
Journal of Computer Science 10 (3): 492-498, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.492.498 Published Online 10 (3) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Muthukumar, S., Department of Computer Science and Engineering, SVCE, Chennai, India

492 Science Publications

JCS

HIT RATE MAXIMIZATION BY LOGICAL CACHE
PARTITIONING IN A MULTI-CORE ENVIRONMENT

1Muthukumar, S. and 2P.K. Jawahar

1Department of Computer Science and Engineering, SVCE, Chennai, India
2Department of Electronics and Communication Engineering, BSA University, Chennai, India

Received 2013-10-14; Revised 2013-11-17; Accepted 2013-11-29

ABSTRACT

It is imperative for any level of cache memory in a multi-core architecture to have a well defined, dynamic
replacement algorithm in place to ensure consistent superlative performance. The most prevalently used
LRU replacement policy does not acquaint itself dynamically to the changes in the workload. As a result, it
can lead to sub-optimal performance for certain applications whose workloads exhibit frequently fluctuating
patterns. To overcome the limitation of this conventional LRU approach, our paper proposes a novel
counter-based replacement technique which logically partitions the cache elements into four zones based on
their ‘likeliness’ to be referenced by the processor in the near future. Categorizing the elements into
different zones is achieved with the help of a 3-bit counter that is associated with every cache line. On a
cache hit, the corresponding element is promoted from one zone to another zone. Replacement candidates
are chosen from the zones in the ascending order of their ‘likeliness factor’ (i.e.,) the first search space for
the victim would be the never likely to be referenced zone, followed by the subsequent zones till the most
likely to be referenced zone is reached. Periodic zone demotion of elements also occurs to make sure that
stale data does not pollute the cache. Experimental results obtained by using the PARSEC benchmarks have
shown almost 7% improvement in the overall number of hits and 3% improvement in the average cache
occupancy percentage when compared to LRU algorithm.

Keywords: Replacement, Counter, Cache, Hit Rate, Multi-Core, Zone

1. INTRODUCTION

Replacement policies play a vital role in determining
the performance of a system. In a multi-core
environment, where processing speed and throughput are
of essence, selecting a suitable replacement technique for
the underlying cache memories becomes crucial. Cache
memory hierarchy in multi-core processors usually
consists of two levels. The private level 1 (or L1) cache
associated with every core and a relatively larger level
2(or L2) cache which may be shared by all the cores. If
this turns out to be the final cache level, it can also be
referred to as the Shared Last Level Cache (LLC).

In present day environment, LRU approach is widely
deployed across shared LLCs to choose the replacement
candidates. This method seems to work well with many

applications found today. However when it comes to
certain workloads which possess an unpredictable data
reference pattern that fluctuates frequently with time, LRU
can result in poor performance. A closer observation on
LRU can help reveal the cause for this problem. It
assumes that all the applications follow the same reference
pattern (i.e.,) they abide by the spatial and temporal
locality theories. Any data item that is not accessed by the
processor over a period of time is tagged as ‘least recently
used’ and evicted from the cache. When such a data item
is required by the processor in future, it is not found in the
cache and has to be fetched from the main memory.

Two other replacement strategies that are commonly
being employed apart from LRU include the Not Recently
Used (NRU) and Most Recently Used (MRU) policies.
Functionally MRU is pretty much similar to LRU with a

Muthukumar, S. and P.K. Jawahar / Journal of Computer Science 10 (3): 492-498, 2014

493 Science Publications

JCS

slight difference that the most recently referred data item is
chosen as victim. So there will not be much difference in
terms of performance compared to LRU. NRU associates a
single bit counter with every cache line to aid in making
replacement decisions. It might be effective compared to
LRU in certain cases, but a 1-bit counter may not be
powerful enough to create the required dynamicity.

To address the shortcomings of the previously
discussed algorithms and to improve the overall hit rate,
the study proposes a novel counter based replacement
technique that logically partitions the cache into four
different zones namely-Most Likely to be Referenced
(MLR), Likely to be Referenced (LR), Less Likely to be
Referenced (LLR), Never Likely to be Referenced (NLR)
in the decreasing order of their likeliness factor
Replacement, insertion and promotion of data elements
take place within these zones in such a manner that the
overall hit rate is maximized.

