same code without Picon.

Fig. 7. An example of a test code developed with the tool

Douglas Hiura Longo et al. / Journal of Computer Sciences 2015, 11 (6): 794.803

DOI: 10.3844/jcssp.2015.794.803

799

Fig. 8. Picon Fixture Setup

Fig. 9. Test code generated by the algorithm without Picon

The section highlighted in Fig. 9 (lines 7 and 8)
illustrates the lines added in code developed without
Picon. It is emphasized that the procedure shown in Fig.
7, 8 and 9 is only an illustration of the algorithm applied
in all test code. Thus, we can only find the test code
volume relative to development time with the proposal.
The test code volume without the proposal is relative to
the application code.

A number of software reuse metrics have been
suggested in the literature. Various categories of metrics
can be found, such as cost-effort analysis, maturity
assessment models, amount of reuse, reutilization,
among others (Frakes and Terry, 1996; Poulin and
Caruso, 1993). According to Patel and Kollana (2014),
most metrics can be adapted to measure reuse and have
utility from varying points of view, but it would be
costly to implement them all.

According to Frakes and Terry (1996) as well as

Poulin and Caruso (1993), the metrics calculating the

amount of reuse defines a percentage of reuse in relation

to the number of case tests reused, divided by the total

number of test cases in a project. Thus, in this study, the

metrics calculating the amount of reuse defines a percentage

of reuse in relation to the number of case tests reused,

divided by the total number of test cases in a project.
Research Questions are answered according with the

collected data, through the following analyses:

• (RQ1) Fixture setup reuse can be answered by the
proportion analysis between data from the fixtures
setup and test fixtures variables

• (RQ2) Proposal use tendency during development
can be answered by the linear correlation coefficient
(“Pearson r”) among variable pairs: Time and test
fixtures; time and fixture setup

• (RQ3) The difference between code volume is
calculated by comparing variables with Picon and
without Picon in relation to the same application code

Proposal Assessment Results

Results in this section present a synthesis on the

applicability and utility of the proposal, answering the

Research Questions. The Fig. 10 presents a line chart

with the evolution over time of variables: Test fixture,

fixture setup and test case.

Douglas Hiura Longo et al. / Journal of Computer Sciences 2015, 11 (6): 794.803

DOI: 10.3844/jcssp.2015.794.803

800

The proposal tool was introduced in the project after
the first 230 h of development; thus, the first results
appear only at data collection time of 440 h. Requisite
changes have occurred during the project. The most
evident requisite changes occurred between 880 and
1100 h, which caused the removal and adjustments of
tests. These changes have impacted the amounts of all
three variables of the Fig. 10 chart.

The test fixture variable curve presented on Fig. 10
illustrates the reuse of fixture setups (RQ1). Each fixture
setup was used in an average of 13.78 times during the
2200 h of development.

A key factor to correct issues due to multiple case
test flaws for editing fixture setups is to maintain the
tests simple, with few fixtures. However, each test case
uses an average of 2.05 test fixtures and this number
increases constantly during development evolution. This
means that the test cases may have become more
complex during the project.

The Microsoft Excel data analysis tool was utilized to
calculate the linear correlation coefficient, as well as to
determine the equation to adjust the variable pairs: Time
and test fixtures and time and fixture setups. The
variables test fixture and time have a correlation
coefficient of r = 0.95. The correlation coefficient
greater than zero indicates a positive correlation, that is,
there was crescent reuse tendency of fixture setups
during development evolution. The coefficient of
determination (r2 = 0.91) above 0.70, indicate that the
variables of test fixture and time have properly adjusted to
the linear equation model (Test fixture = 267 time-104).

The variables fixture setup and time have a linear
correlation coefficient of r = 0.94. This result shows the
crescent tendency of fixture setups during development.
Additionally, the coefficient of determination (r2 = 0.90)

indicates that the linear equation (Fixture setup=20 time
-10) has strong adherence to the variable data.

The chart of Fig. 10 shows some decreasing
sequences. However, the proposal utilization tendency
during development was crescent through the linear
correlation coefficient analysis over time (RQ2).

The 2200 h of development have generated 10540 lines

of application code. The line chart on Fig. 11 illustrates the

difference of test code volume with and without Picon, in

relation to the application code volume (RQ3).

The average difference between the variables with

and without Picon was of 9740 lines of code. However,

according to the line chart on Fig. 11, the area of the

difference between both variables increases according to

the volume of application code.

The chart on Fig. 12 presents the code volume after

approximately 6000 h of development for variables:

Application code, with Picon and without Picon.

