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Abstract: Luby Transform (LT) codes, the first realization of 

rateless codes are widely used in wireless communication mainly for 

its adaptability to varying channel conditions and its capacity 

approaching performance. In spite of the above advantages and its 

simplicity in implementation, LT codes suffer from a bottle neck of 

premature termination due to the poor design of degree distribution. 

In this study, a novel degree distribution called Joint Degree 

Distribution (JDD) is proposed for the successful completion of LT 

encoder/decoder processes. The efficient utilization of the bandwidth 

is tried to be achieved by using only ‘k’ encoded symbols for ‘k’ 

source symbols, unlike in traditional systems. JDD is carefully 

designed to ensure that the encoding/decoding delay does not exceed 

that which is existent in the traditional systems. The performance of 

JDD for throughput and bit error rate, experimented over Additive 

White Gaussian Noise (AWGN) channel compared to conventional 

degree distribution was observed to be much better. 
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Introduction 

One of the fundamental issues in any 

communication system is achieving the reliable 

delivery of data between a sender and a receiver over 

an unreliable channel. Automatic Repeat Request 

(ARQ) is an error control technique that allows the 

receiver to detect the errors in the received message 

and request the sender for the retransmission of the 

erroneous message. But, these message 

retransmissions causes more delay and may not be 

found suitable for cellular and real-time multimedia 

broadcasting applications (Eduardo et al., 2010). 

As an alternate to ARQ, Forward Error Correction 

(FEC) schemes such as Low Density Parity Check 

(LDPC) codes introduce redundant data for achieving 

minimum retransmissions (Khedr and Sharkas, 2012). 

Here, the basic assumption is that the channel state 

information is known prior to both the transmitter and 

receiver. But, if channel conditions are time-varying 

especially like in Internet, then there will be more 

number of retransmissions of the message which may 

not be feasible for time-sensitive applications. Hence, 

it becomes necessary to achieve the maximum 

throughput over the time-varying channels also.  

In literature, it is found that, adaptive coding 

techniques could exploit these time-varying channel 

conditions in order to optimize the performance of the 

communication system (Sekar et al., 2011). Therefore, 

Fountain codes have been an active research area for 

more than a decade in the communications field, 

primarily for its focus on achieving capacity 

approaching performance. Fountain codes also known 

as rateless erasure codes or simply rateless codes, are 

designed especially for Binary Erasure Channels 

(BEC). An infinite stream of encoded symbols is 

transmitted by the encoder to the decoder for recovery 

of the original source symbols, with the excess 
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encoded symbols exploiting the transmission 

bandwidth (Luby, 2002). 

Though, rateless codes are initially designed for 

erasure channels for the efficient transmission of data, 

but these codes can also provide better performance over 

the time varying channels with increase in latency and 

complexity of the decoder. Unlike fixed length coding, 

there is no need for the transmitter to know the prior 

channel conditions before it starts transmitting the 

encoded symbols through the channel, if rateless codes are 

employed. This makes rateless codes essentially suitable 

for wireless channels also (Salkuyeh et al., 2013).  

LT and Raptor codes are the two major classes of 

rateless codes. The capacity approaching  performance 

and adaptability features of rateless codes make LT and 

Raptor codes as near optimal codes for erasure channels, 

Binary Symmetric Channels (BSC), Additive White 

Gaussian Noise channel (AWGN) and fading channels 

like Rayliegh and Rician (Palanki and Yedidia, 2004; 

Shokrollahi, 2006). But the above claim of achieving 

optimal state is feasible, only by applying an appropriate 

degree distribution function in LT encoder.   

The basic principle of LT codes is that the receiver 

continuously receives an infinite stream of encoded 

symbols until the decoder recovers all the k source 

symbols from a set of n encoded symbols received, 

where n is slightly larger than k.  

Here, every symbol is encoded “on the fly” based on 

the degree distribution d, randomly chosen for that 

particular symbol. The encoded symbol is obtained by 

performing simple bitwise exclusive-or (XOR) 

operations on randomly chosen and uniformly 

distributed d source symbols. The following Fig. 1 

shows the system model used in Conventional Degree 

Distribution (CDD) based LT codes. 

