Journal of Computer Science 10 (11): 2211-2219, 201

ISSN: 1549-3636

© 2014 Wolfe and Harpe, This open access artidlisisibuted under a Creative Commons Attribution
(CC-BY) 3.0 license

doi:10.3844/jcssp.2014.2211.2219 Published Onlih€ll) 2014 (http://www.thescipub.com/jcs.toc)

INCORPORATING PRIOR KNOWLEDGE INTO TEMPORAL
DIFFERENCE NETWORKS

Britton Wolfe and James Harpe

Department of Computer Science, Indiana UniversitydBe University Fort Wayne (IPFW),
Fort Wayne, IN, USA

Received 2014-06-06; Revised 2014-06-26; Accepted-20105
ABSTRACT

Developing general purpose algorithms for learrdngaccurate model of dynamical systems from example
traces of the system is still a challenging redearmoblem. Predictive State Representation (PSRjetso
represent the state of a dynamical system as af ggedictions about future events. Our work fosusa
improving Temporal Difference Networks (TD Nets)ganeral class of predictive state models. We adapt
the internal structure of the TD Net and we presenimproved algorithm for learning a TD Net model
from experience in the environment. The new alfanieiccepts a set of known facts about the envirabhme
and uses those facts to accelerate the learniregeTtacts can come from another learning algor{#msrin

this study) or from a designer’s prior knowledgeowatbthe environment. Experiments demonstrate that
using the new structure and learning algorithm omps the accuracy of the TD Net models. When tdsted
an in finite environment, our new algorithm outmerfis all of the standard PSR learning algorithms.

Keywords: Predictive State, Temporal Difference, ModelingnBmical Systems

1. INTRODUCTION agent might take in the future. These predictions a
also conditioned upon the agent’s experience in the
This study addresses the problem of learning asystem#'a?o?. .. d o through the current time This
model of a discrete-time dynamical system from aexperience is called history. Although predictions
sequence of experience in the system. Such systemgepend upon history, a model cannot simply store
have long been of interest to reinforcement leagnin history, because it will grow without bound as #gent
researchers (Sutton and Tanner, 2004; Sutton an@ontinues to act in the world. Instead, a model
Barto 1998; Dahmani and Benyettou, 2005) but still maintains a summary of the current history calledes
pose great challenges for learning and modeling. History changes after each time step, so the medel’
Our work applies generally to a broad class of state also needs to change after each time step. Th
dynamical systems. In such systems, at every tiepets= structure and parameters of a model determinetttie s
1, 2, 3,..., the agent takes some actlcand receives some update mechanism of the model: How the model
observation bfrom the system. We restrict our attention to computes the state at time t + 1 from the statére t
systems with a discrete set of possible actionsaatiscrete and the most recent actiofi*aand observation'd.
set of possible observations. For a given system, there are many possible ways to
summarize history, which lead to different state
representations. In general, state is simply aoveot
A model of a system predicts the likelihood of numbers, but the meaning or semantics of those arsmb
future observations given a sequence of actionsthiea differs among state representations. Models such as

Corresponding Author: Britton Wolfe, Department of Computer Science, Indiddniversity-Purdue University Fort Wayne
(IPFW), Fort Wayne, IN, USA

1.1. Models and State Representations

////4 Science Publications 2211 JCS

Britton Wolfe and James Harpe / Journal of Computézrfe 10 (11): 2211.2219, 2014

Hidden Markov Models (HMMs) or Partially 1.2. TDNets
Observable Markov Decision Processes (POMDPS)
represent state as a distribution over unobsernadeint)

system states. This distribution is called thedfedtate.

In contrast, Predictive State Representations (PSRs
represent state as a set of predictions about dutur
events. For example, one element in a PSR’s statél.2.1. Defining State

might b_e t_he probability —of see_zing a particular Each element in the state vector of a TDNet is
observation if the agent takes a particular action. — yefined in terms of actions and observations, eiffast
PSRs are capable of representing partially o fyture (or both). In order to make this moregise,
observable, stochastic dynamical systems, includingye yse some terminology from the predictive state
any system that can be modeled by a finite POMDPjterature. A history is a possible sequence obastand
(Singhet al., 2004). There is evidence that predictive gpservationsalolao? . . . a of from the beginning of
state is useful for generalization (Raf@sal., 2005) time through the current time A test is a sequence of
and helps to learn more accurate models than #te st possible future actions and observations, a . . a0y
representation of a POMDP (Wokeal., 2005). Theprediction for a test = a,0, . . . a0, from a historyh
There are two main categories of predictive state=a'o'...a" o' is defined as the probability of seeing the
models: Temporal Difference Networks (TDNets) observations of t when the actions of t are takemf
(Sutton and Tanner, 2004; Tanner and Sutton, 2005ahistoryh. Formally, this prediction is:
and linear predictive models, which include lin€8Rs

