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ABSTRACT 

Index tracking is an investment approach where the primary objective is to keep portfolio return as close as 
possible to a target index without purchasing all index components. The main purpose is to minimize the 
tracking error between the returns of the selected portfolio and a benchmark. In this study, quadratic as well 
as linear models are presented for minimizing the tracking error. The uncertainty is considered in the input 
data using a tractable robust framework that controls the level of conservatism while maintaining linearity. 
The linearity of the proposed robust optimization models allows a simple implementation of an ordinary 
optimization software package to find the optimal robust solution. The proposed model of this study 
employs Morgan Stanley Capital International Index as the target index and the results are reported for six 
national indices including Japan, the USA, the UK, Germany, Switzerland and France. The performance of 
the proposed models is evaluated using several financial criteria e.g., information ratio, market ratio, Sharpe 
ratio and Treynor ratio. The preliminary results demonstrate that the proposed model lowers the amount of 
tracking error while raising values of portfolio performance measures. 

 
Keywords: Robust Optimization, Index Tracking, Portfolio Selection, Mean Absolute Deviation Model, 

MinMax Model 

1. INTRODUCTION 

Fund management approaches can be divided into 
two categories: Active and passive management. In 
active management, the portfolio manager is willing 
to beat a predetermined index through trading stocks 
according to her experience and expertise. On the 
other hand, a passive manager tries to gain returns as 
close as possible to a theoretical portfolio e.g., the S 
and P 500 index. It is assumed that passive strategies 
can acquire higher returns in comparison to the active 
strategies in the long term. Index tracking is one of the 
passive portfolio management strategies which seeks 
to gain returns as close as possible to a target index 
without buying all index components. 

 There are typically two ways to find a portfolio that 
matches the performance of an index. In the first 
approach, called “full replication”, the investor makes a 
portfolio including every constituent of the index 
proportional to its market share. In this approach, the 
investor could achieve a perfect match. However, 
incurring high transaction costs as well as the underlying 
complications for portfolio rebalancing make this 
approach inapplicable. The second approach, called 
“partial replication”, includes investment in a small 
number of the stocks while attempting to imitate the 
performance of the entire index. This obviously incurs 
lower transaction costs and, at the same time, makes it 
easier to rebalance the portfolio weights when the market 
conditions change. Partial replication naturally allows 
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the investor to limit the choices of investment, for 
instance through insisting on the inclusion and/or 
exclusion of some pre-specified stocks by setting the 
proportion of the available capital that is to be invested. 
In fact, partial replication requires an error tracking 
measure to quantify the deviation of the tracking 
portfolio from the index. 

Full replication has many drawbacks and augments the 
costs dramatically. Roll (1992), who solves the problem of 
minimizing tracking error, the variance of the difference 
between the returns of a benchmark and the target index, 
maximizes the average performance of a portfolio relative 
to a benchmark in a determined amount of tracking error 
volatility and considers a strategy for limiting beta, the 
systematic risk. Ammann and Zimmermann (2001) 
demonstrate the relation between the statistical measures 
of tracking error and asset allocation constraints and 
present a method for measuring them. Jansen and Dijk 
(2002) limit the number of stocks in a tracking portfolio 
and propose a new mathematical model. Jorion (2003) 
follows Roll (1992) by investigating the effect of a 
constraint on the tracking error volatility and interprets it 
as Value at Risk (VaR). He also portraits the methods for 
mitigating inefficiency of using constraints on TEV-
Tracking Error Volatility- and shows the TEV-constrained 
portfolios by an ellipse in a mean-variance space. 

Fabozzi et al., (2004) propose clustering as a 
methodology to construct a tracking portfolio. 
Gaivoronski and Pflug (2005) uses VaR as risk measure 
and introduces/sets forth mean-VaR frontiers. Konno et al. 
(2005) present a branch and bound algorithm for 
constructing or rebalancing a portfolio and use absolute 
deviations of returns rates. Yao et al. (2006) solve the 
index tracking problem with a portfolio containing only few 
assets. They formulate it as a stochastic quadratic control 
problem and solve the proposed model using semi-definite 
programming. Lai et al. (2006) present a Markowitz-
based model for index tracking problem where they 
assume that index tracking problem relates to the 
constraining the probability of the tracking portfolio return 
falling below index return, generally referred to as 
downside risk. They presume that stock returns are 
jointly and normally distributed and that short selling is 
allowed which is not permissible in every stock market. 
Later, Bertrand (2010) following Jorion (2003), allows 
tracking error to vary instead of fixing tracking error 
volatility, TEV, but fixes risk aversion for volatility and 
explores iso-aversion frontiers. 

The ultimate goal of the investor is to minimize the 
tracking error in her portfolio over time. Usually, 
tracking error is defined in a quadratic term. The 
resulting model can be expressed as a quadratic 

programming problem. The proportion of the entire 
capital to be invested in each stock is calculated as part 
of the same problem. Meade and Salkin (1990) formulate 
the portfolio selection problem as a quadratic program 
and investigate the effects of different policies used by 
fund managers on their returns. 

Although quadratic programs have many interesting 
statistical properties, linear models are appealing from 
the computational aspect. Therefore, many attempts have 
been made to linearize the portfolio selection problem. 
Konno and Yamazaki (1991) proposes a portfolio 
optimization model that uses mean absolute deviation of 
the risk to deal with the modern portfolio theory- 
suggested by Markowitz (1952)-difficulties. Derigs and 
Nickel (2003) propose a simulated annealing-based 
metaheuristic for index tracking problem. In their 
approach, stock returns and covariances are derived from 
a linear multi-factor model based on macro-economic 
variables. They present a real-world case study based 
on an investment trust tracking, the German DAX30 
index. They also consider their approach taking into account 
an investment portfolio of 500 available stocks in order to 
track the MSCI World Developed Market index. 