The proportion between the number of application

code lines and the number of test code lines without

Picon was of approximately 1 application code line

for each 10 test code lines. However, the proportion

between the number of application code lines and the

number of test code lines with Picon was of

approximately 1 application code line for each 4 test

code lines. Thus, by applying the proposal after

approximately 6000 h of development, only 40% of

test code volume is necessary in relation to traditional

test code volumes.

Thus, the proportion between the numbers of test

code lines implemented for each application line shows

the strong potential that the Picon development proposal

can offer. This result is interesting as it diminishes

significantly the number of test code lines elaborated.

Fig. 10. Line chart of the evolution over time of variables: Test fixture, fixture setup and test case

Douglas Hiura Longo et al. / Journal of Computer Sciences 2015, 11 (6): 794.803

DOI: 10.3844/jcssp.2015.794.803

801

Fig. 11. Line chart of code volume: Without Picon versus with Picon

Fig. 12. Chart of code volume

Discussion

During the development, TDD practices (Beck, 2003)

were adopted. However, it was not possible to design

isolated tests because shared fixtures were used. Two

positive points on reusing the fixture setups were: Less

time between test writing and running; and fewer code

lines within the test class. However, shared fixture setups

have broken isolation among tests; that is, if there were

fixture setup edits, flaws can occur in several test cases.
The main principles adopted in TDD:

• Assert first-this technique has a powerful
simplifying effect during test development (Beck,
2003). This technique was a good practice to avoid
unnecessary fixtures

• Factoring-was adopted both in the test code and in
the application code. Thus, it was possible to reduce
the volume of code maintained

• Simple tests-the test code must be linear, without
deviation, conditions, loop or branches

• Simple Assertions-simple assertions are easy to read

and maintain. It is therefore discouraged the use of

narrative assertions, for example, assert That (new

Array List().size(), is (0))

• Code coverage test - it is important to test 100% of

the application code. Considering that testing 100%

of the application states is impossible. Thus, it is

recommended to avoid extensive tests and include

tests that fail

In the context of the proposed fixtures, developers

usually adopt the general name "qualifier" to identify the

fixture Name (Fig. 5). In this project it is encouraged to

use proper names for "qualifiers", as in the fixture Mary

(Fig. 9). Avoiding to include the fixture type for the

fixture name, for example: User Mary.

Douglas Hiura Longo et al. / Journal of Computer Sciences 2015, 11 (6): 794.803

DOI: 10.3844/jcssp.2015.794.803

802

In addition, it can be understood that fixture setup
reuse enables the code to be cleaner and more cohesive,
since it is no longer necessary to rewrite each fixture
used on tests. Thus, it is possible that semantic errors
occurring during project feature development can be
more easily found and more importantly, avoided.

The evaluation of the proposal explicitly involves the
use of TDD practices. In particular, the proposal is
unaware of the results of its use with other types of
automation tests, such as test after.

Conclusion

In this study we have presented a proposal for fixture
setup through object notation for implicit test fixtures.
The proposal was implemented through a tool integrated
to the JUnit framework. The tool was applied on
software development with TDD practices. During
software development, tool application was assessed. At
this stage, we have investigated the reuse of fixture
setups, the tendency of use and the test code volume.
These factors can be perceived mainly on the graphs
illustrating the amount of fixtures that are reusable over
time during implementation.

Results show the growth of the use of the proposal
tool, which indicates its need during development. It is
possible to observe that the application of this proposal
results in increasing reuse of fixture setups, diminishing
redundant code in test classes. The most evident impact
is the reduction of test code volume, avoiding efforts to
create and maintain it.

The main contribution of this study is the
implementation of a tool, according to the proposal, as
well as the investigation in test fixture reuse through
object notation with TDD practices.

In future research we plan to investigate:

• Fixture setup outside of test class, presenting solutions

and practices in order to improve the test project

• The execution time of the tests with the
implementation of fixtures mechanism. Thus it may
be possible to improve the implementation to reduce
execution time

Acknowledgement

We thank the development team and the Federal
University of Santa Catarina that provided insight and
expertise. Special thanks to Professor Luiz Fernando
Melgarejo Bier by introduction of TDD in classes of
programming oriented objects. Thanks to Rogerio
Bagatini by Picon development collaboration.

Funding Information

Authors would like to thank the Ministry of
Education for providing the financial support through

scholarship from Coordination for the Improvement of
Higher Education Personnel (CAPES).