There is a good deal of flexibility regarding what
comprises a TDNet. The essential components arthgl)
semantics (i.e., definition) of each element in $tate
vector and (2) the state update mechanism.

(Litman et al., 2001) and transformed PSRs det 7K - L4 ot ot om
(Rosencrantzet al., 2004). The primary difference p(t‘h)iiﬂl Pr(d =0 [a"0"-a" 0" a

between the categories is their different stateatgd =a,0"=0,d =5_,)

mechanisms. Linear predictive models use a specific

functional form that involves linear functions diet The state of a TDNet typically consists of some

state vector. In contrast, TDNets do not specify afeatures of a small, finite portion of history (e.g@n
particular functional form for updating state (see indicator variable that is 1 if the most recentarbation
Section 1.2 for details). was “blue” and 0 otherwise) and predictions abaumes
This study focuses on improving both the TDNets’ tests (Tanner and Sutton, 2005b). Once the paaticul
design and the algorithms to learn TDNet modelsnfro history features and tests are selected, the state
training data. These improvements are motivated by the representation of the TDNet is completely defined.
goal of easily incorporating knowledge of speddicts into .
the TDNet. As an example, consider the fact “If thest 1.2.2. State Update Mechanism
recent observation was blue, then the next obsenvaill The state update mechanism defines how the TDNet
be blue if the agent takes the 'do nothing’ actidinis fact ~ takes the state at time t and the most recent
corresponds to a prediction that something willjesp(in ~ action/observation (at tim¢ + 1) and uses them to
certain situations) with probability 1.0. compute the state at time + 1. TDNets are not
To incorporate this fact into a linear predictivedal, ~ constrained to use any specific form for updatitages

we would need to alter its parameters so that tadein ~ HOWever, in practice, the following form is commgnl
will make the prediction of 1.0 in the appropriate used (Sutton and Tanner, 2004; Tanner and Sutton,

L . , | 2005b; Suttoret al., 2005; Tanner and Sutton, 2005a).
situations. However, altering t'he mod.ells para S Let s be the state vector at timhend let§%7? be the part
up changing allof the model's predictions, due to the

icul q hani fali - of state at timg + 1 that consists of predictions about
particular state update mechanism of a linear pigel tests. Let..; be a vector of binary indicator variables for

model. In contrast, Section 2 describes how oneseafly the action and observation at time+ 1. That vector
incorporate specific facts into a TDNet model. st cjydes a variable for every possible action, Whigcset
study, those facts are themselves automaticallindeg o 1 if the action was taken at tirhe 1 and O otherwise.
from the training data by a separate algorithm, butThis 1-of-K encoding is also used for each dimemsib
incorporating someone’s prior knowledge about thethe observation vector at tinte+ 1. In this way, the
environment would work in the same way. action and observation at tinher 1 are encoded iR.4,

////4 Science Publications 2212 JCS

Britton Wolfe and James Harpe / Journal of Computézrfe 10 (11): 2211.2219, 2014

which is concatenated withto yield the vectog . Then
stz =o(ws;), whereW is a matrix of weights and is
the logistic function. The remainder of the stdtéirae t
+ 1- the features of history-are set based upoméve
history. Notice that this state update is like airak
network with logistic activation function and nodden
layers. The inputs to the network are the elemehts
and the outputs aeg™ .

1.2.3. Learning a TDNet

Given some definition for the state of a TDNet and
functional form for updating state, “learning th@adel”
involves estimating the parameters of the stateatgpd
mechanism from training data. The training datastsia
of one or more sequences of experiesicea’o’ ... from

the TDNet parameters to some valugs On each
iteration ;, use the current parametefisto compute a
training example from every time step of the tnagni
data. Feed those training examples into back piatpmay
(or other regression algorithm) to get new paramsete
8.,. Repeat until the parameters converge.

