
Journal of Computer Science 10 (5): 755-762, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.755.762 Published Online 10 (5) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Julio Cezar Zanoni, TECPAR-Paraná Institute of Technology, Curitiba, Brazil

755 Science Publications

JCS

COMENTE+: A TOOL FOR IMPROVING SOURCE CODE
DOCUMENTATION USING INFORMATION RETRIEVAL

1Julio Cezar Zanoni, 1Milton Pires Ramos, 2Cesar Augusto Tacla,
2Gilson Yukio Sato, 3Gregory Moro Puppi Wanderley and 3Emerson Cabrera Paraiso

1TECPAR-Paraná Institute of Technology, Curitiba, Brazil

2CPGEI, UTFPR-Technological Federal University of Paraná, Curitiba, Brazil

3PPGIa, PUCPR-Pontifícia Universidade Católica do Paraná, Curitiba, Brazil

Received 2013-04-17; Revised 2013-05-23; Accepted 2014-01-4

ABSTRACT

Document source code is seen as a boring time consuming task by several developers. However, a well-
documented source code, allow developers to have a better visibility into what was and is being developed,
helping, for example, the reuse of the code. This study presents a semi-automatic method for documentation
of source code from the existing artifacts in a software project under development. The method aims to
reduce developer’s workload, allowing them to work on other tasks of the project and/or ensure that the
project deadlines will be met. The method, implemented in a tool, called Comente+, is capable of
creating or updating comments into a source code from gathered information recovered from the project
artifacts. To implement Comente+, we used an information retrieval approach. We performed some
experiments with real data to validate this approach. For that, we created a special measure that estimates
how well documented a source code is.

Keywords: Information Retrieval, Source Code Documentation, Small Teams

1. INTRODUCTION

The source code documentation is a valuable tool to
detect and correct problems in software systems. With
the support of a well-structured and organized
documentation, a reduction in time spent to make
changes or maintenance in a source code is expected.
Paduelli and Sanchez (2006), argue that the difficult to
maintain legacy systems, due to its complexity and size,
is aggravated by the staff turnover and also, by an
insufficient or nonexistent documentation. They also
mentioned that in developing or modifying a source
code, the developers do not produce this documentation
in an appropriate manner, writing only brief notes of
commentary without much meaning.

Indeed, the unwillingness of developers to document
the source code exists and is probably related to the fact
that this task requires the production of several pages of
explanatory text. Write these texts lead them to stop

developing codes to dedicate themselves to something to
which they have difficulty in making or low interest.

The source code documentation is also important
since it can give visibility to what was and is being
developed by the participants of the development group.
It may be used as a tool for source code reuse or provide
information about development state.

In this research, we are interested in studying how
code documentation may be increased, especially for
projects been developed by small teams (teams with up
to 10 members). In a small team, many times small
companies with small budgets, the task of code
documentation may be one among several tasks that a
team member must perform.

Thus, it is helpful reduce the team members’
workload caused by documentation by making the
process more automatized as possible. In small teams, those
who are involved in programming also perform activities
such as company management, contact with costumers.

Julio Cezar Zanoni et al. / Journal of Computer Science 10 (5): 755-762, 2014

756 Science Publications

JCS

In this study we present a semi-automatic method for
documentation of source code from the existing
artifactsin a software project under development. The
method, implemented in a tool called Comente+, is
capable of evaluating the degree of documentation of a
code and update it with information gathered from
project artifacts as well as the source code itself.

This article is divided as follows. In section 2, we
define the process of developing software in a small team
and the process of documenting source code. In section 2,
we also present our approach for source code
documentation. In section 3 we show some results
obtained from practical experiments. Section 4 presents
some discussion. Finally, in section 5, we present our
conclusions and suggestions for future work.

2. MATERIALS AND METHODS

The next paragraphs present some background
needed to understand our approach.