The source file with data to be transmitted is 

fragmented into ‘k’ source symbols of uniform length ‘l’ 

called as blocks or input symbols,  where l >= 1.  For a 

given set of k source symbols {s1, s2, … sk} of  the 

source file, the encoder (using LT  codes) generates an 

infinite stream of encoded symbols {c1, c2, …… }. 

The encoded symbols are actually obtained by 

XORing d randomly and independently selected source 

symbols based on the given degree distribution as 

described in Fig. 2. The receiver reconstructs the k 

source symbols from any subset of n encoded symbols 

where n is equal to or slightly larger than the number of 

source symbols k. In LT codes, the general assumptions 

made are (i) the length of symbols (both source and 

encoded) are of same length (ii) encoding process of the 

individual symbols are independent. 

In addition to that, the LT decoder is designed to 

recover k original source symbols from k (1+ε) 

encoded symbols, where ε ≥ 0, is the encoding 

overhead. When the number of source symbols k→∞ 

and ε→0, the decoder behaves asymptotically optimal 

(Zao et al., 2012). When the encoded symbols 

overhead ε reaches its minimum, the number of 

encoded symbols n almost becomes equal to k. Hence, 

there is a marginal level of increase in the complexity 

of the decoder process which forces the premature 

termination of LT decoder. 

Lu et al. (2009) addressed this issue and proposed 

a full rank decoding algorithm that extends the LT 

decoding process to avoid the premature termination, 

when there is no degree 1 symbol in the ripple to 

enable the decoder to continue processing. Sorensen et al. 

(2012) also have emphasized the need for decreasing 

ripple size during decoding which reduces the 

decoding overhead. 

 

 
 

Fig. 1. Conventional degree distribution based LT codes system model 
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Fig. 2. LT encoding 

 

Analogous to these experiments, our investigations 

are focused on analyzing the performance of LT codes 

for noisy channels. In this research work, a novel 

degree distribution function called Joint Degree 

Distribution (JDD) function is designed for the LT 

encoder. The focus of the proposed distribution 

strategy is to reduce the overhead of decoder and to 

achieve higher throughput with low 

encoding/decoding delays. It is also attempted to 

minimize the bit error rate which tends to increase 

with decrease in encoding overhead ε. 

The rest of the paper is organized as follows. In 

section 2, we briefly introduce the various degree 

distribution functions already proposed for LT codes and 

the need for its optimization. Section 3 describes the 

proposed JDD based LT codes system model. Section 4 

details about the simulation results. The summary of our 

findings are discussed in section 5. Finally, we give our 

conclusions in section 6. 

Related Work 

Motivation 

The degree distribution is the key design part in LT 

codes.  Luby (2002) has shown that, the optimal 

performance of LT codes could be achieved in his initial 

work with use of an Ideal Soliton Distribution (ISD) by 

maintaining the ripple size as constantly one during the 

entire LT decoding process. After the introduction of 

Robust Soliton Distribution (RSD), the decoding 

performance was slightly better as the constant ripple 

size was more than one. 

Shokrollahi (2006) proposed a modified version of 

LT encoding scheme called Raptor codes having fixed 

rate precode, concatenated with LT code, where the 

input blocks are encoded using a fixed rate code 

before LT encoding. Raptor codes were designed 

especially to solve the transmission problems over the 

varying channel conditions. 

Though, RSD proves to be performing well for larger 

number of encoded symbols, but it gives the motivation 

for the researchers to design an optimal degree 

distribution functions to reduce the number of encoded 

symbols being transmitted. 

Zhu et al. (2009) proposed a Sub Optimal Degree 

Distribution (SODD) algorithm for LT codes in 

improving the efficiencies of data distribution 

applications and analyzed its drawbacks on realization 

with respect to the average decoding efficiency, the 

best decoding efficiency and the variance of decoding 

efficiencies were presented. 

Chen et al. (2010) also introduced evolutionary 

algorithms to optimize the degree distribution in LT 

codes, so that degree distribution can be customized for 

different purposes. In continuation to that, Zang and Feng 

(2011) also analyzed Luby’s ISD and RSD and proposed 

an improved adaptive encoding method to ensure the 

proper distribution of degree one encoded symbols for the 

successful decoding process. Zhiliang et al. (2012) 

proposed an approach to design a well defined degree 

distribution for LT codes and analyzed the 

performance of LT codes using different metrics like 

average degree, release probability and overhead. 