1.2.4. Computing the TD Targets

The training examples for the regression algoritiim
determined from the training data as follows. Eag is
simply the value for the state at tirhgiven the current
TDNet parameters], concatenated with the indicators for
the action and observation at titné.. The targets?” are
computed using the TRY algorithm (Algorithm 1)for

the system (generated from the agent’s exploration)learning TDNets with = 1, which is consistently the best
Since the state update mechanism is supposed toalue ofA (Tanner and Sutton, 2005a).

compute s?* froms", one way to learn the TDNet
parameters is to solve a regression problem. That i
learn a function to mag’ tos”® . In order to learn this
function, the TDNet learning algorithm uses estadat
pairs(3”.3/), one for each time step of the training

In expectation, the target for the prediction is@do
the true prediction when the estimates from the €DN
are accurate. Of course, the TDNet's estimates vail
start out being accurate, but the idea behindeheing
algorithm is that the cases where the targets &reandd
0.0 (which do not rely upon TDNet estimates) should

haelp the learning algorithm bootstrap. That is, stho

data. These training examples are passed into thd

appropriate learning algorithm for whatever functib
form is used to update state (e.g., back propagatio
train a feed forward neural network). That learning
algorithm yields estimates of the parameters ferstate
update. These are the parameters of the TDNet model

Algorithm 1 Computing the TD Target for a Test

t=a0; . . .2,0,in(§".35") using the training data

t+2 t+2
ao ...

fori =1tondo
if & 6=a"*" then
/* Combine the test’s success through st&p
with the TDNet's estimate that the rest of the tes
will succeed. */
return TDNet's estimate thajo,
succeed from time+ 1 +i
else ifoi 6=ot+1+ then
return 0.0 /* The test failed */
end if
end for
return 1.0 /* The test succeeded */

... 3,0, Will

When learning a TDNet, the training

exampleis*,ég’fd)are themselves estimated using some computing s

current parameters for the TDNet (details giverowl
Thus, training a TDNet is an iterative processtidfize

////4 Science Publications

2213

targets that come solely from the data should plevi
enough information to learn reasonable estimatethi®
predictions, which can then be used to iteratively
improve the estimates. However, part of the moitivat
for our work is that these 1.0 and 0.0 targetseertd be
insufficient in practice for learning a TDNet with
reasonable estimates. This motivates our idea ioigus
better targets for the learning algorithm when hkies
of certain predictions are known, either from aeoth
learning algorithm or from someone’s knowledge haf t
environment (Section 2).

1.3. Simple Recurrent TD Networks

Simple recurrent TD networks (SR-TDNs) (Makino,
2009) are an adaptation of standard TDNets. Our
improved TD network (Section 2) incorporates sorhe o
the concepts from SR-TDNs, which we describe is thi
section. SR-TDNs move beyond the standard TDNet
structure (described in Section 1.2) in three w&ystly,
the state update mechanism is a neural network avith
hidden layer, which is not present in previous TBNe

Secondly, the neural network is explicitlgcurrent.
Even in the original TDNet, the state update mersman
was effectivelyrecurrent. That is, some of the inputs for

7ed are the outputsZ*® from the previous

time stept + 1. However, the standard TDNet training
algorithm uses simple back propagation applied feeed

JCS

Britton Wolfe and James Harpe / Journal of Computézrfe 10 (11): 2211.2219, 2014

forward neural network. This treats the input/ottpu applicable (e.g., history satisfies some criterigpr

values for one time step independently from therotime
steps, not accounting for the fact that errar/J§f could be
due to error iB/7?? (the immediate inputs) 08 (some
predictions further back in time). In contrast, BBNs are
trained using Back Propagation Through TifBPTT),
which back propagates error in predictions acrogkipte
time steps of state updates.

Thirdly, the state of an SR-TDN is not definedamts
of actions and observations, so it is not a “pridicstate”
model. That is, state contains neither predictiahsut
future tests nor features of history. Instead, SReTDN'’s

state consists of the activation levels of the akeur

network’s hidden layer at the most recent time .stée
authors call this a proto-predictive representatmin
state, because the state is used to compute poedictia
the neural network’s connections from the hiddereta

example, the neural network part of the TDNet might
estimate one of its state valup&lh) as 0.9, but the
external fact says the prediction should be 1.0thht
case, the external value overrides the 0.9, sosthe
value would be changed to 1.0.