Author’s Contributions

Douglas Hiura Longo: Design the research and

prepare the workflow. Undertake the required

experiments and analyse the obtained results.

Beatriz Wilges: Organizes the writing and structure

of the manuscript.

Patricia Vilain: Research advisor.

Renato Cislaghi: Development project coordinator.

 Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Bagge, A.H., V. David and M. Haveraaen, 2010. The
axioms strike back: Testing with concepts and

axioms in C++. ACM Sigplan Notices, 45: 15-24.
DOI: 10.1145/1837852.1621612

Beck, K., 2003. Test Driven Development: By Example.
1st Edn., Addison-Wesley, Boston, ISBN-10:

0321146530, pp: 220.
Blackburn, M., R. Busser and A. Nauman, 2004. Why

model-based test automation is different and what you
should know to get started. Proceedings of the

International Conference on Practical Software Quality
and Testing, (PSQT’ 04), pp: 212-232.

Cislaghi, R., B. Wilges, S.M. Nassar, D.L. Hiura and
G.P. Mateus, 2014. Avaliação de polos sob uma

perspectiva georreferenciada. Proceedings of the
11th Congresso Brasileiro de Ensino Superior a

Distância (ESUD’ 14), Florianópolis, pp: 771-781.
Frakes, W. and C. Terry, 1996. Software reuse: Metrics

and models. ACM Comput. Surveys, 28: 415-435.
DOI: 10.1145/234528.234531

Fraser, S., D. Astels, K. Beck, B. Boehm and J. McGregor,
2003. Discipline and practices of TDD: (Test Driven

Development). Proceedings of the Companion of the
18th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages and
Applications. ACM, pp: 268-270.

 DOI: 10.1145/949344.949407
Greiler, M., A. Van Deursen and M.A. Storey, 2013a.

Automated detection of test fixture strategies and
smells. Proceedings of the 6th International Conference

on Software Testing, Verification and Validation, Mar.
18-22, IEEE Xplore Press, Luembourg, pp: 322-331.

DOI: 10.1109/ICST.2013.45

Douglas Hiura Longo et al. / Journal of Computer Sciences 2015, 11 (6): 794.803

DOI: 10.3844/jcssp.2015.794.803

803

Greiler, M., A. Zaidman, A. Van Deursen and M.A.
Storey, 2013b. Strategies for avoiding text fixture
smells during software evolution. Proceedings of
the 10th IEEE Working Conference on Mining
Software Repositories, May 18-19, IEEE Xplore
Press, San Francisco, pp: 387-396.

 DOI: 10.1109/MSR.2013.6624053
Hunt, C.J., G. Brown and G. Fraser, 2014. Automatic

testing of natural user interfaces. Proceedings of the
IEEE 7th International Conference on Software
Testing, Verification and Validation, March 31-April
4, IEEE Xplore Press, Cleveland, pp: 123-132.

 DOI: 10.1109/ICST.2014.25
Louridas, P., 2005. JUnit: Unit testing and coiling in

tandem. Proceedings of the IEEE Software, 22: 12-15.
DOI: 10.1109/MS.2005.100

Meszaros, G., 2007. XUnit Test Patterns: Refactoring Test
Code. 1st Edn., Pearson Education,

 ISBN-10: 0132797461, pp: 944.
Patel, S. and R.K. Kollana, 2014. Test case reuse in

enterprise software implementation-an experience
report. Proceedings of the IEEE Seventh International
Conference on Software Testing, Verification and
Validation, Mar. 31-Apr. 4, IEEE Xplore Press,
Cleveland, pp: 99-102. DOI: 10.1109/ICST.2014.22

Poulin, J.S. and J.M. Caruso, 1993. A reuse metrics and

return on investment model. Proceedings of the

Advances in Software Reuse., Selected Papers from

the 2nd International Workshop on Software

Reusability, Mar. 24-26, IEEE Xplore Press, Lucca,

pp: 152-166. DOI: 10.1109/ASR.1993.291707

Ress, A.P., R. Oliveira Moraes, M.S. Salerno, 2003. Test-

driven development as an innovation value chain. J.

Techn. Manage. Innovation, 8: 10-10.

Stober, T. and U. Hansmann, 2010. Agile Software

Development. 1st Edn., Springer,

 ISBN: 10- 9783540708308. pp: 179.

Schuh, P. and S. Punke, 2003. Easing Test Object Creation

in XP. XP Universe.

Van Deursen, A., L. Moonen, A. van den Bergh and G.

Kok, 2001. Refactoring test code. CWI.