Summary of the Issues in the Existing System 

Based on the above literature review, we find that the 

following are the issues that need to be resolved in the 

existing Conventional Degree Distribution (CDD) 

functions designed for LT codes in order to achieve the 

optimal performance of the communication system: 

 

• Reduce transmission of redundant degree one 

encoded symbols 

• Premature termination of the LT decoder  

• Minimize encoder/decoder delay 

• Minimize encoder/decoder overhead 

• Maintaining the constant ripple factor 

• Effective utilization of the bandwidth 
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Problem Description 

To address the above issues, our proposed work 

emphasizes on understanding the whole LT encoding 

process as a bipartite structure and to design a joint 

degree distribution of vertices involved in the graph as 

an interesting research for finding an optimal degree 

distribution solution for LT codes. From the research 

work of (Stanton and Pinar, 2012), we find that it is 

possible to generate random instances of graphs with 

the same joint degree distribution for LT encoding 

process where the joint degree matrix (or JDM for 

short) model which is a version of JDD for a network 

structure. In essence, the JDD gives (for each i and j) 

the probability that an edge of the graph connects a 

vertex of degree i to a vertex of degree j, while JDM 

tells us the exact number of edges between vertices of 

degrees i and j. 

In our proposed work, we have designed a 

restrictive model adapted from the above Joint Degree 

Distribution (JDD) model (Stanton and Pinar, 2012; 

Czabarka et al., 2013), to maximize bandwidth 

utilization and also to resolve the above issues. In our 

work, we have given a simplified proof of the 

necessary and sufficient conditions for a matrix to be 

a joint degree matrix for realizing LT encoding as a 

bipartite graph, which includes a general method for 

constructing realization of joint degree distribution. 

Based on the proposed JDD based LT codes, we 

investigate the performance of the LT decoder for 

small number of input symbols without sending the 

excessive encoded symbols for recovery. That is, the 

number of encoded symbols that are needed for 

recovery is well-defined. In this model, only k 

encoded symbols are sufficient to successfully decode 

k source symbols without compromising the 

complexity of LT codes. 

Proposed Work 

In LT codes, the source symbols are chosen 

randomly, which may be redundant. There are chances 

that the same source symbol may be repeatedly 

chosen for encoding (random sampling with 

replacement). In the case of degree 1 encoded symbol, 

redundant choice of source symbols may reduce the 

performance of LT decoding. 

In our initial design for distribution, the effects of 

various degree combinations in encoded symbols were 

studied. The best performance in terms of throughput, 

bit error rate, encoder/decoder delay and overhead 

was obtained using degree 1 and degree 2 

combinations of encoded symbols. 

The focus of the model is in restricting the degree 

1 encoded symbols. We introduce a variant of degree 

distribution traditionally used in LT codes which 

permits only degree 1 and degree 2 encoded symbols. 

Here, we have restricted the choice of source symbol 

for contributing to degree 1 encoded symbol to be 

random but distinct. If a symbol is chosen 

redundantly, the choice is discarded and repeated until 

another distinct symbol is chosen (random sampling 

without replacement). This sometimes leads to an 

uncoded state (i.e., all encoded symbols are of degree 

1), when all encoded symbols are of degree 1 and 

equal or greater than the number of source symbols. 

This state also reduces performance of recovery, if 

any encoded symbols are lost during transmission. 

The objective of this design is to find the optimal 

number of degree 1 encoded symbols which provides 

best throughput and low BER. We extended this idea 

to JDD to improve the bandwidth utilization, as the 

conventional LT codes using the existing degree 

distributions achieves the maximum throughput only 

by consuming more bandwidth. 

Design of Joint Degree Distribution (JDD) 

In this section, we introduce our design of LT 

encoder using joint degree distribution (JDD). The 

degree distribution employed in the encoding process 

of our proposed design is analogous to a balanced 

irregular bipartite graph G (U,V,E). U and V are 

subsets of vertices of G and have the same cardinality 

(thus making the bipartite graph balanced) and E is 

the set of edges from U to V. The degree of vertices 

are different in U and V and hence G is irregular 

bipartite but balanced. U represents left nodes also 

called as source symbols and V represents right nodes 

also called as encoded symbols obtained by 

performing a XOR operation on two or more source 

symbols (U).  Edges E run between vertices in U 

(source symbols) to vertices in V (encoded symbols 

from corresponding source symbols in U). The system 

model for LT code using modified degree distribution, 

JDD is shown in Fig. 3.  