Recently, there has been an extensive use of robust 
optimization in index tracking and other financial fields. 
Robust optimization technique can be used as a tool for 
handling uncertainty with data that was traditionally 
dealt with using sensitivity analysis, stochastic and fuzzy 
programming approaches. Robust optimization is a more 
tractable approach compared to the stochastic 
optimization that is especially suitable for problems in 
which input data and their corresponding distributions 
are uncertain (Gregory et al., 2011). The initiation of this 
technique is attributed to Soyster (1973) who proposes 
robust optimization models for over-conservative 
decision makers. Since then, other robust optimization 
approaches have been developed to address the issue 
with over-conservatism. 

Robust optimization has been extensively applied in 
many financial applications (Fabozzi, 2007). Mulvey et al. 
(1995) develop a general robust optimization model and 
then compare it with different approaches of sensitivity 
analysis and stochastic linear programming. They solve 
some popular optimization problems like financial 
planning. Ben-Tal and Nemirovski (2002) propose a 
robust optimization methodology and apply it to some 
real world applications like portfolio selection. 
Goldfarb and Iyengar (2003) formulate robust portfolio 
selection problems. They systematically aim at 
combating the sensitivity of the optimal portfolio to 
statistical and modeling errors in the estimates of the 
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relevant market parameters. El Ghaoui et al. (2003) 
propose a robust optimization approach for portfolio 
optimization problem with VaR. They define the worst-
case VaR as the largest possible VaR, given the partial 
information on the returns' distribution and consider the 
problem of computing and optimizing the worst-case 
VaR and show that these problems can be treated as 
semi-definite programs.  

Bertsimas and Sim (2004) present a new approach for 
controlling excessive conservatism of solutions and call 
it “budget of uncertainty”. Pinar and Tutuncu (2005) 
present a robust model in a multi-period setting and 
solve it as a quadratic programming problem. Kawas and 
Thiele (2011) suggest a new approach named log-robust 
in which they formulate the robust problem as a linear 
programming problem. Gregory et al. (2011) evaluate 
the cost of robustness for the robust counterpart to the 
maximum return portfolio optimization problem. 

Further, in a review, Gabrel et al. (2013) present the 
areas in robust optimization that attracted the most 
attention in recent years. The most noticeable point in their 
paper is providing a big picture of robust optimization 
applications, particularly in finance. Nguyen and Lo (2012) 
apply a robust ranking model to portfolio optimization 
that develops a new ordering strategy for building a 
portfolio, instead of utilizing estimates of the 
parameters. Fertis et al. (2012) define the concept of 
robust risk measure as the worst possible of risks when 
each of probability measures are feasible. They also 
present a robust CVaR that is optimized by convex duality 
methods. Doan et al. (2013) present a distributional robust 
portfolio optimization model depending on overlapping 
multivariate marginal distribution information that can be 
solved by linear programming. Zhu et al. (2013) propose 
a portfolio selection framework based on dual robustness 
with a mixture distribution on returns. They show that 
their proposed model can be reformulated as either linear 
or second-order cone program. 

To the best of our knowledge, Chen and Kwon 
(2012) are the only practitioners to investigate index 
tracking with robust approach. They present a model 
using a 0-1 integer program in which they allow 
uncertainty in the objective function. Their tractable 
robust framework controls conservatism of the solution 
which protects against worst-case realizations of 
potential estimation errors and other deviations. 

Rudolf et al. (1999) propose four linear models for 
minimizing the tracking error between the returns of a 
portfolio and a benchmark. Their idea of linearization is 
based on the fact that in the real market we confront with 
linear performance fees of fund managers; therefore, 

they argue that linear deviations give a more accurate 
description of the investors risk attitude rather than 
squared deviations. The main common feature within all 
models is that absolute deviations are minimized instead 
of squared deviations as is the case for traditional 
optimization models. In order to compare the 
performance of different approaches, they adopt a real 
data set containing six national stock market indices, 
including the USA, Japan, the UK, Germany, France and 
Switzerland and the tracking error with respect to the 
MSCI (Morgan Stanley Capital International Index) 
world stock market index is minimized. They also show 
that linear tracking error optimization is equivalent to 
expected utility maximization and lower partial moment 
minimization. This study is closely related to the last 
work of Rudolf et al. (1999). We propose a robust 
optimization approach and compare different models 
using recent data sets (2003-2011). In this study, four 
models based on the mean absolute deviation are 
presented and their robust counterparts are derived. The 
proposed robust models have linear forms as in 
Bertsimas and Sim (2004) which makes them 
computationally tractable. 

The organization of this study is as follows. Section 2 
presents different models and formulates the well-known 
quadratic as well as the linear models. Robust 
counterparts of some linear programming models are 
discussed in section 3. Section 4 compares the 
performance of different models using a real-world case 
study based on a broad spectrum of performance criteria. 
Finally, concluding remarks are presented in section 5 to 
put in a nutshell the contribution of this study. 

2. QUADRATIC AND LINEAR MODELS 

In this section, we formulate a quadratic model and four 
linear models including Mean Absolute Deviation (MAD), 
Mean Absolute Downside Deviation (MADD), MinMax 
Deviation (MinMax) and Downside MinMax Deviation 
(DMinMax) for tackling tracking error in passive portfolio 
management. The ultimate objective of the investor is to 
find the portfolio weights that follow the benchmark return 
as close as possible. This close tracking of index return is 
defined based on a variety of distance measures. 

2.1. Model Formulations 

Consider an investor who chooses n assets of the 
index to construct the tracking portfolio. Let β (n×1 
vector) represent the portfolio weights, Y (T×1 vector) be 
the vector of market index return over time and X (T×n 
matrix) be the matrix of returns on n assets for each time 
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period where the returns are continuously compounded. 
T is the number of observations and ε is the deviation 
between returns of the tracking portfolio and the target 
index. In this formulation, Xβ denotes the tracking 
portfolio return. Using the distance definitions to 
measure the error, the index tracking problem could be 
formulated as in the following sections. 