1.1. Related Work

Lot of researches has been carried out to discover
dynamic replacement algorithms that can be applied over
cache memories. As mentioned earlier, the more
adaptive a replacement technique is, the better is the
performance boost obtained (Hameed et al., 2013;
Janapsatya et al., 2010). The replacement algorithm
suggested by Odule and Osingua (2013) makes
replacement decisions at runtime based on the changing
workload patterns. Though it adapts to the spatial and
temporal features of the workload, it operates at a page-
level granularity rather than at a finer block-level
granularity which can be crucial when the workload
pattern changes very frequently.

Shared LLC is accessed by multiple cores. So it is
imperative to have a good replacement algorithm
running over it. When a miss is encountered here, the
resulting overhead can be higher compared to other
cache levels. Many works (Jaleel et al., 2008; Wu and
Martonosi, 2011; Srikantaiah et al., 2008) have emerged
in recent times which strive to improve the performance
at LLC. Reineke and Grund (2010) have even explored
the possibility of execution history such as the initial
hardware state of the cache affecting the sensitivity of
replacement algorithms applied over it.

 The lines which will never be referenced by the
processor in the future (dead-lines) need to be
eliminated in order to increase cache space utilization
factor (Soares et al., 2008). Counter based cache
replacement and cache bypassing algorithm proposed
by Kharbutli and Solihin (2008), works on this issue and
tries to predict the dead-lines well in advance and choose

them as victims. But with a constantly fluctuating workload,
the process of prediction might become intricate and the
accuracy can be lost.

Hence in this study we focus on designing a novel
counter based replacement algorithm for shared LLC in a
CMP environment which makes decisions at a fine-
grained block level. To deal with fluctuating data access
pattern, it logically partitions the cache into different
zones using a 3-bit counter and consistently transports
the elements from one zone to another zone in
accordance with the input data set pattern and thus
maximizes the hit rate compared to LRU algorithm.

The rest of the study is organized as follows.
Section 2 explains our replacement strategy in

detail, section 3 describes the experimental setup,
sections 4 and 5 analyze the obtained results and
compare the performance with LRU and finally Section
6 summarizes the study.

2. COUNTER BASED LOGICAL
CACHE PARTITIONING

APPROACH

As discussed earlier, schemes like LRU, MRU, NRU
might lead to sub-optimal performance for certain
applications as they do not dynamically accustom to the
changing workload patterns. Hence in this work we propose
a cache replacement technique which is targeted towards
the shared LLC. It uses a 3-bit counter to dynamically
shuffle the cache elements and logically partition them into
four different zones based on their likeliness to be
referenced by the processor in the near future. This counter
from here on will be referred to as Logical Cache
Partitioning (LCP) counter. The lower and upper bounds for
the counter are set to ‘0’ and ‘7’ respectively. The
prediction about the likeliness of reference of the data items
is made with the help of the hits encountered in the cache.
As the number of hits for a particular element
increases, it is moved up the zone list till it reaches
the MLR region. Only if it stays unreferenced for
quite an amount of time, it is evicted from the cache.
Let us assume that the mapping policy used is the set
associative mapping (Henessey and Patterson, 2011).
Table 1 shows the counter value range for each zone.

As their names imply, the zones are arranged in the
decreasing order of their likeliness factor. Every cache
line is associated with a LCP counter which is initialized
with a value of ‘-1’. Any replacement policy consists of
three phases-Replacement, Insertion and Promotion.
Each of which is explained in the subsequent sections.

Muthukumar, S. and P.K. Jawahar / Journal of Computer Science 10 (3): 492-498, 2014

494 Science Publications

JCS

Table 1. Zone categorization
Counter value range Zone
6-7 MLR
3-5 LR
1-2 LLR
0 NLR

2.1. Replacement

When a miss is encountered in the cache, the data item
is fetched from the secondary memory and brought into the
cache thereby replacing one of the elements which was
already present in the cache. This element is often referred
to as the victim. The process of selecting a victim needs to
be efficient in order to improve the hit rate. In our method,
the victim is selected from the zones in the increasing order
of their likeliness factor. Any cache line which comes under
the NLR zone is considered first for replacement. If no such
line is found search is performed again to check if any
element falls in the LLR region and so on till MLR is
reached. If two or more lines possess the same counter
value that is considered for replacement during that
iteration, the line that is encountered first is chosen as the
victim. Once the replacement is made, LCP counters of all
the other data elements are decremented by ‘1’. This is done
to carry out gradual zone demotion as discussed earlier to
flush out unused data items from the cache.