2.1. Software Development in Small Teams

The software development comprises several steps
usually supported by tools designed for that purpose. In
general, it is produced collaboratively, with participation
of several specialists. Researches in Computer Supported
Cooperative Work (CSCW) applied to software
development are widespread. Several studies have already
been developed (Cook and Chumber, 2005; Teruel et al.,
2012; Jiang et al., 2006; Duque et al., 2012). However,
most of this work focuses two aspects: (1)
improvements to the infrastructure to support
distributed development (integrated environments or
groupware) and (2) encourage the communication
among participants of the collaborative project, aimed
at large teams of software development.

Software development small teams have some needs
and characteristics that should be taken into account
(Campagnolo et al., 2009). As in general participants
work on a common physical environment, the face to
face communication is enough, which means that
electronic messages systems are less important.
Participants are in charge of specific activities, but they
develop different activities during the project life cycle,
i.e., in practice a participant plays different roles in spite
of his formal function. For example, a developer can
play the role of analyst and tester. Such a multiplicity of
roles can quickly lead to an excessive workload; this fact
contributes to members neglecting important activities

such as project and software documentation. The source
code documentation is a crucial task to facilitate reuse
and software maintenance.

The documentation process may be more demanding
if the project has to comply with standards such as ISO
9001 or models of maturity like the Capability Maturity
Model (CMM) (Soomro and Hesson, 2012). Being in
compliance does not necessarily mean that the group
must be certified, but that it aims at ensuring the quality
of software through the definition and standardization of
development processes. All requirements imposed by
rules or models, have significant impact on small teams.
There are researchers such as Pollice et al. (2004); Land
and Walz (2006) and Campagnolo et al. (2009) that
propose approaches to minimize such an impact.

To Land and Walz (2006), small development teams
have up to 20 participants, unlike Pollice and colleagues
and Campagnolo and colleagues that consider up to 10
participants. As a basis for this work, a small team has
up to 10 participants.

The method presented in section 2.6 is intended to
gap some of the features previously mentioned. One
of them and perhaps the most important, since it refers
to the main research problem is the participants’
excessive workload. The method aims to reduce this
workload, allowing the developer to work on other
tasks of the project and/or ensure that the project
deadlines will be met.

It is important to highlight that this method and the
tool associated to it are not intended to substitute
programs to generate source code documentation like
Javadoc. The main idea is to provide developers with
indications on what is important to be documented,
promoting a quality increase on source code comments.

2.2. Source Code Documentation

The software development tools, such as UML
language and RUP process generate several
documents, called artifacts, used in various stages of the
process as a way to record its development (Shiki et al.,
2004; Massoni et al., 2003; OMG, 2010). These
documents are elaborated and refined during the
project development until the delivery of the product
to customers.

In general, there are two types of software
documentation: Management documentation and user
documentation. The management documentation
includes all information about the project development,
including the source code documentation. The user

Julio Cezar Zanoni et al. / Journal of Computer Science 10 (5): 755-762, 2014

757 Science Publications

JCS

documentation is focused to the end user and normally is
compounded by user’s manuals.

The documentation of a source code is done by inserting
comments into it. A comment is a fraction of code text
identified by the compiler, but completely ignored by it
since it does not represent a valid action in terms of code
compilation. Moreover, these comments (Fig. 1) should be
useful to the human reader and must contain at least the
explanation of the code as a whole.

Figure 2 shows an example of a source code well
documented, in which comments describe a part of a
class. In this example, the developer uses the comments
intensively, producing a source code easier to maintain.

The implementation of the method was possible thanks
some techniques related to information retrieval and pattern
matching. The next section briefly presents them.

2.3. Information Retrieval and Pattern Matching

This section briefly presents the techniques used in
the method implementation.

2.4. Information Retrieval

Information Retrieval (IR) provides to users a set of
possible documents that match to the terms of the search
expression used to represent users’ needs (Baeza-Yates
and Ribeiro-Neto, 1999). IR can be used to search
information on unstructured or structured texts.
Unstructured texts are usually those free of any structure,
like a user review, a letter (Barathi and Valli, 2011).
Structured or semi-structured texts follow a standard
format or pattern, as is the case of source code.