2.1.1. Mean Square Formulation 

Similar to Rudolf et al. (1999) the objective function 
is to minimize some function of tracking error over stock 
weights, β. Typically, the deviation between the tracking 
portfolio and the index is defined as Equation 1: 
 

T (T×n) n Tε=Y - Xβ,Y R ,X R  ,β R ,ε R∈ ∈ ∈ ∈  (1) 

  
Therefore, the mean square tracking error based on 

Roll (1992) is presented as Equation 2: 
 

).minε ε min(Y - Xβ)  (Y - X
β β

β′ ′≡  (2) 

 
It can be verified that the vector of optimum asset 

weights in the mean square tracking error of Equation (2) 
is β = (X'X)−1 X'Y. We can add some linear constraints 
such as short-selling that requires positivity of the 
portfolio weights. Furthermore, the sum of the weights is 
equal to one, which means the sum of asset weights within 
the portfolio must add up to unity. Therefore, the mean 
square tracking error problem can be formulated as the 
following quadratic programming problem Equation 3: 
 

. . :

)

1 . =1,    1 (1,...,1)

0,    0 (0,..,0)

n

n

s t

R

min(Y - Xβ)  (Y - Xβ
β

where

where R

β
β

′

′ ′ ≡ ∈
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 (3) 

 
2.1.2. Linear Models for the Tracking Error 

Minimization Problem 

The linear models presented here minimize absolute 
deviations between the targeted index and the tracking 
portfolio returns. The first linear model is called MAD, 
which minimizes the average of absolute deviations. The 
second model, called MinMax, minimizes the maximum 
deviation between returns of tracking portfolio and the 
benchmark. Another approach is to focus only on the 
negative deviations of tracking portfolio from the 
benchmark returns. The reason is that from the investor’s 

point of view, risk happens only when the return of the 
tracking portfolio falls below the benchmark, known as 
“downside risk” of an investment (Harlow, 1991). The 
objective function of different models is summarized as 
follows Equation 4a and b: 
 

( ) '( )TE = min Y Xβ Y XβQD β
− −  (4a) 

 
1 ( ),TE = min  X YMAD β

β′ −  (4b) 

 
1 ( )TE = min  | Xβ Y | ,MADD β
′ −  (4c) 

 
   ,for some t where Xβ <Yt t

  
{ }TE = min max  X YMinMax tβ

β −  (4d) 

 
{ }TE = min max | Xβ Y | ,DMinMax tβ

−  (4e) 

 
  ,for some t where Xβ <Yt t  

 
where, Xt represents row t of matrix X and Yt is the 
element t th of vector Y, while matrices X and vector 
Y consider only those rows t whereXβ < Y . 

In order to derive the MinMax models in the classical 
linear form, we define an auxiliary variable z≥0 as the 
upper bound of absolute deviations similar to Rudolf et al. 
(1999). Hence, for the MinMax model we have: 
 

,…,T |,ttβ-Yt|Xz 1=≥  
 

Two forms can be considered for each t: 
 

 

 

if X β Y   X β - z Yt t t t
if X β Y   X β+ z Yt t t t

≥ ⇔ ≤
≤ ⇔ ≥

 

 
Thus, we can formulate the MinMax model as follow 

Equation 5: 
 

. 

 

min zz
s.t  X - z Y   t t
X β+ z Yt t

β ≤
≥

 (5) 
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Since in the D MinMax model only the positive 
deviations of index is of interest, we derive Equation 6: 
 

  t tmin z s.t. Xβ+ z Y .z ≥  (6) 

 
Let tz

+ and tz
−  represent the absolute value of positive 

and negative deviations of tracking portfolio at time 
period t, respectively. The MAD model can be 
formulated as Equation 7: 
  

( ) 1

. t t

TMin z + z  t tt

s t X β - z + z =Yt t

+ −
∑ =

+ −
 (7) 

 
For the MADD model, we omit zt

+  from the 

objective function of problem (7). Then, the problem is 
stated as Equation 8: 
 

 1

. .

Tmin ztt

s t X β - z z =Y .t t t t

−
∑ =

+ −+
 (8) 

 
3. ROBUST FORMULATION 

In the classic linear programming, we typically 
assume that the input data is precisely known and their 
values are known with certainty. However, in the real 
world optimization problems this assumption does not hold 
since it ignores underlying effects of parameter uncertainty 
in the model. This could potentially affect the underlying 
feasibility and/or optimality of the final solution. 
After/when the model is solved using the nominal values 
(i.e., the expected value of data), future realizations of the 
parameters may violate some constraints and therefore, the 
so-called optimal solution which is based on the nominal 
data may no longer even exist in the feasible region. 

In order to overcome the above-mentioned 
drawbacks, robust optimization approach is used in the 
real-world applications of linear programming 
(Bertsimas and Sim, 2004). Soyester (1973) proposes a 
conservative technique where the solution remains 
feasible for all realizations of input data. He considers 
the worst-case solution where the uncertain parameters 
belong to a convex set. There are some other 
approaches in the literature that try to address the over 
conservatism of the Soyester approach. Other 
researchers including El-Ghaoui et al. (1998), Ben-Tal 
and Nemirowski (1998, 1999, 2000) and Bertsimas and 
Sim (2004) address the uncertainty of data using different 
robust approaches. The distinction among these approaches 
is the way they define uncertainty sets. They solve a new 

formulation of the original problem called the robust 
counterpart. The robust counterpart proposed by Ben-
Tal and Nemirowski (1998, 1999, 2000) is typically in the 
form of conic quadratic programming since they apply 
elliptic uncertainty. Bertsimas and Sim (2004) propose a 
new approach wherein they define a linear norm and a 
linear uncertainty set. Their approach preserves the linearity 
of the original problem, which is computationally efficient. 
Consider the following simple linear programming where 
the technical matrix is subject to uncertainty Equation 9: 
 

. . :

 
s t

max c'x

Ax b
l x u    jj j j

≤
≤ ≤ ∀

%  (9) 

 
where, data uncertainty only affects the elements in 
technical matrix A% . Furthermore, assume- without loss 
of generality-that the objective function c'x is not 
subjected to uncertainty, since in that case the objective 
function can be converted into a simple constraint and be 
added to the main constraints. 