2.2. Insertion

This phase is encountered as soon as the replacement
candidate is found. The new incoming data item is
inserted into the corresponding cache set and its LCP
counter value is set to ‘2’ (LLR zone).

2.3. Promotion

A hit on any data item in the cache calls for the
promotion phase. The LCP value associated with the
cache line is incremented to the final value of its
immediate upper zone. For example, if it was earlier in
the LLR zone (LCP value ‘1’ or ‘2’), its LCP value is set
to ‘5’ (i.e.,) the element now falls within the LR zone.

2.4. Boundary Condition Check
It is essential that the LCP counter value does not

overshoot its specified range. Thus whenever it is modified,
a boundary condition check is carried out to ensure that the
value does not go below ‘0’ or beyond ‘7’.

2.5. Comparison with LRU

Consider the following data set:

. . .2 9 1 7 6 1 7 5 9 1 0 7 5 4 8 3 6 1 7 . . .

 It can be seen that data items 1 and 7 occur frequently.
Table 2 shows the working of LRU and LCP on this data
pattern. Assume that the cache can hold 4 blocks at a time.
Incoming data items at that point of time are shown in the
leftmost column. In the right most column, ‘m’ indicates a
miss and ‘h’ indicates hit. Initially the cache contains
invalid blocks. Counter values associated with all the blocks
are set to -1. After applying both the techniques, LCP has
resulted in 3 hits more than LRU. It is to be noted that
frequently occurring data items 1 and 7 have resulted in hits
towards the end unlike LRU. This is primarily because
LRU follows the same approach irrespective of the
workload pattern and tags 1 and 7 as ‘least recently used’
whereas LCP dynamically adjusts itself according to the
access pattern change.

3. EXPERIMENTAL SETUP

For simulation purpose we have chosen an open-source,
full system simulator called Gem5 (Binkert et al., 2011)
which is capable of simulating a variety of Instruction Set
Architectures (ISAs). We make use of the Alpha ISA with 2
cores at 2 GHz clock frequency. Supported cache levels
include a private L1 cache which is further sub-divided into
instruction and data cache and an L2 cache which is shared
between the available cores. The size of L1 and L2 cache
are set to 64 kB and 2 MB respectively. Line size for both
the caches is 64B. L1 cache is 2-way associative and L2
cache is 8-way associative.

3.1. Benchmark
Eight workloads have been selected from the princeton

application repository for shared-memory computers
(Bienia et al., 2008; Gebhart et al., 2009), a benchmark
suite that comprises numerous large scale commercial
multi-threaded workloads targeted towards CMP, to
evaluate our method. Every workload is unique and their
working set size varies considerably. Table 3 highlights the
key characteristics of all the PARSEC benchmarks used.

4. RESULTS

From here on, the term LCP will be used to represent
our method in the graphs. Percentage increase in the overall
number of hits at L2 is shown in Fig. 1. The x-axis
represents each benchmark and the y-axis shows the
percentage change in hits compared to LRU. Figure 2
shows the total number of replacements made at L2. Figure
3 shows the miss rate recorded by the individual cores and
also the overall miss rate at L2. Figure 4 shows the average
L2 cache occupancy percentage for all the benchmarks.

Muthukumar, S. and P.K. Jawahar / Journal of Computer Science 10 (3): 492-498, 2014