Another way of using IR is recovering passages rather
than full texts (Callan, 1996). Passages are small pieces of
a text. These pieces of texts could be indexed by an IR
system. The users’ searches will return as response such
small portions of text that are more significant and
sometimes could answer directly to the user needs.

Concerning our approach, the use of IR is directly
related to retrieving passages information from the texts
written in natural language. Such information will be
used to complete comments in the source code.

2.5. Pattern Matching

Analyzing the source code shown in Fig. 2, some
interesting information can be retrieved with the use of
pattern matching techniques.

Pattern matching is another research domain
concerned with the formulation of queries and searches
based on a pattern. It allows the retrieval of words or
parts of a text that have certain properties. A pattern is a
set of syntactic features that must occur in a text

segment. The text segments that meet the specifications
of the pattern are called “matched”. The patterns range
from words to more complex structures. In order to
recover those patterns one need well-formed rules (like
regular expressions).

The most common types of patterns are: Words,
prefixes and suffixes. The most basic patterns are words.
Matching these patterns means finding the exact string
with the word/pattern in the text been analyzed.

Among the existent pattern matching types, Regular
Expressions (RE or regex) are the most powerful.
Regex provide a flexible and efficient mechanism for
processing texts, which uses a formal method to specify
a text pattern. Through an extensive and rather
complete notation, it is possible to analyze a large set
of texts looking for patterns.

A regular expression describes a set of strings,
concisely, without having to list all elements of the set.
For example, a set containing the strings “Händel”,
“Handel” and “Haendel” can be described by the pattern
H(ä|ae?)ndel. These constructs can be combined to form
arbitrarily complex expressions as well as arithmetic
expressions. In general, there are different regular
expressions to describe a set of strings. Many of the
Integrated Development Environments (IDEs)
implement regular expressions using syntaxes that are
similar to the ones found in programming languages. The
exact syntax of a regular expression and the available
operators vary according to the adopted implementation.

The regular expressions were used to extract the main
elements from the code, such as: Class definition,
method signature and variables declaration. Also, we
used them to find existing comments in the source code.

The next section present the method for semi-
automatic source code documentation, based on
pattern matching and IR.

2.6. A Method for a Semi-Automatic Source
Code Documentation

In this section we describe the proposed method for
source code documentation. It performs the extraction
and analysis of information from source code and from
the management documentation related to a specific
software project.

The proposed method gathers information from the
source code comparing it with comments and descriptions
contained in every artifact related to the project (those
written in natural language). In doing so, it is possible to
check what can be automatically documented.

Figure 3 shows a diagram identifying the three main
modules of the method.

Julio Cezar Zanoni et al. / Journal of Computer Science 10 (5): 755-762, 2014

758 Science Publications

JCS

Fig. 1. A fragment of Java code with some comments in Javadoc format (Javadoc, 2013)

Fig. 2. Java Code (String.java from standard Java library) (Rech, 2005)

Fig. 3. The main method modules

The corpus is a predefined set of files to be read and
updated. The corpus contains all the existing software
documentation for a particular development project.
Thus, it contains the project description files and the
source code files written in Java (Java-Net, 2010).

2.7. Information Retrieval Module

The Information Retrieval module processes the
files into the corpus. It first analyzes the source code
files. This is due to the fact that in these files the code
lines (except the comments) are used as queries when
searching into documents written in natural language.

Julio Cezar Zanoni et al. / Journal of Computer Science 10 (5): 755-762, 2014

759 Science Publications

JCS

It means that the code lines written by developers are
the main source for retrieving information, containing
all the relevant information that we wish being
documented by means of comments. For instance: A
class name or a method signature (arguments,
visibility,) is used to search relevant passages into
artifacts related to the code. In section 3, we present
some experiments that evaluated the effectiveness of
this approach.