Thus, our model’s state update mechanism proceeds
in two parts. The first part uses a neural netwtrk
estimate the values for the next state. The seqant
involves checking the list of external facts fotesithat
apply to the current context. For each rule thatliap,
the prediction estimate from the neural network is
replaced or “overridden” with the value from théeru

We assume that the external facts are encoded in
terms of predictions and history features (i.etioas and
observations) because that is a common language for
describing the environment. This is important for
incorporating the external information into thetstaf

to the output layer. The output layer is defined asthe model. For a model where state is not a set of

predictions for a set of tests, so the SR-TDN ubes
TDNet targets to train the network.

When compared with standard TDNets, the SR-TDNs

are able to learn more accurate models of sevenples

environments when using a small set of tests in the

output layer (Makino, 2009). This remains the cagen
when a hidden layer is added to the TDNet, indicati
that simply adding a hidden layer does not sigaiftty
enhance the TDNets’ accuracy.

2. IMPROVING TDNETS WITH
EXTERNAL KNOWLEDGE

Our work focuses upon enhancing the structure an
learning algorithm for TDNets in order to improve
their accuracy. As we have noticed in our work, the

current learning algorithms for TDNets are insuéfit
for general-purpose application. Silver (2012) atebe
this fact in their work with TDNets.

predictions about future events, such as a POMDP or
SR-TDN, the external facts cannot be directly
incorporated into the model’s state. This is beeathe
meaning of the unobserved states of a POMDP or the
state in an SR-TDN (i.e., the hidden layer) is dateed

by the learning algorithm. Therefore, the meanirdg o
their states may vary greatly depending upon thiaitrg
data. Thus, prior knowledge about an environment
cannot be encoded in terms of a POMDP or SR-TDN
state. However, when state is defined in termsctbas

and observations, other sources of informationsgmak

the same “language” as the state. The ability tectly
incorporate small pieces of information directljoistate

ajs one advantage of predictive state models. Ouk g

the first to take advantage of this feature by rnmgyrg
external knowledge with a predictive state model.

2.1. The Model's Neural Network

The neural network in our model adopts two of the

Our improvements are based upon the idea that ihere three changes to the basic TDNet that were intreduc

some external (to the TDNet learning algorithm)reeof

information about the environment. In our experitegn

by SRTDNSs: Using BPTT to train the network and gsin
a neural network with a hidden layer. However, tthied

we use another learning algorithm as that source ofhange SR-TDNs made-a recurrent connection from the

information, but it could just as well be a setrales that
someone writes down (or a combination of the two).

hid- den layer to the input layer at the next tigtep-is
replaced in our model by a recurrent connectiomftbe

We assume that the external information is in the Output layer to the input layer at the next time step.

form of predictions whose values are known in patér

contexts. For instance, one fact about the envisstim

might be thap(tjh) = 1.0 for some particular testvhen

Because that output layer consists of predictidmsut
tests, this change ensures that our model's stte i
predictive (in contrast with SR-TDNs). Thus, ourdab

observation “red” was seen more recently than “Blue combines the advantage of using a recurrent network

The external information is used to “override” thtate

(Makino, 2009) with the ability of predictive state

values of the TDNet whenever an external fact is easily accept external facts.

////4 Science Publications

2214

JCS

Britton Wolfe and James Harpe / Journal of Computézrfe 10 (11): 2211.2219, 2014

To reiterate, our model is most similar to an SRNTD
The primary differences are (1) the change in doenrent
connection’s source layer (from hidden layer topatit
layer) and (2) the extra step in the state updeteegs

no future time steps after the override. In otherds, any
error at those future time steps is not attribuiedhe
overridden neuron. This change to BPTT providesemor
information to the learning algorithm about whickural

where external facts are checked and state valies anetwork parameters to change in order to reducertoe.

overridden if applicable. An additional differenoetween
our model and any prior TDNet (including SR-TDNS) i
that we use softmax groups for the output layeeat of

a logistic function. The softmax groups ensure that
predictions for all the tests with the same acieguence
sum to 1.0. For example, when the TDNet is bdib, tiest
;0,2,0, ... is in the state, then all tests with action
sequenceya, . . . will also be included in the state. Those
tests form a softmax group. While the softmax gsoup
ensure that subsets of tests’ predictions sum Qp that
may no longer be true after a value is overriddéws,
when evaluating the model (i.e., not when learrtimg
parameters), after all the overrides are perforneadh
softmax group is normalized so its predictions $oh.0.