They propose another linear programming problem 
called the robust counterpart, which could be solved instead 
of the nominal problem (9) as follows Equation 10: 
 

. . :

ˆ

0

0

0
j

i

s t

max c'x

a x zΓ + p b , ij jij j i i ij i

z + p a  y , i, j J ,i ij ij j i
-y x y , j,j j j

l x u , j,j j j
p , i, j J ,ij i
y , j,

 z , i.

+ ≤ ∀∑ ∑

≥ ∀ ∈

≤ ≤ ∀

≤ ≤ ∀

≥ ∀ ∈

≥ ∀
≥ ∀

 (10) 

 
where, ai j is the nominal value of uncertain parameter 

ija% , ˆija is the allowed deviation from the nominal value, 

i.e., we consider ija% takes values in ˆ ˆ[ ]ij ij ij ija - a ,a +a . Let 

Ji define the set of coefficient (s) in constraint i that may 
be subjected to uncertainty. The parameter Гi, taking 
value in [0, Ji], is defined for each constraint i and is not 
necessarily integer. This parameter controls the 
robustness of the solution against the level of 
conservatism, e.g., for Гi = 0 the robust counterpart is 
equivalent to the nominal problem and on the other hand 
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Гi = Ji 
represents the worst-case situation and is 

equivalent to the Soyster approach. In the above model, 
yj is defined as absolute value of xj. zi and pij are some 
auxiliary variables that together define the protection 
function of constraint i (Bertsimas and Sim, 2004). 

In the robust optimization we are not allowed to keep 
equality constraint in the model, so the robust counterpart 
for the MAD and MADD cannot be defined. In this study, 
we formulate the robust counterpart of both MinMax and 
Downside MinMax problem based on Bertsimas and Sim 
(2004) approach. In this case, consider β as the portfolio 

weights and tjX%  as uncertain return of stock i at time 

period t. We assume the uncertain return Xtj takes value 
within interval ˆ ˆ[ , ]tj tjx x− ∆ + ∆ , where ∆ is the deviation 

parameter. Based on the assumptions and definitions 
mentioned above we formulate the robust counterpart of 
MinMax (RMinMax afterwards) and DMinMax 
(RDMinMax afterwards) problems as a similar approach. 

The RMinMax model is formulated as Equation 11: 
 

. . :

ˆ1 1
ˆ , ,

,

0, ,

0,

0,

s t

min z

N Nx β - z +W Γ + P yt t ttj j tjj j

W + P ∆x  u t jt tj tj j

-u β u jj j j
P t jtj
W tt
u jj

≤∑ ∑= =
≥ ∀

≤ ≤ ∀

≥ ∀

≥ ∀
≥ ∀

 (11) 

 
The RDMinMax model is formulated as Equation 12: 

 

. . :

ˆ1 1
ˆ , ,

,

0, ,

0,

0,

min z

s t

N Nx β  + z -W  Γ - P yt t ttj j tjj j

W + P ∆x u t jt tj tj j

-u β u jj j j
P t jtj
W tt
u jj

≥∑ ∑= =
≥ ∀

≤ ≤ ∀

≥ ∀

≥ ∀
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 (12) 

 
In all proposed models, short-selling is prohibited and 

finally, there is a constraint on portfolio weights that 
must add up to unity. 

4. EXPERIMENTAL RESULTS 

In this section, we implement previously proposed 
models using a real data set to compare their 
performance empirically. Consider an investor who is 
interested in constructing an internationally diversified 
portfolio. Additionally, she has an objective to 
minimize the tracking error between her portfolio 
return and the world stock index. MSCI index, which 
measures the performance of equity market within 
developed countries, is used as the target index. The 
index has been maintained by Morgan Stanley Capital 
International incorporation since 1969. MSCI world 
constitutes of indices of 24 developed country market 
indices, which is a common benchmark for the global 
equity funds. It should be noted that emerging markets 
index has been excluded from the benchmark. 

The investor is going to compose a portfolio of market 
index of 6 industrial countries: The United States (the 
USA), Germany (D), France (F), the United Kingdom (the 
UK), Switzerland (CH) and Japan (JAP). The objective is 
to minimize the tracking error between the returns of the 
composed portfolio and the MSCI world index. Monthly 
data, including 100 monthly return observations, are 
collected from January 2003 to September 2012. 
Moreover, the whole observation period is divided into 
two sub-periods: 80 Observations used as train sample 
observations from January 2003 to August 2009 and 20 
observations from September 2009 to September 2012 are 
assumed as test sample observations. Train period data are 
used for constructing optimized portfolios for the obtained 
models. Then, the test sample observations are used to test 
the efficiency of obtained portfolio weights. All returns 
are calculated in USD. Mean, standard deviation and β 
relative to the MSCI world index of each series of data are 
summarized in Table 1. 

The proposed modeling is solved using Lingo 
software. Table 2 contains the weights of optimized 
portfolios for linear and robust models. In addition, 
values of objective functions are calculated for each 
model in a separate column. 

Bertsimas and Sim (2004) propose some probability 
bounds of constraint violation. Based on their 
propositions, we set the parameter Γ and the budget of 
uncertainty to limit the upper bound for the probability 
of violation for each constraint up to 5%. It is 
noteworthy that the parameter Γ controls the underlying 
trade-off between the probability of violation and the 
effect of the objective function of the nominal 
problem. We tuned the robust model parameter in 
such a way that the constraint would not to be violated 
with 95% confidence interest. 
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Table 1. Risk/return characteristics of MSCI total return indices in terms of USD 
 Whole observation period:  Train sample period:  Test sample period: 
 Jan 2003 to Sep 2012  Jan 2003 to Aug 2009  Sep 2009 to Sep 2012 
 ----------------------------------------- ---------------------------------------- ----------------------------------- 
Index µ σ β µ Σ β µ Σ β 
MSCI 0.44 4.79 1.00 0.27 4.81 1.00 1.12 4.76 1.00 
USA 0.36 4.41 0.90 0.10 4.37 0.89 1.38 4.51 0.92 
JAP 0.27 5.00 0.77 0.33 5.20 0.82 -0.01 4.20 0.59 
UK 0.31 5.31 1.04 0.14 5.28 1.03 1.01 5.48 1.09 
D 0.77 7.11 1.39 0.63 7.21 1.40 1.31 6.87 1.35 
F 0.46 6.51 1.29 0.42 6.22 1.24 0.60 7.75 1.52 
CH 0.71 4.82 0.87 0.59 4.84 0.89 1.15 4.82 0.78 
Monthly average return and standard deviation are in %. 
β is respect to MSCI. 
 