495 Science Publications

JCS

Table 2. Working of LRU and LCP for the data set shown above
Input Cache contents (LRU) Hit/miss Input Cache contents (LCP) Hit/miss
2 2 m 2 22 -1 -1 -1 m
9 9 2 m 9 22 92 -1 -1 m
1 1 9 2 m 1 22 92 12 -1 m
7 7 1 9 2 m 7 22 92 12 72 m
6 6 7 1 9 m 6 62 91 11 71 m
1 1 6 7 9 h 1 62 91 15 71 h
7 7 1 6 9 h 7 62 91 15 75 h
5 5 7 1 6 m 5 61 52 14 74 m
9 9 5 7 1 m 9 92 51 13 73 m
1 1 9 5 7 h 1 92 51 17 73 h
0 0 1 9 5 m 0 91 02 16 72 m
7 7 0 1 9 m 7 02 91 16 75 h
5 5 7 0 1 m 5 01 52 15 74 m
4 4 5 7 0 m 4 42 51 14 73 m
8 8 4 5 7 m 8 41 82 13 72 m
3 3 8 4 5 m 3 32 81 12 71 m
6 6 3 8 4 m 6 31 62 11 70 m
1 1 6 3 8 m 1 31 62 15 70 h
7 7 1 6 3 m 7 31 62 15 72 h

Table 3. Key characteristics of PARSEC benchmarks used
Program Application domain Working set
Blackscholes Financial analysis Small
Canneal Computer vision Medium
Dedup Enterprise storage Unbounded
Ferret Similarity search Unbounded
Fluidanimate Animation Large
Swaptions Financial analysis Medium
Vips Media processing Medium
X264 Media processing Medium

Fig. 1. Percentage increase in overall number of hits at L2 compared to LRU

Muthukumar, S. and P.K. Jawahar / Journal of Computer Science 10 (3): 492-498, 2014

496 Science Publications

JCS

Fig. 2. Change in number of replacements made at L2

Fig. 3. Miss rate recorded by individual cores

Fig. 4. Average cache occupancy percentage

Muthukumar, S. and P.K. Jawahar / Journal of Computer Science 10 (3): 492-498, 2014

497 Science Publications

JCS

5. DISCUSSION

Miss rate can be defined as the number of misses
expressed as a fraction of total number of accesses. As it
can be seen from Fig. 3 there is reduction in the core-
wise miss rate and overall miss rate across majority of
the benchmarks when compared to LRU.

Apart from two workloads, all the others have shown
significant improvement in hits. Percentage increase in
hits varies from a minimum of 0.1% (Dedup) to
maximum of up to 15.1% (Blackscholes) as shown in
Fig. 1. Percentage increase in hits is computed from the
difference between the number of hits in LCP and LRU.

Number of replacements reflects the efficiency of any
replacement algorithm. A maximum of almost 20%
decrease in the number of replacements can be observed
across the given workloads compared to LRU from Fig. 2.
Cache occupancy refers to the amount of cache that is being
effectively utilized to improve the performance for any
workload. Figure 4 indicates cache utilization is marginally
higher for majority of the benchmarks when LCP is applied
compared to LRU.

6. CONCLUSION

 In this study we have come up with a dynamic and a
structured replacement strategy to be adopted across the
LLC. Key points pertaining to our replacement policy
goes as follows:

• Elements of the cache are logically partitioned into
four zones based on their likeliness to be referenced
by the processor with the help of a 3-bit LCP
counter associated with every cache line. The
minimum value that the counter can hold is ‘0’ and
the maximum value is ‘7’

• Replacement candidates are chosen from the zones
in the increasing order of their likeliness factor
starting from the NLR zone. Initially all the counter
values are set to ‘-1’. Conceptually all the blocks
contain invalid data

• For every hit, the corresponding element is moved
up by one zone by adjusting the LCP counter value.
If it has reached the top most zone (MLR) the
counter value is left untouched

• For every miss the counter value is decremented by
‘1’ to prevent stale data items from polluting the
cache over a period of time. When a new data
arrives, its LCP value is set to ‘2’. Boundary
condition check needs to be applied whenever the
LCP counter value is modified to make sure that it
does not overshoot its designated range

Experimental results obtained by applying our
method on PARSEC benchmarks have shown a
marginal improvement of 7% in the overall number of
hits and 3% improvement in the average cache
occupancy percentage when compared to the
conventional LRU approach.

6.1. Limitations

The number of bits used to represent LCP counter is
kept to three owing to hardware limitations. Since it is
has to be associated to with every cache line, increasing
the number of bits might increase the hardware
complexity. Benchmark evaluation has been carried out
with a fixed set of system parameters (i.e.,) L1 and L2
cache sizes have been fixed to 64 kB and 2 MB
respectively and the Instruction Set Architecture is
chosen as Alpha.