2.2. Learning the Model

We used Back Propagation Through Time (BPTT)
with a quadratic regularization term to learn the
parameters of the neural network. The trainingetsdor
the predictions were computed using the AD{ 1)
algorithm described in Section 1.2. Whenever aetarg

3. RESULTS

We tested our new model and learning algorithm in a
simulated environment where the agent has an “that”
can see one single pixel. The agent can move the ey
around an infinite canvas that contains severagesharhe
canvas is divided into grid squares, each of whattains
one shape. Each grid square is several pixels aviddall,
so the agent needs several observations from watlyirid
square in order to determine what shape is themeh E
shape can be red or blue, a square or a trianigesiapes
are on a white background, so each observatioeds r
blue, or white. The agent has has nine actiondadlaito
it: It can move the eye one pixel in each of therfo
cardinal directions (north, east, south, or wasye to
the “primary point” (i.e., the top center point) tiie
current shape, or leap to the primary point of djacent
shape in any of the four cardinal directions.

Because of the unbounded canvas of shapes, learning
everything about the environment is impossible, but

uses an estimate from the state of the TDNet, that€re are some things that should be easy to pick-or

estimate’s value includes any overriding that isxalo
based upon the external facts (because the ovegridi
part of the model's state update process). Thus, th
external facts provide higher quality training et for
the network learning algorithm.

The external facts also help with another aspect o

learning the neural network: Assigning blame faoes.
In general BPTT, the error in the output layerimett is

back propagated to all previous time steps. This is

because error at tintecould have been due to error in
any of the prior layers in the unrolled network.véwer,
our algorithm assumes that the external facts egerate
predictions. In particular, when a value at an atutp

example, if the agent sees red, goes east, thentmpmk
west, it should see red again. As our results stithw,
this type of domain-some simple aspects embedded in
large environment-presents difficulties for other
predictive state models, but our algorithm is abléearn

the simple aspects of the domain without getting

befuddled by the large environment.

3.1. Learning External Facts

The external information for our model was the
result of applying a second learning algorithm he t
training data. The algorithm generates a list ¢ésiof
the following form: If the most rece2 time steps

neuron at time t has been overridden, we assumte thedf history wereh’, then the prediction for a test t is

passing that value along as an input at tifledoes not
contribute to errors at time+ 1 or thereafter. However,
prior to overriding, the network made some estinfate
the overridden value at time That estimate has some
error, which is back propagated from time t backisar
Specifically, the partial derivative of the errorithv
respect to the input (i.e., weighted sum) of thergdden

neuron is set to the difference between the current

network’s prediction and the target value (giventbg
external fact). This is the same derivative akéir¢ were

////4 Science Publications

2215

1.0 (or 0.0). That is, this algorithm looks for rigs
that will deterministically happen (or not) baseubn

the most recent k time steps. For our experimemés,
allowedh’ to begin with either an action (e.dy, = ao)

or an observation (e.gh’ = oao). In order to find
these rules, we used two simple concepts from
association rule mining.

The first concept is that of minimum support. Lt t
sup- port for a ruleg(t| * h") = x] for x € {0.0, 1.0} be