Table 2. Optimized portfolio weights based on the train period (Jan 2003 to Aug 2009) for different optimization models 
Model USA JAP UK D F CH Value of objective function 
QTE 50.28 11.80 18.63 6.43 12.87 0.00 2.55 
MAD 51.46 11.12 20.54 7.13 9.75 0.00 17.49 
MADD 48.70 11.80 17.63 9.36 11.66 0.84 10.25 
MinMax 49.84 12.57 14.50 7.64 15.45 0.00 0.69 
DMinMax 49.06 11.77 19.29 14.07 5.81 0.00 0.59 
RMinMax 22.20 15.34 23.78 12.89 12.89 12.89 8.81 
RDMinMax 26.23 11.85 26.36 11.85 11.85 11.85 8.80 
Square root of objective function is calculated for QTE. 
All figures in percent %. 
 

Clearly, high weights are dedicated to the USA, the UK 
and JAP stock markets. There is an obvious result due to the 
fact that MSCI index is capital weighted and these countries 
have the highest capital values of market index in the world. 
It is worth noting that MAD, MADD and quadratic tracking 
error results are similar in a noteworthy manner. This result 
is consistent with the perceptions of Konno and Yamazaki 
(1991) and signifies that the optimization results are the 
same whether linear or quadratic objective functions are 
used when the joint probability distribution of the 
benchmark and portfolio returns is normally distributed. 
Moreover, Rudolf et al. (1999) report the same results in 
their empirical work. Slight differences could be expected 
between the MAD and the quadratic tracking error model 
since the normality of the returns is non-existent. Moreover, 
MAD and the MinMax models have almost different 
results, which is not surprising due to the differences among 
the tracking error criteria. It could be observed that the 
portfolio weights differ substantially between the robust and 
non-robust models (Table 2). For instance, the weight of 
the US market in the portfolio declines to almost half of its 
value when we use the robust models instead of the nominal 
models. The most significant feature of the robust models is 
that the portfolio weights are distributed in a more uniform 
and diversified manner/uniformity and diversity of the 
portfolio weights distribution (Table 2). 

So far, the results have disclosed that the linear models 
provide quite different portfolios than the traditional 
quadratic models. The benefit of the linear models, 
however, is that the value of the objective function provides 
an intuitive and immediate interpretation. It is easier for an 
investor to determine her attitude toward the concept of 
risking if she can express the tracking error in terms of 
absolute deviations from the benchmark index rather than 
squared deviations. A comparison of the optimized values 
of the objective functions is summarized in Table 3. 

The minimum values of the objective function across 
the different models are in bold face. For example, the 
lowest tracking error of a portfolio regarding the 
benchmark using the quadratic model is provided by the 
QTE portfolio. Nevertheless, more interesting insights 
emerge from the objective functions of the alternative 
models. For instance, if an investor is concerned about 
the maximum absolute downside deviation 
(DMinMax), the maximum risk she takes by holding the 
Downside MinMax portfolio is 0.588%. This is quite 
lower than the QTE portfolio which has a maximum 
Downside deviation (DMinMax) of 0.759% from the 
benchmark. If the investment objective is the Minimum 
sum of Absolute Downside Deviations (MADD), the 
total deviation may be boosted by 3.85% in case the QTE 
portfolio is substituted by the MADD portfolio.
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Table 3. Optimal objective function values for different optimization models over the train period (Jan 2003 to Aug 2009) 
Tracking error criteria 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Model QTE MAD MADD MinMax DMinMax 
QTE 0.065 17.671 10.662 0.820 0.759 
MAD 0.068 17.490 10.909 0.908 0.770 
MADD 0.073 18.363 10.251 0.793 0.669 
MinMax 0.076 19.095 10.655 0.685 0.685 
DMinMax 0.085 19.734 10.722 1.014 0.588 
RMinMax 0.375 44.760 19.223 1.353 1.353 
RDMinMax 0.304 40.712 18.165 1.484 1.133 
All figures in %. 
 

It is obvious that robust model objectives are not 
minimum values in any criteria. For example, in some 
cases, the tracking error criteria have grown twofold. 
However, it should not be considered as the pitfalls of 
the robust modeling. The minimum possible value 
could be gained since the objective function of each 
model optimizes the weight. We cannot compare these 
models using the same data, applied to find tracking 
portfolio, i.e., the train data. To the best of the 
investor’s behavior, the investor definitely knows that 
this would deteriorate the objective function when 
robust modeling is used. The investor trades return for 
confidence. Using the test data set, the performance of 
different portfolio is tested in the following section. 

4.1. Performance Metrics 

In this section, the most important portfolio measures 
are summarized in Table 4 according to which we could 
examine the performance of different models. It is 
apparent that the higher these measures, the better the 
performance of the portfolio. We also test their 
performance using test sample returns so that we can 
arrive at an unbiased judgment. 

In this table, Ri and Rb are the returns of tracking 
portfolio and target benchmark index, respectively. TE 
is the tracking error and σ is the standard deviation of 
the portfolio return. 