Linking Probability Matrix (LPM) 

Lemma 1 

For JDD, the linking probability matrix LPM can 

be modeled as dmax × dmax sized matrix, which 

describes what is the probability of every degree i 

node ui in U linking with every degree j node vj in V, 

in such a way that the sum of linking probabilities for 

every degree i node ui is always equal to 1. In the 
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design of JDD, the probability of degree 1 nodes u1 in U 

linking with degree 1 nodes v1 in V is always zero as 

given in Equation 1: 

 

1,1 1, max

1max, max, max

d

d d d

L L

LPM

L L

 
 
 =
 
 
 

⋯

⋮ ⋱ ⋮

⋯

 (1) 

 

Joint Degree Matrix (JDM) 

Generally, the Degree Distribution (DD), ρ(d) is 

the probability of a random encoded symbol v € V, to 

have degree d,  1 ≤ d ≤ dmax. The Joint Degree 

Distribution (JDD), ρ(d,r) is the probability of a 

random encoded symbol v € V of degree d to have an 

edge with a random source symbol u € U of degree r. 

The degree vector D also called as degree sequence is 

the count of the number of nodes of degree k, (1≤ k ≤ 

dmax) in the given graph. 

The Joint Degree Matrix (JDM) is a matrix of size 

dmax × dmax, where dmax is the maximum degree of a 

node in the graph G.  Each element Jij represents the 

count of edges that run between nodes of degree i to 

degree j (from U to V). The degree vector can be 

obtained from the JDM using the Equation 2: 

 

1,1 1, max

1max, max, max

d

d d d

J J

JDM

J J

 
 
 =
 
 
 

⋯

⋮ ⋱ ⋮

⋯

  (2) 

( )( ),

,

max

i j

i j

i n L
J

d

× ×
=  (3) 

 

where, each element Ji, j of JDM can be found by 

using Equation 3. 

From Equation 1-3, the degree sequence and the 

corresponding total number of edges present in the 

entire graph are determined for k, r = 1,2, ….., dmax as 

given in Equation 4: 

 

max

, ,

1

r

d

k k k k r

for r k

D J J
k

≠

 
 = + 
 
 

∑  (4) 

 

If the number of nodes in both U and V is n  and the 

linking probability is p, then the network will have an 

average nodal degree as Equation 5: 

 

avgd np=  (5) 

 

The linking probability p can be determined by using 

a well defined JDD, which examines each pair of 

connected nodes and represents their respective nodal 

degrees in JDM. 

Node Perspective Degree Distribution 

This degree distribution with respect to nodes in U 

and V can be inspected as follows: 

 

 

 
Fig. 3. JDD based LT codes system model 
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Determining Degree One Nodes 

The variable degree distribution which is considered 

in the proposed design does not have edges from any 

node with degree 1 in U to a node with degree 1 in V. 

There is no edge connecting only one source symbol 

contributing to one encoded symbol. For successful 

recovery of source symbols, it is ensured that a source 

symbol contributes in the encoding process of more than 

an encoded symbol or more than one source symbols are 

XORed to form an encoded symbol. 

Lemma 2 

For the given bipartite graph G of dmax as 2, with 

known JDM and derived Dk, the linking probability of 

the number of degree one nodes in V connecting with 

degree one nodes in U is zero and the linking 

probability of the number of degree one nodes in V 

linked with degree one node in U is one. 

Lemma 3 

For the given bipartite graph G of dmax as 2, with 

known JDM and derived Dk, the linking probability of 

the number of degree two nodes in V connecting with 

degree one nodes in U is same as that of connecting with 

degree two nodes in U is ½. 