The process to extract information from the source
code uses pattern matching by applying regular
expressions taking into account that the source code is
a well-structured document and its domain is well
known. The programming language (Java in this case)
has a grammar and a set of reserved words (or
keywords according to the Java specification
(Gosling, 2000) that can be used by the regex to easily
match with its structures (language syntax) and extract
information from them.

Files written in natural language (no matter what
language is used) need to be preprocessed, in order to
split them into passages. A passage in this case is a
sentence. Figures, tables and diagrams are not used in the
actual version of the system. After preprocessing, the
passages are indexed by the IR system, written using
(Lucene, 2011). Lucene provides all tools to indexing the
passages and recovering them, using information from
source codes as search terms.

Once the relevant information was found, it is stored
in a MySQL database.

2.8. Information Analysis Module

The information obtained in the previous process is
confronted in order to check which element (class,
methods and variables) of the code is documented. In
such a process, three cases may occur:

• The element of the source code is not documented
• The element is partially documented. In this case,

there is an associated comment to the source code
structure, but it not contains all the possible
relevant information

• The element is well documented, in terms of
information just gathered from the source code itself

In the first case, if there is no comment, then a new
one is created, including all the relevant information
founded in the source code itself (e.g., method
parameters and method return type) and, if exists, it is
incremented with passages found in the documents

written in natural language (i.e., software requirements,
software architecture,).

In the case a comment exists and its information is
incomplete, in terms of source code information (e.g.
method parameters and method return type) a new
comment is created instead of deleting the existing
one. This new comment is intended to show the
missing information to the developer, that should
validate de new one, deleting the old one (if he agrees
with the new one):

• Finally, in the case a comment exists and it is complete,
just the recovered passages are attached to it

• In all cases, the comment is created using the
Javadoc’s format

• It is important to highlight that a source code may
have more them a comment for each element

2.9. Information Update Module

This last module finally updates the documentation,
writing the comments into the source code.

2.10. The Comente+Implementation

The method just described was implemented in Java,
generating a tool called Comente+. The Comente+ tool
analyses every Java file of a project before and after the
method application. In order to estimate how
documented a source code is, we defined a C (for
Comments) measure, according to the Equation (1):

totalof comments
C

#of classes #of methdods #of var iables
=

+ +
 (1)

where, total of comments is the sum of existing
comments in the source code, # of classes is the sum of
classes found by Comente+, # of methods is the sum of
methods found by Comente+ and # of variables is the
sum of variables found by Comente+.

In the actual version of the system, every Java file is
copied in an auxiliary folder before Comente+ starts
processing them. At the end, we have a set of modified
Java files, enriched with new or updated comments.

It is important to highlight that the existence of a
large number of comments does not mean that their
quality is good enough to adequately document the
source code. In section 3, we present some qualitative
evaluation of this point.

In the next section we present the results of some
practical experimentation we performed.

Julio Cezar Zanoni et al. / Journal of Computer Science 10 (5): 755-762, 2014

760 Science Publications

JCS

3. RESULTS

To evaluate Comente+ (and consequently the
approach) a few experiments were carried out,
intended to demonstrate its effectiveness. The
experiments were performed using three different
software projects. In each corpus there were source
code files written in Java and text files written in
Portuguese describing the system.

The first project, called SE Telecom, is focused on
telecommunications and was developed by a small
team of a Brazilian company. The other two projects
(Emotion and MODUS-SD) are related to Human
Computer Interaction and were developed by a small
research team at Pontifícia Universidade Católica do
Paraná (PUCPR) in Brazil. Table 1 shows the main
features of the corpora.

Table 2 shows the number of comments found
before Comente+ processing and the number of new
ones added or updated to source code files. It also

shows the C measure calculated before and after
Comente+ processing.