4.2. Numerical Results of Performance Criteria 

In this section, we compare different portfolio 
models based on multiple investment performance 
criteria. In Table 5, average returns, standard 
deviations, tracking errors and different market-related 
ratios for the portfolios are displayed. Given the 
previous results, it is astounding how similar the risk 
characteristics are. Except for the MAD and the 
quadratic QTE model, average returns are considerably 
different. The well-known observation is that the higher 
the expected return, the higher the standard deviation. The 
Information, Sharp and Treynor ratios of the non-robust 

models are negative, which represent an inferior 
performance with respect to market index. However, the 
robust models have higher returns together with 
positive market-related ratios that reveal the superior 
performance regarding non-robust approaches to the 
market portfolio. A graphical comparison of different 
MinMax models together with their robust counterparts 
is illustrated in a radar diagram (Fig. 1). 

The relevant data set is normalized to depict Fig. 1. It 
could be observed that regarding train period returns, 
robust models outperform non-robust models based on 
market-related portfolio performance measures. 

4.3. Further Analysis Applying Test Data 

So far, the comparisons were conducted based on the 
train data, i.e., the data used to obtain optimized portfolio 
of each tracking error approach. In this section, the test 
data are used in order to test viability of the results. 
Keeping in mind that the data set used for testing the 
results (test data; the period from September 2009 to 
September 2012) is a very extraordinary circumstance 
wherein a huge financial crisis occurs and the world 
witnesses lots of important economic and political 
changes affecting the stock markets. In Table 6, average 
returns, standard deviations, tracking errors and different 
market-related ratios for the portfolios are displayed. 

An outstanding outcome is that Beta of different 
models are all negative; this proves that the returns are 
moving in the opposite direction of the index in order to 
get higher returns. 

Figure 2 depicts the tracking error of robust models 
with respect to the world index fluctuations.  

It can be seen that the resulting error is directly 
related to the world index. Table 7 summarizes monthly 
returns of each portfolio in each column and the world 
index monthly returns in the last column. One could 
report that the returns are fluctuating in the same way 
with world return when comparing different methods in 
almost all observation period. 
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In order to increase validity of our comparison, we 
added noise to our test data to simulate data for 50 runs. 
We added a random noise to the test data that has normal 
distribution with mean and standard deviation equal to 0 
and 0.2, respectively. Then, we ran the simulation for 50 
times. The calculated tracking error values for the noisy 
data are given in Table 8. It is noticeable that the 
tracking error values for robust models are less than the 
tracking error values for the non-robust models. This 

suggests that the robust models have a better 
performance for the noisy data. Figure 3 compares the 
relative tracking error of different models for noisy data 
with respect to nominal test data for 50 runs of 
simulation. The robust models have lower amount of 
relative tracking error among models. This occurs 
because when the noise is added to data, robust models 
are expected to change less in their objective functions 
with respect to non-robust models.

 
Table 4. Performance metrics formulations and descriptions 
Performance metric Formulation Description 

Beta 
( , )

( )
i b

i

cov R R

var R
β =  Beta of a portfolio is a number which shows he relationship between the return 

  of the portfolio and a benchmark 

Information ratioa [ ]i bE R R
IR

TE

−=  Information ratio, typically known as Appraisal Ratio, is the difference between 

  returns of tracking portfolio and a selected benchmark divided by the standard 
  deviation of the tracking error 

Sharpe ratiob [ ]i bE R R
S

σ
−=  Sharpe ratio is a measure of excess return of a trading strategy or tracking 

  portfolio for each unit of risk the investor takes 

Treynor ratioc [ ]bi

i

E R R
T

β
−=  Treynor ratio measures the returns obtained above what the investment could gain 

Market ratiod 1

1
i

b

R
M

R

+=
+

 Market ratio measures the relative performance of tracking portfolio to benchmark index 

aSharpe (1994) 
bSharpe 1966) 
cTreynor (1964) 
dCornuejols and Tutuncu (2007) 

 
Table 5. Risk/return characteristics of optimized portfolios based on train period (Jan 2003 to Aug 2009) 

 Average Standard Tracking  Information Sharpe Treynor Market 

Model returna deviationa errorb Betac ratiod ratioe ratiof ratiog 

QTE 0.232 4.735 2.83E-03 0.9830 -0.1467 -8.78E-03 -4.23E-04 0.9996 

MAD 0.225 4.715 2.89E-03 0.9788 -0.1696 -1.04E-02 -5.00E-04 0.9995 
MADD 0.249 4.782 3.02E-03 0.9924 -0.0824 -5.21E-03 -2.51E-04 0.9998 

MinMax 0.248 4.780 3.08E-03 0.9919 -0.0838 -5.40E-03 -2.60E-04 0.9997 

DMinMax 0.253 4.813 3.27E-03 0.9984 -0.0643 -4.37E-03 -2.10E-04 0.9998 
RMinMax 0.346 4.963 6.85E-03 1.0223 0.1053 1.45E-02 7.05E-04 1.0007 

RDMinMax 0.323 4.940 6.18E-03 1.0192 0.0795 9.94E-03 4.82E-04 1.0005 
aMonthly returns and standard deviations in % 
bTracking error measured by standard deviation of portfolio excess return to MSCI (σ(XB-Y)) 
ceta of each portfolio to MSCI world stock market index 
dExcess return to square root of tracking error in % 
eExcess return to volatility ratio in % 
fExcess return to Beta in % 
gRelative performance of tracking portfolio to benchmark index 
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Table 6. Risk/return characteristics of optimized portfolios based on test sample period (Sept 2009 to Sep 2012) 
 Average Standard Tracking  Information Sharpe Treynor Market 
Model returna Deviationa Errorb Betac ratiod ratio e ratiof ratio g 
QTE 1.069 4.855 3.144E-03 1.0173 -0.1695 -1.098E-02 -5.239E-04 0.9995 
MAD 1.093 4.806 2.961E-03 1.0071 -0.0986 -6.075E-03 -2.899E-04 0.9997 
MADD 1.079 4.868 3.271E-03 1.0199 -0.1342 -9.016E-03 -4.303E-04 0.9996 
MinMax 1.055 4.909 3.466E-03 1.0286 -0.1948 -1.375E-02 -6.564E-04 0.9993 
DMinMax 1.114 4.819 3.390E-03 1.0093 -0.0238 -1.677E-03 -8.009E-05 0.9999 
RMinMax 0.973 4.963 9.208E-03 1.0243 -0.1626 -3.016E-02 -1.462E-03 0.9985 
RDMinMax 1.020 4.980 8.463E-03 1.0308 -0.1209 -2.054E-02 -9.923E-04 0.99900 
aMonthly returns and standard deviations in% 
bTracking error measured by standard deviation of portfolio excess return to MSCI (σ(XB-Y)) 
cBeta of each portfolio to MSCI world stock market index 
dExcess return to square root of tracking error in% 
eExcess return to volatility ratio in % 
fExcess return to Beta in % 
gRelative performance of tracking portfolio to benchmark index 
 