Proof 

Given the graph G with specific JDD and the 

cardinality n of both U and V as 10 with the maximum 

degree dmax as 2. By applying Lemma 1, the LPM and 

JDM are given in Equation 6 and 7: 

 

1,1 1,2

2,1 2,2

0 5

5 5

J J
JDM

J J

   
= =       

 (6) 

 

1,1 1,2

2,1 2,2

0 1

1 1
2 2

L L
LMP

L L

  
 = =       

 (7) 

 
For k = 1, dmax = 2, we get D1, the number of nodes in 

V with degree 1 are found in Equation 8 and 9: 
 

2

1 1,1 1,
1

1

1
r

r
for r k

D J J
=
≠

 
 = + 
 
 

∑  (8) 

 

( )1,1 1,2J J= +  (9) 

 
By using the above JDM of the graph G given in 

Equation 7 with derived degree sequence D1 from 
Equation 8, first we randomly choose both D1 degree one 
V nodes and D1 degree one U nodes of the bipartite 
graph as shown in (Fig. 4a). 

Determining Degree Two Nodes 

In the same way, for k = 2, dmax = 2, we get D2, the 

number of nodes in V with degree 2 are found as given in 

Equation 10 and 11: 

 

2

2 2,2 2,
1

1

2
r

r
for r k

D J J
=
≠

 
 = + 
 
 

∑  (10) 

 

( )2,2 2,1

1

2
J J= +  (11) 

 

By using the above JDM of the graph G given in 

Equation 7 with derived degree sequence D2 from 

Equation 10, we choose both D2 degree two V nodes and 

D2 degree two U nodes of the given graph. 

Determining the Edges for Degree One Nodes in V 

The total number of edges ETotal of the given graph 

can be calculated using the degree sequence Dk of the 

graph as Equation 12: 

 

max

1

d

Total k
k

E kD
=

= ∑  (12) 

 

But, for the graph G with n nodes of degree dmax, 

the maximum number of possible edges in G is 

bounded as in Equation 13: 

 

max maxE nd=  (13) 

 

The average nodal degree davg can be found as 

Equation 14: 

 

max

1

1
d

avg k
k

d kD
n =

= ∑  (14) 

 

According to Lemma 2, there exists no edge between 

degree one nodes in V and degree one nodes in U, 

because J1,1 = 0. Hence the proposed distribution 

randomly selects a distinct degree two node from U to 

generate a corresponding encoded symbol i.e., a node 

with degree one in V. 

Determining the Edges for Degree Two Right 

Nodes 

The major contribution of our design lies here. A 

degree two node nv € V has edges from two nodes nu1, 

nu2 € U with degree k1 and k2 respectively such that 

k1≠k2, 1≤(k1,k2) ≤dmax.
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 (a) (b) 

 
Fig. 4a and b. The bipartite graph representation of JDD 

 

i.e., every degree two nodes in V has one edge with 

degree one node in U and another edge with degree two 

node in U such a way that the nodal degree of the nodes 

in U does not exceed dmax. 

The complete, balanced and irregular bipartite 

graph for the given JDD is shown in (Fig. 4b). This 

distribution when applied in the LT encoder facilitates 

successful termination of the LT decoder, which 

enhances the throughput performance with low 

encoding/decoding delays. 

In any transmission, the successful decoding of 

source symbols purely relies on the degree distribution 

used in the encoder. The decoding process will succeed 

only if there is at least one received encoded symbol in 

the ripple at every intermediate stage until the entire 

source symbols are recovered. When all the source 

symbols have been recovered  and with no encoded 

symbol in the ripple, then the decoder terminates 

successfully. If the ripple gets emptied during any of the 

intermediate stages, then the decoder prematurely 

terminates with source symbols pending to be recovered.  

Thus, it is evident that the ripple size has to be 

maintained ≥1, until all source symbols are recovered. 

The constraint on ripple size ≥1 is satisfied in the 

proposed JDD distribution for encoding the symbols. 

The proposed JDD based LT encoder ensures the high 

throughput performance of the LT decoder. The joint 

degree distribution which is the base of our work 

ensures that all source symbols are included in the 

encoding process, thereby maintaining the ripple size 

at the decoder constant with degree one symbols. The 

LT encoder using our proposed distribution runs in 

linear time, since the average degree davg of the 

encoded symbol is independent of the symbol length 

as in traditional LT codes.  