We also performed a qualitative study, asking
developers to evaluate the passages recovered from text
files and, consequently, the comments produced with
them. Developers should classify each passage according
to these three possibilities:

• No relation: The passage has no relation with the

element been documented
• Some relation: The passage has some relation with

the element been documented. This could happen if
a passage has, for instance, information related to
more than one element in the code

• Total relation: The passage is definitively related to
the element been documented

The results of this qualitative evaluation, for project

SE Telecom, are presented in Table 3 and 4.

Fig. 4. An excerpt of a source code example from SE Telecom

Table 1. The corpora used in the experiments
 # of source # of # of # of # of documentation
Project code files classes methods variables pages (after preprocessing)
SE telecom 24 24 142 335 7
Emotion 1 1 4 21 53
MODUS-SD 7 7 15 328 11

Julio Cezar Zanoni et al. / Journal of Computer Science 10 (5): 755-762, 2014

761 Science Publications

JCS

Table 2. Comente+ quantitative results
 C
 # of comments # of comments created ---
Corpus written by developers (or updated) by Comente+ Before Comente+ After Comente+
SE Telecom 341 501 0,681 1,681
Emotion 85 25 3,269 4,231
MODUS-SD 327 350 0,934 1,934

Table 3. Qualitative evaluation: Retrieved passages using the AND operator
Project: SE Telecom No relation Some relation Total relation
of recovered passages = 48 7 19 22
% comparing with total recovered results 15% 39% 46%

Table 4. Qualitative evaluation: Retrieved passages using the search terms
Project: SE Telecom No relation Some relation Total relation
of recovered passages = 143 72 11 60
% comparing with total recovered results 50% 8% 42%

Figure 4 shows an extract of source code
commented by Comente+. In this case, the
information needed to compose the comments was
mainly found in the source code itself.

4. DISCUSSION

Table 2 shows the number of comments found before
Comente+ processing and the number of new ones added
or updated to source code files. It also shows the C
measure calculated before and after Comente+
processing. The number of comments is dramatically
augmented for some projects. This is due to the fact that
Comente+ retrieves passages and creates or updates a
comment for each one.

The project Emotion has the best score in terms of
comments. Only 25 new comments were added. This
project has the highest C, before and after Comente+
processing. This is due the fact that the source code has a
few number of code elements if compared to the number
of comments. We remind again that each element in the
code may have more than one comment.

We tested two different approaches for recovering
passages using Lucene. The first one uses the AND
operator among the search elements when recovering
passages (Table 3). The second approach used every
element in the query to search a passage, producing a
greater number of recovered passages (Table 4). As
expected, the first approach produced better results
(reducing the number of false positives-no relation), since
recovered passages have in their content information about
all elements of the query. Adding “some relation” and

“total relation” we have 85% of passages related to the
element been documented. Almost 50% of the total
passages recovered were classified as been completely
related to the element been documented.

5. CONCLUSION

This study presents a method for documenting source
code based on information recovered in the artifacts
produced during software development. The results
showed that the Comente+ is a promising tool in
documenting source code. Comments in the source code
are created or updated according to passages found in
natural language texts.

We are planning to apply Comente+ since the
beginning of a real project in order to collect some
data to evaluate if, or not, the workload over
developers was reduced.

We also planned to create an instigator agent (as the
one presented in (Boz et al., 2011)) that will help
developers to better document their code, giving insights
and suggestion during codification time.

6. REFERENCES

Barathi, M. and S. Valli, 2011. Context disambiguation
based semantic web search for effective information
retrieval. J. Comput. Sci., 7: 548-553. DOI:
10.3844/jcssp.2011.548.553

Baeza-Yates, R. and B. Ribeiro-Neto, 1999. Modern
Information Retrieval. 1st Edn., Addison-Wesley,
ISBN-10: 020139829X, pp: 544.

Julio Cezar Zanoni et al. / Journal of Computer Science 10 (5): 755-762, 2014

762 Science Publications

JCS

Boz, J.G., M.P. Ramos, G.Y. Sato, C.A. Tacla and J.C.
Nievola et al., 2011. A virtual catalyst in the
knowledge acquisition process. Proceedings of the
23rd International Conference on Software
Engineering and Knowledge Engineering, (EKE’
11), Miami, EUA., pp: 149-152.