Table 7. Comparison of different model returns based on test data 
Date QTE MAD MADD MinMax DMinMax RMinMax RDMinMax 
Sep-09 0.008594 0.004411 0.00651 0.011516 -0.00162 -0.00188 -0.00245 
Oct-09 0.009085 0.008935 0.010766 0.010864 0.012327 0.014258 0.01314 
Nov-09 0.034821 0.03549 0.036237 0.035621 0.037809 0.035862 0.03639 
Dec-09 0.007785 0.006838 0.007738 0.009098 0.006384 0.004086 0.00370 
Jan-10 -0.00035 -0.00161 -0.00083 0.00112 -0.00108 -0.00664 -0.00758 
Feb-10 0.00812 0.009915 0.00846 0.006055 0.010439 0.013212 0.01397 
Mar-10 0.018063 0.020006 0.019134 0.01693 0.023375 0.021688 0.02186 
Apr-10 0.006165 0.005031 0.00462 0.006107 0.000701 -0.00178 -0.00024 
May-10 -0.00737 -0.0081 -0.00627 -0.00631 -0.00776 0.004762 0.00286 
Jun-10 -0.01299 -0.01371 -0.01217 -0.01161 -0.01226 -0.00779 -0.00899 
Jul-10 -0.00783 -0.00603 -0.00708 -0.00913 -0.00349 -0.00449 -0.00452 
Aug-10 -0.01795 -0.01892 -0.01516 -0.01439 -0.01401 -0.00646 -0.00938 
Sep-10 0.007881 0.00891 0.010762 0.010106 0.01639 0.011103 0.00968 
Oct-10 0.000664 0.002712 0.000661 -0.00251 0.003426 0.011006 0.01119 
Nov-10 -0.02199 -0.02138 -0.01994 -0.02087 -0.01689 -0.01275 -0.01427 
Dec-10 0.011974 0.010779 0.010554 0.011132 0.007198 0.016461 0.01553 
Jan-11 -0.00782 -0.01105 -0.00638 -0.00356 -0.00932 0.004923 0.00119 
Feb-11 -0.00855 -0.00833 -0.00859 -0.00866 -0.00861 -0.0108 -0.01007 
Mar-11 0.009302 0.009344 0.009372 0.009542 0.009458 0.006754 0.00712 
Apr-11 -0.00506 -0.00534 -0.00543 -0.006 -0.00739 0.002777 0.00309 
May-11 -0.01076 -0.01102 -0.00935 -0.00983 -0.00726 0.002906 0.00023 
Jun-11 -0.01558 -0.01499 -0.01486 -0.01562 -0.01221 -0.0111 -0.01224 
Jul-11 -0.00159 -0.00065 -0.00026 -0.0009 0.00335 -0.00212 -0.00216 
Aug-11 -0.03724 -0.03428 -0.03493 -0.03853 -0.02709 -0.02525 -0.02636 
Sep-11 0.027016 0.031645 0.0281 0.024189 0.036441 0.015293 0.01988 
Oct-11 -0.00421 -0.00136 -0.00187 -0.00502 0.00437 0.002724 0.00239 
Nov-11 0.017178 0.017599 0.017729 0.017708 0.018574 0.012912 0.01380 
Dec-11 0.015416 0.014657 0.014817 0.01526 0.012004 0.016806 0.01753 
Jan-12 -0.00637 -0.00471 -0.00334 -0.00429 0.002286 -0.00812 -0.00779 
Feb-12 -0.06041 -0.05847 -0.05902 -0.06221 -0.05332 -0.04175 -0.04453 
Mar-12 -0.01886 -0.023 -0.01993 -0.01701 -0.02648 -0.00257 -0.00626 
Apr-12 -0.02094 -0.02224 -0.02004 -0.01907 -0.02035 -0.01174 -0.01468 
May-12 -0.01229 -0.01317 -0.01199 -0.01237 -0.01309 0.003844 0.00196 
Jun-12 -0.05353 -0.05345 -0.0514 -0.05457 -0.05038 -0.0127 -0.01644 
Jul-12 0.002801 0.000899 0.003529 0.004541 0.001123 0.016893 0.01426 
Aug-12 0.031605 0.032491 0.030931 0.03113 0.031967 0.016691 0.01789 
Sep-12 0.011932 0.012627 0.012665 0.011807 0.014753 0.015535 0.01446 
All figures in % 
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Table 8. Tracking error values of noisy data for 50 runs of test data simulation 