the number of occurrences in the training data w/iee

JCS

Britton Wolfe and James Harpe / Journal of Computézrfe 10 (11): 2211.2219, 2014

actions of the test were executed following some All of our TDNet variations selected the elements o
history with suffixh’. Suppose that the test t succeeds (or the state vector in the same way. For the histeajufres,
fails) in every one of those instances. Then weadde we used binary indicator variables (i.e., 1l-of-K
to the list if the support for that rule is at ledke encoding) for (1) the most recent observation, t{@)
minimum support. For our experiments, we set themost recent action and (3) the most recent two time
minimum support at 10. Evaluating different valdes steps of history. The tests represented in thee stat
the minimum support threshold is left for futurenkio included all of the length-one tests. With thosethe
The second concept from association rule miningstate, the model can make any prediction (via a
lets us comb through the set of candidate rulebowmit ~ combination of making one-step predictions andmgll
enumeratingall of them. In particular, if some senge forward its state). In addition, tests of lengtlotwere
h’ never occurred more than c times in the training randomly selected to add to the state until thaltot
data, then no rules abolitwill have minimum support number reached a user-defined cutoff value. Aftarthe
c. Furthermore, any rule about any extension ofi.k’ (randomly selected test is added to the state, the
oh’ or aoh’) will also fail to have minimum support. algorithm adds additional tests as needed to ertbate
Thus, the set of candidatés of length k are built by two things remain true: (1) If a test is in thetstall of
taking the sequences of lengthl with minimum jts suffixes are also in the state. This guarantées
support and extending them with each observatiah an existence of the TD target for each test. (2) st is in
(optionally) action. For each of those candiddtesve the state, all other tests with the same actiomiesece
check every test up to length 2 to see if the [p(§ * are also in the state. Thus, each test belongsgtowp
h’) = x] has minimum support. of tests whose predictions sum to 1.0.
3.2. Experimental Details . The state update mechan-ism for each TpNgt va_lriation
includes a neural network with softmax activationthe
We compared our learning algorithm against algmsth output layer. Each group of tests with the samémct
for learning several other types of models: LinB&Rs, sequence formed one of several softmax groupsen th
transformed PSRs, POMDPs, second-order Markov modeloutput layer. The network had one hidden layer waith
and a few variations of TDNets (with different stapdate sigmoid activation function. The differences amahg
mechanisms). Each of the learning algorithms weenghe TDNet variations are the type of recurrence andradiag
same type of training data: One sequence of experid ysed in the network. We examined an SR-TDN; the new
the environment. The action-selection policy terids TDNet variation we developed in Section 2; and a
explore the current shape for several steps bifaping to variation that uses the same neural network streicis
another shapeThe exact policy is as follows: 0.04 our new model but does not incorporate external
Probability for each action that leaps to an adjasBape or jnformation. The last variation helps to distinduithe
to the primary point of the current shape. If thestimecent effects of changing the neural network structucenfithe
action was a single-pixel action, then there wa6 0. effects of incorporating external information.

probability of repeating that action, with 0.18 lpability for For each TDNet variation, we set the number oftest
the other three single-pixel actions. Otherwisehesingle- ysed in the state vector, the size of the hiddger)ahe
pixel action had 0.20 probability. regularization coefficient and the learning ratedoyng a

For the linear PSRs and T'PSRS' the respectiveii@arn narameter sweep. Using the best parameter values, w
algorithms (Wolfeet al., 2005; Rosencran& al.,, 2004) (54 another set of experiments. Those results are

each have a fre_e parameter that helps determine thﬁresented in Section 4.
number of tests in the state. The parameter valag w
chosen automatically using a validation set. Teal0% 3.3. Error Measures
of the training data was held out (i.e., hot useddarning .
the model) and the parameter value that led tdnitjieest -F_or each type of model, we varied .the amount of
likelihood on the validation set was used. For PGM[the (raining data given to the learning algorithm. Feach
free parameter is the number of hidden states én th tyPe of model and amount of training data, we leerbS
POMDP, which was selected to be 30 by a manualmodels (each one from a different set of trainiagai
parameter sweep. The second-order Markov modeicgsed averaging the resulting error.

the next observation based upon the most recertinies For each model, we evaluated the error for several
steps of history (i.e., an observation, actiongolztion). different categories of predictions, each of which

////4 Science Publications 2216 JCS

Britton Wolfe and James Harpe / Journal of Computézrfe 10 (11): 2211.2219, 2014

corresponds to some fact about the domain that wewill be the color of the shap¥. (10) If you saw some

would like a learning algorithm to discover. Here ¢he
facts that correspond to each prediction categ(ty:
Jumping to the primary point of the current shapk w
not result in white (i.e., the probability of segiwhite
after jumping to the primary point of the currehape is
0.0). (2) Jumping to the primary point and goingitto
(one pixel) will not result in white. (3) Jumping the
primary point and going north will result in whité4)
Leaping to any shape will not result in white. (5)
Leaping to any shape then going south will not ltesu
white. (6) Leaping to any shape then going north wi
result in white. (7) Making a single-pixel move hrnlot
result in a different (non-white) color than thatlaolor
seen. (8) Jumping to the primary point will redalthe
most recent (non-white) color that was seen. (9jol
just leapt some direction from a shape X to anoshepe
Y, then if you leap in the opposite direction, tesult

observationZ and then took a single-pixel step in some
direction, then if you take a single-pixel step time
opposite direction, the result will i& (11) Every blue
shape has a red shape to the north.