Simulation Results 

Simulation Environment 

The JDD and CDD based LT codes have been 

implemented in ‘C’ language.  The source data is 

generated using random binary data generator. The input 

data of size 10
6
 bits is fragmented in to 100 source 

symbols of symbol length 10,000 bits. The performance 

of LT codes using CDD and proposed JDD are studied 

for transmission over AWGN channel using Binary 

Phase Shift Keying (BSPK) as the modulation scheme.    

Performance Metrics 

The performance of JDD over conventional system 

for various aspects like delay, throughput, constant 

ripple size and bit error rate performance are discussed 

below.  

Delay in Encoding/Decoding Process 

The observations for the average encoder/decoder 

delay and the source symbols recovered are tabulated as 

shown in Table 1 and 2.  
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Figure 5 illustrates the average encoder/decoder 

delay performance of CDD for varying the encoded 

symbols size. 

Decreasing Ripple Size  

The ripple is a buffer used in decoding to store the 

degree 1 encoded symbols. This ripple should be 

maintained with at least one degree 1 symbol to 

continue decoding until successful recovery of all 

source symbols. Figure 6 describes the decreasing 

ripple size of CDD and JDD. 

Throughput 

Figure 7 describes the throughput performance of CDD 

and JDD for varying the number of encoded symbols. 

BER Vs SNR  

The BER Vs SNR performance comparison between 

CDD and JDD based LT codes over AWGN channel 

using BPSK modulation is analyzed for the varying 

number of degree 1 nodes from 10 to 50 with an 

increment of 10 for the varying SNR from 0dB to 8.5dB 

in increments of 0.5dB. The performance with number of 

degree 1 nodes as 50 is shown in Fig. 8.  

Discussion 

The objective of this performance study is to control 

the premature termination of the decoder in LT codes. 

Our study about the factors that are significant for 

successful decoding revealed that, the degree 

distribution of symbols is sensitive to recovery of 

source symbols. In order to understand the role of 

degree distribution in LT codes, the various sets of 

encoded symbols in combinations of {degree 1, degree 

2}, {degree 1, degree 3}, {degree 1, degree 4} and etc 

have been implemented. It was observed that, the 

encoded symbols of combination (degree 1, degree 2} 

performed much better due to least overhead (ε = 2) 

compared to other combinations. This degree 

distribution also conserves bandwidth as only 300 

encoded symbols need to be transmitted for 100 source 

symbols. The other two degree distribution 

combinations require the size of encoded symbols to be 

up to 8 to 12 times the size of source symbols.  
Motivated by the above simulation results, a Joint 

Degree Distribution (JDD) based LT codes have been 

implemented with same encoded symbols of 

combination (degree 1, degree 2} to increase reliability 

and success in recovery of all source symbols. In the 

JDD design, the role of degree 1 encoded symbol is 

further restricted by not allowing a degree 1 encoded 

symbol to be connected to a degree 1 source symbol. 

There are no degree 1 source symbols. A source 

symbol may contribute to more than one degree 1 

encoded symbols or any combination of degree 1, 

degree 2 encoded symbols, thereby eliminating the 

chances of an uncoded state in contrast to the 

conventional system. This increases the reliability of 

the design as even if there is a loss in the encoded 

symbols received, the source symbols can be recovered 

from their other contributions. 

From the values tabulated in Table 1 for a 

transmission of 100 encoded symbols, it can be observed 

that the encoder/decoder delay is relatively same for 

JDD and CDD based LT codes, but JDD is better in 

terms of the number of source symbols successfully 

recovered.  

To match this performance in conventional system, 

approximately 300 encoded symbols have to be 
transmitted and the encoding/decoding delay increases 
correspondingly as shown in Table 2.  

Figure 5 demonstrates that the average 

encoder/decoder delay of CDD linearly increases with 

respect to the varying number of encoded symbols. 

But, using JDD, almost approximately the same 

average encoder/decoder delay could be achieved with 

maximum throughput. From Table 1 and 2 and Fig. 5, 

it can be concluded that JDD outperforms CDD in 

terms of delay.  

Figure 6 explains the constantly decreasing ripple for 

CDD and JDD. In CDD, the count of the symbols in the 

ripple was continuously monitored to find that, it started 

with a randomly high value and dropped to zero 

resulting in premature termination of the decoder for the 

smaller number of encoded symbols size like 100, 150. 