Callan, J.P., 1996. Passage-level evidence in document
retrieval. Proceedings of the 17th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, Jul. 3-6,
ACM Press, Dublin, Ireland, pp: 302-310.

Campagnolo, B., C.A. Tacla, E.C. Paraiso, G. Sato and
M.P. Ramos, 2009. An architecture for supporting
small collocated teams in cooperative software
development. Proceedigns of the 13th International
Conference on Computer Supported Cooperative
Work in Design, Apr. 22-24, IEEE Xplore Press,
Santiago, pp: 264-269. DOI:
10.1109/CSCWD.2009.4968069

Cook, C. and N. Churcher, 2005. Modelling and
measuring collaborative software engineering.
Proceedings of the 28th Australasian Computer
Science Conference, Research and Practice in
Information Technology, (PIT’ 05), Australia, pp:
267-276.

Duque, R., M.L. Rodriguez, M.V. Hurtado, C. Bravo and
C. Rodriguez-Dominguez, 2012. Integration of
collaboration and interaction analysis mechanisms in
a concern-based architecture for groupware systems.
Sci. Comput. Programm., 77: 29-45. DOI:
10.1016/j.scico.2010.05.003

Gosling, J., 2000. The Java Language Specification. 1st
Edn., Addison-Wesley Professional, Boston, ISBN-
10: 0201310082, pp: 505.

Javadoc, 2013. The java API documentation generator.
Java-Net, 2010. A brief history of the green project.
Jiang, T., J. Ying, M. Wu and M. Fang, 2006. An

architecture of process-centered context-aware
software development environment. Proceedings of
the 10th International Conference on Computer
Supported Cooperative Work in Design, May 3-5,
IEEE Xplore Press, Nanjing, pp: 1-5. DOI:
10.1109/CSCWD.2006.253193

Land, S.K. and J.W. Walz, 2006. Practical Support for
ISO 9001 Software Project Documentation. 1st
Edn., IEEE Computer Society, New Jersey, ISBN-
10: 0471768677, pp: 418.

Lucene, 2011. Welcome to apache lucene.
Massoni, T., A. Sampaio, P. Borba and A.L. Freire,

2003. A RUP-Based Software Process Supporting
Progressive Implementation. 1st Edn., IGI
Publishing, Hershey, EUA, pp: 13.

OMG, 2010. Unified Modeling Language (UML),
version 2.0.

Paduelli, M.M. and R. Sanches, 2006. Maintenance
problems: Characterization and evolution. Proceedings
of the 3rd Workshop on Modern Software
Maintenance, V Brazilian Symposium on Software
Quality, (SQ ‘06), Vila Velha, Brazil, pp: 1-13.

Pollice, G., L. Augustine, C. Lowe and J. Madhur, 2004.
Software Development for Small Teams: A RUP-
Centric Approach. 1st Edn., Addison-Wesley,
ISBN-10: 0321199502, pp: 272.

Rech, J., 2005. Preprocessing of object-oriented source
code for code retrieval. Citeseer.

Shiki, N., Y. Ohno, A. Fujii, T. Murata and Y.
Matsumura, 2004. Unified Modeling Language
(UML) for hospital-based cancer registration
processes. Asian Pac. J. Cancer Prev., 9: 789-96.

PMID: 19256778
Soomro, T.R. and Hesson, 2012. Mihyar. Supporting

best practices and standards for information
technology infrastructure library. J. Comput. Sci., 8:
272-276. DOI: DOI: 10.3844/jcssp.2012.272.276

Teruel, M. A., E. Navarro, V. Lopez-Jaquero, F.
Montero and J. Jaen et al., 2012. Analyzing the
understandability of requirements engineering
languages for CSCW systems: A family of
experiments. Inform. Softw. Technol., 54: 1215-
1228. DOI: 10.1016/j.infsof.2012.06.001