Period QTE MAD MADD MinMax DMinMax RMinMax RDMinMax 

1 0.0110 0.0109 0.0109 0.0113 0.0117 0.0141 0.0136 
2 0.0164 0.0164 0.0163 0.0167 0.0164 0.0177 0.0176 
3 0.0209 0.0206 0.0206 0.0213 0.0206 0.0209 0.0206 
4 0.0319 0.0318 0.0317 0.0324 0.0322 0.0316 0.0316 
5 0.0394 0.0395 0.0395 0.0395 0.0397 0.0387 0.0388 
6 0.0317 0.0317 0.0317 0.0318 0.0321 0.0299 0.0300 
7 0.0351 0.0352 0.0353 0.0354 0.0358 0.0314 0.0318 
8 0.0347 0.0349 0.0349 0.0351 0.0363 0.0326 0.0327 
9 0.0373 0.0374 0.0372 0.0380 0.0388 0.0353 0.0354 
10 0.0414 0.0412 0.0410 0.0425 0.0426 0.0382 0.0383 
11 0.0360 0.0356 0.0352 0.0374 0.0377 0.0343 0.0340 
12 0.0394 0.0389 0.0387 0.0406 0.0400 0.0361 0.0359 
13 0.0428 0.0424 0.0424 0.0438 0.0431 0.0381 0.0382 
14 0.0450 0.0447 0.0446 0.0460 0.0456 0.0401 0.0401 
15 0.0430 0.0424 0.0423 0.0442 0.0431 0.0398 0.0395 
16 0.0440 0.0434 0.0433 0.0453 0.0445 0.0397 0.0393 
17 0.0531 0.0521 0.0520 0.0548 0.0517 0.0465 0.0464 
18 0.0528 0.0518 0.0518 0.0545 0.0508 0.0452 0.0450 
19 0.0574 0.0567 0.0570 0.0586 0.0553 0.0469 0.0472 
20 0.0545 0.0539 0.0543 0.0558 0.0529 0.0427 0.0430 
21 0.0566 0.0559 0.0563 0.0579 0.0544 0.0453 0.0458 
22 0.0502 0.0498 0.0501 0.0512 0.0495 0.0416 0.0419 
23 0.0498 0.0498 0.0501 0.0504 0.0499 0.0434 0.0435 
24 0.0493 0.0490 0.0492 0.0500 0.0484 0.0439 0.0438 
25 0.0494 0.0496 0.0500 0.0498 0.0494 0.0433 0.0434 
26 0.0576 0.0580 0.0586 0.0579 0.0579 0.0485 0.0489 
27 0.0579 0.0585 0.0591 0.0579 0.0579 0.0477 0.0482 
28 0.0618 0.0626 0.0633 0.0617 0.0620 0.0493 0.0504 
29 0.0672 0.0681 0.0689 0.0671 0.0670 0.0513 0.0529 
30 0.0668 0.0679 0.0687 0.0663 0.0676 0.0533 0.0548 
31 0.0764 0.0777 0.0787 0.0757 0.0769 0.0607 0.0627 
32 0.0953 0.0967 0.0978 0.0946 0.0956 0.0771 0.0793 
33 0.0993 0.1009 0.1023 0.0987 0.0991 0.0722 0.0755 
34 0.0810 0.0822 0.0832 0.0807 0.0815 0.0612 0.0637 
35 0.0885 0.0901 0.0912 0.0878 0.0893 0.0661 0.0691 
36 0.0952 0.0970 0.0984 0.0944 0.0952 0.0682 0.0718 
37 0.1023 0.1043 0.1059 0.1013 0.1020 0.0700 0.0744 
38 0.1127 0.1143 0.1156 0.1118 0.1124 0.0884 0.0915 
39 0.1069 0.1085 0.1099 0.1062 0.1067 0.0808 0.0840 
40 0.1093 0.1111 0.1127 0.1085 0.1089 0.0788 0.0824 
41 0.1183 0.1200 0.1215 0.1176 0.1179 0.0884 0.0920 
42 0.1047 0.1066 0.1083 0.1041 0.1044 0.0698 0.0742 
43 0.1211 0.1231 0.1252 0.1205 0.1197 0.0777 0.0831 
44 0.1101 0.1114 0.1127 0.1097 0.1097 0.0853 0.0881 
45 0.1184 0.1198 0.1212 0.1180 0.1177 0.0902 0.0934 
46 0.1345 0.1361 0.1376 0.1340 0.1340 0.1061 0.1093 
47 0.1410 0.1428 0.1446 0.1404 0.1403 0.1052 0.1093 
48 0.1565 0.1590 0.1616 0.1557 0.1548 0.1043 0.1105 
49 0.1917 0.1946 0.1975 0.1907 0.1900 0.1358 0.1423 
50 0.1486 0.1510 0.1533 0.1479 0.1472 0.1010 0.1067 
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Fig. 1. Comparison of different models based on train period return 
 

 
 

Fig. 2. The comparison of the tracking error of the robust models regarding the world index fluctuations 
 

 
 
Fig. 3. Comparison of relative tracking error of different models for noisy data with respect to nominal test data for 50 runs of 

simulation (in percent) 
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5. CONCLUSION 

In this study, we presented some linear programming 
formulations for index tracking and their robust 
counterparts. We proposed a robust modeling approach for 
index tracking and compared it with the well-known mean 
square error and other linear models in the literature. The 
performance of the proposed models is analyzed using a 
real-world data set including six national stock market 
indices and their tracking error is minimized with respect 
to world stock market index MSCI. The results of the 
comparison based on train data, reveal that while the 
standard deviation of returns are almost the same, the 
proposed robust formulations outperform different 
portfolios regarding the mean return. The comparison 
using nominal test data shows that the tracking error in 
robust models has been increased, although the returns and 
standard deviations still remained the same. In the next 
stage, we added a random noise to the test data that has 
normal distribution and has run the simulation for 50 
times. This time the tracking error in robust models was 
relatively less than the non-robust models. This proves 
better performance of robust models when data are noisy. 
In addition, relative tracking error for noisy data with 
respect to nominal data was compared among the models. 
The results suggest that relative tracking error changes for 
the robust models were less than the non-robust models. 

In conclusion it was revealed that portfolio weights of 
the optimized portfolio and their corresponding return 
over their risk profile are different across the models. This 
difference implies that optimization models should be 
targeted to a specific investment attitude. Nonetheless, this 
new proposed model of portfolio selection problems and 
the efficient solution methods will allow us to solve more 
complicated problems in real world situations under more 
random and ambiguous conditions. For future research, 
we suggest applying this robust portfolio selection 
approach to the other asset allocation problems including 
multi-period planning horizon, cardinality constraint, 
transaction costs and portfolio insurance. 
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