6.2. Future Research

LCP is proven to have yielded good results at L2
cache level. Studies can be conducted to measure the
performance by applying our method across all the
available cache levels. Combining the current cache
optimization techniques such as data prefetching along
with LCP can produce really high performance.

7. REFERENCES

Bienia, C., S. Kumar, J.P. Singh and K. Li, 2008. The
PARSEC benchmark suite: Characterization and
architectural implications. Proceedings of the 17th
International Conference on Parallel Architectures
and Compilation Techniques, Oct. 25-29, ACM
Press, New York, USA., pp: 72-81. DOI:

10.1145/1454115.1454128
Binkert, N., B. Beckmann, G. Black, S.K. Reinhardt and

A. Saidi, 2011. The gem5 simulator. SIGARCH
Comput. Archit., 39: 1-7. DOI:
10.1145/2024716.2024718

Gebhart, M., J. Hestness, E. Fatehi, P. Gratz and S.W.
Keckler, 2009. Running PARSEC 2.1 on M5. The
University of Texas at Austin.

Hameed, F., L. Bauer and J. Henkel, 2013. Dynamic
cache management in multi-core architectures
through run-time adaptation. Proceedings of the
Design, Automation and Test in Europe Conference
and Exhibition, Mar. 12-16, IEEE Xplore Press,

Dresden, pp: 485-490. DOI:
10.1109/DATE.2012.6176518

Muthukumar, S. and P.K. Jawahar / Journal of Computer Science 10 (3): 492-498, 2014

498 Science Publications

JCS

Henessey, J.L. and D.A. Patterson, 2011. Computer
Architecture: A Quantitative Approach. 5th Edn.,
Morgan Kaufmann, ISBN-10: 9780123838728,
pp: 856.

Jaleel, A., W. Hasenplaugh, M. Qureshi, J. Sebot and S.
Steely et al., 2008. Adaptive insertion policies for
managing shared caches. Proceedings of the 17th
International Conference on Parallel Architectures
And Compilation Techniques, Oct. 25-29, ACM
Press, New York, USA., pp: 208-219. DOI:

10.1145/1454115.1454145
Janapsatya, A., A. Ignjatovic, J. Peddersen and S.

Parameswaran, 2010. Dueling CLOCK: Adaptive
cache replacement policy based on the CLOCK
algorithm. Proceedings of the Design, Automation
and Test in Europe Conference Exhibition, Mar. 8-
12, IEEE Xplore Press, Dresden, pp: 920-925. DOI:
10.1109/DATE.2010.5456920

Kharbutli, M. and Y. Solihin, 2008. Counter-Based
cache replacement and bypassing algorithms. IEEE
Trans. Comput., 57: 433-447. DOI:
10.1109/TC.2007.70816

Odule, T.J. and I.A. Osinuga, 2013. Dynamically self-
adjusting cache replacement algorithm. Int. J. Future
Generat. Commun. Netw., 6: 25-25.

Reineke, J. and D. Grund, 2010. Sensitivity of cache
replacement policies. Trans. Embedded Comput.
Syst., 9: 39-39. DOI: 10.1145/2435227.2435238

Soares, L., D. Tam and M. Stumm, 2008. Reducing the
harmful effects of last-level cache polluters with an
os-level, software-only pollute buffer. Proceedings
of the 41st Annual IEEE/ACM International
Symposium Microarchitecture, Nov. 8-12, IEEE
Xplore Press, Lake Como, pp: 258-269. DOI:
10.1109/MICRO.2008.4771796

Srikantaiah, S., M. Kandemir and M.J. Irwin, 2008.
Adaptive set pinning: Managing shared caches in
chip multiprocessors. Proceedings of the 13th
International Conference on Architectural Support
for Programming Languages Operating Systems,

Mar. 01-05, ACM Press, New York, USA., pp:
135-144. DOI: 10.1145/1346281.1346299

Wu, C.J. and M. Martonosi, 2011. Adaptive timekeeping
replacement: Fine-grained capacity management for
shared CMP caches. ACM Trans. Archit. Code
Optim. DOI: 10.1145/1952998.1953001