This list covers predictions of several differentris,
including predictions that are always the same
(regardless of history), predictions that dependnup
finite window of history and predictions that deden
upon a potentially unbounded amount of history.(e.g
the last color seen). The list also measures predgfor
one time step in future and predictions for furthrethe
future. Roughly speaking, the categories of préufist
get more challenging as one moves down the list.

At each time step of the testing sequence, the Isiode
predictions were evaluated and compared against the
correct predictions. The average absolute valubeogrror
(i.e., L1 error) is shown iRig. 1 for the different models.

i Category 1 Category 2 Category 3 Category 4
E 08 0.8
o
5 06 0.6
i
TE 0.4“'
o -, e, >
° 2 .
g Live
3 0
=
£
3
E
Y
=2
=
"E — Override
= No override
2 g SR-TDN
S TPSR
= LinPSR
§ = = Ind Markowv
5 i +11+: POMDP
< 10 10+ 10¢ 10° 104 106
Training data (time steps) Training data (time steps) Training data (time steps)
Fig. 1. Prediction error vs. amount of training data foresal models: The new TDNet model (“Override”), themv TDNet model

without using override information (“No Override”3R-TDNs, TPSRs, Linear PSRs, 2nd-order Markov modets
POMDPs. See Section 3.3 for details about thereéiffieerror categories

,///4 Science Publications

2217

JCS

Britton Wolfe and James Harpe / Journal of Computézrfe 10 (11): 2211.2219, 2014

4. DISCUSSION using a hidden layer in the neural network and gisin
backpropagation through time to learn the network
The new TDNet model outperforms all of the other parameters. However, as our experiments demonstrate
predictive state modelshen looking across the range of (Fig. 1), the key to our new model's accuracy is the
training data and the different categories. Thirgsé incorporation of external information.
results support the idea of incorporating extefaets into The external information is used to accelerate the
the TDNet model. In particular, comparing the “Qidg” learning of the neural network part of the TDNetdab
and “No Override” TDNet variations-where the only by providing more accurate training data and guwjdin
differenceis including or not including externalct® the backpropagation of errors across time. Furtbegm
respectively-shows that incorporating those exteld@s the model integrates the external information it
dramatically improves the model's accuracy. state update mechanism, overriding predictionsuesl

Because our primary motivation for the new TDNet in the state in order to improve their accuracy.r Ou

model is to make accurate predictions about some .
P ; experiments demonstrate that even when the external
aspects of a complex system, our experiments measur

predictions about simple, mostly Markovian facts. source of information only contains simple, history

Thus, we expected that the Markov-based models-(2ndPased rules about deterministic events, that inéion
order Markov Models and POMDPs) would perform €&n greatly improve the accuracy of the model. One
very well. Indeed,Fig. 1 illustrates that, for most direction for future research is to investigate the
categories, the Markov-based models leave littlenTo incorporation of more complicated forms of external
for improvement in the accuracy as the amount ofinformation into a TDNet.

training data gets large. Thus, the primary questiat Our new TDNet was motivated by the goal of
these experiments aim to answer is “Did our chages accurately learning simple facts about a complex
the standard TDNet model result in accuracy that issystem. Thus, we evaluated the models’ predictfons
comparable to the Markov-based models?” Our resultssimple, Markovian facts about an infinite system.
indicate that the answer is “yes.” Specifically, 48 Markovian models are tailor-made for these types of
amount of training data grows, the new TDNet maslel predictions and approach perfect accuracy.
comparable to the accuracy of the best models Ifor a Nonetheless, our new TDNets' predictions are

the categories except one (categc_)ry 8). . comparable to the Markovian models and are more
Furthermore, for some prediction categories, the I .
accurate than other predictive state models (linear

improved TDNet model performs the beser the range
of training data amounts (e.g., categories 3 and 6)PSRS. TPSRs and SR-TDNs). The new TDNets even