The size of the ripple also varied for different trials.   

The same observation for JDD started with exactly 

the number of degree 1 encoded symbols allowed for 

that transmission (say 10 or 20) and got decremented for 

subsequent iteration. When it reached zero, all symbols 

were decoded resulting in successful termination of the 

decoder. The initial ripple size and its decrements 

remained constant and independent of the trials. Thus, 

JDD makes use of the ripple optimally and effectively 

compared to CDD as shown in Fig. 6.  

CDD with 10% degree 1 encoded symbols, the 

better throughput performance (that obtained with 

degree 1 encoded symbol) is almost reached. This 

reduction in number of degree 1 encoded symbols 

obviously increases throughput (average of trails 

tabulated in Table 2). Whereas in JDD, since 

redundancy is completely eliminated and all degree 1 

encoded symbols are derived from distinct source 

symbols and since inclusion of all symbols is ensured 

the maximum performance is ideal 100% (average of 

trails tabulated in Table 1). Thus, JDD gives 

maximum throughput without any increase in 

bandwidth as shown in Fig. 7.
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Fig. 5. Average encoder/decoder delay performance of CDD 

 

 
 

Fig. 6. Decreasing ripple size of CDD and JDD 
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Fig. 7. Comparative throughput performance of CDD Vs JDD 

 

 
 

Fig. 8. BER Vs SNR performance of CDD (ES = 300) and JDD (ES = 100) for D1 = 50 

 
Table 1. Delay performance of CDD Vs JDD for encoded symbols size ES of 100 

Degree Average Average Number of encoded Average no. of successfully 

distribution encoding delay (ms) decoding (ms) delay symbols transmitted recovered source symbols  

CDD 10 27 100 82 

JDD 11 32 100 100 
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Table 2. Performance of CDD based LT code for varying number of encoded symbols 

Number of encoded Average encoding Average decoding Average no. of successfully 

symbols delay (msec) delay (msec) recovered source symbols 

100 10 27 82 

150 19 32 94 

200 21 35 98 

250 28 39 99 

300 34 40 100 

 

In CDD, since the selection of source symbols to be 

encoded allows redundancy, the maximum throughput 

performance can be achieved by consuming 3 times of 

the bandwidth. 

From the results obtained in Fig. 8, it was observed 

that JDD based LT codes achieves almost the same 

BER with less bandwidth and reaches maximum 

throughput compared to CDD in which a higher 

bandwidth is required to maximize the throughput for 

the same BER. This results in increase in cost of the 

encoding/decoding overhead (ε = 3) and the 

encoding/decoding delay in CDD. This is the major 

advantage of JDD over CDD. 

From the above discussions on the simulation results, 

it is inferred that the careful design of JDD based LT 

codes outperforms the conventional systems over 

AWGN channel in terms of throughput, 

encoding/decoding overhead, delay and also maintains a 

constantly decreasing ripple for successful decoding. In 

addition, JDD ensures that the efficient utilization of the 

bandwidth can be achieved by using only ‘k’ encoded 

symbols for ‘k’ source symbols, unlike in conventional 

systems (Zhiliang et al., 2012).  

Conclusion 

In this study, a modified version of degree 

distribution, the Joint Degree Distribution (JDD) is 

proposed. JDD optimizes the bandwidth utilization for 

same BER performance compared to traditional 

degree distribution schemes used in LT codes. JDD 

also proves itself to be better in terms of maximizing 

throughput, minimizing encoding/decoding delay and 

overhead and makes effective use of the ripple. 

Limiting the number of degree 1 encoded symbols 

improves the reliability of the transmission. JDD 

seems to be more useful in wireless transmissions 

where efficient utilization of bandwidth is essential. 

These advantages contribute to validity of using JDD 

based LT codes as a promising coding strategy in real 

time data transfer. The limitations of this study are 

that JDD has been designed only for the combinations 

of degree 1 and degree 2 encoding symbols and also 

its performance has been tested in AWGN channel. 

But, the results of this study give motivation to extend 

JDD for analyzing the performance of LT codes over 

fading channel conditions and also aims to propose a 

modified JDD involving higher degree encoded 

symbols as the future research perspective. 
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