Overall, these experiments demonstrate that@chieve near-zero error for some types of predistio
incorporating external facts into a TDNetmodel can demonstrating an ability to make highly accurate
significantly improve its accuracy, enabling it to Predictions about simple aspects of complex systems
accurately learn simple facts about an infinitemptex

system. This is true even when the external faegtvery 6. REFERENCES

simple. Using more sophisticated external factsars

interesting direction for future research, whichewpect ~ Dahmani, Y. and A. Benyettou, 2005. Seek of annopiti

will further improve the models’ accuracy. way by g-learning. J. Comput. Sci., 1: 28-30. DOI:
10.3844/ jcssp.2005.28.30
5. CONCLUSION Littman, M.L., R. Sutton and S. Singh, 2001. Prédéc

) representations of state. Proceedings of the
(;Ne ha\fe mt;odufcedla new typehof TDNgt Imedel Advances in Neural Information Processing
and an algorithm for learning such a model from gy qemg (1PS’ 01), MIT Press, pp: 1555-1561.
training data. The new model combines ideas froen th : S :
- . , Makino, T., 2009. Proto-predictive representatioh o
original TDNets and SR-TDNs with the new idea of tat ith simpl tt L diff
using an external source of information to help states with simple recurrent temporal-difierence
calculate the predictions that form the state of a networks. Proceedings of the 26th International

predictive state model. From the original TDNet® w Conference on Machine Learningun. 14-18,
utilize the idea of predictive state that is updata a Montreal, QC, Canada, pp: 697-704. DOI:
neural network. From SR-TDNSs, we utilize the ideés 10.1145/1553374.1553464

////4 Science Publications 2218 JCS

Britton Wolfe and James Harpe / Journal of Computézrfe 10 (11): 2211.2219, 2014

Rafols, E.J., M.B. Ring, R. Sutton and B. Tann®0% Sutton, R.S. and A.G. Barto, 1998. Reinforcement

Using predictive representations to improve Learning: An Introduction. 1st Edn., MIT Press,
generalization in reinforcement learning. Cambridge, MasdSBN-10: 0262193981, pp: 322.
Proceedings of the 19th International Joint Tanner, B. and R. Sutton, 2005a. TD (lambda)
Conference on Artificial Intelligence, (CAI' 05), networks: Temporal-difference networks with
Professional Book Center, pp: 835-840. eligibility traces. Proceedings of the 22nd
Rosencrantz, M., G. Gordon and S. Thrun, 2004.rliegr International Conference on Machine Learning,
low dimensional predictive representations. ACM, pp: 889-896. DOI:

Proceedings of the 21st International Conference on 10.1145/1102351.1102463.

Machine Learning, (CML’ 04), ACM, pp: 88-95. Tanner, B. and R. Sutton, 2005b. Temporal-diffeeenc
~ DOI: 10.1145/1015330.1015441 _ networks with history. Proceedings of the 19th
Silver, D., 2012. Gradient temporal difference International Joint Conference on Artificial
~ networks. J. Machine Learn. Res., 1: 1-12. Intelligence, Professional Book Center, pp: 865:870
Singh, S., James, M.R. and M. Rudary, 2004. Piedict Wolfe, B., M.R. James and S. Singh, 2005. Learning
state r_epresentations: A new 'Fheory for modeling predictive state representations in dynamical
dynamical systems. Proceedings of the 20th gysiems without reset. Proceedings of the 22nd
Conference on Uncertainty in Artificial Intelligesc International Conference on Machine Learning,
(UAI' 04), AUAI Press,Virginia, pp: 512-519. ACM, pp: 085-992. DOI:
Sutton, R. and B. Tanner, 2004. Temporal-difference 10.1145/1102351.1102475
networks. Proceedings of the Advances in Neural
Information Processing Systems, (IPS’ 4), MIT
Press, pp: 1377-384.
Sutton, R., E.J. Rafols and A. Koop, 2005. Temporal
abstraction in temporal-difference networks.
Proceedings of the Advances in Neural
Information Processing Systems, (NIPS’ 05), MIT
Press, pp: 1313-1320.

////4 Science Publications 2219 JCS

