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ABSTRACT 

Developing general purpose algorithms for learning an accurate model of dynamical systems from example 
traces of the system is still a challenging research problem. Predictive State Representation (PSR) models 
represent the state of a dynamical system as a set of predictions about future events. Our work focuses on 
improving Temporal Difference Networks (TD Nets), a general class of predictive state models. We adapt 
the internal structure of the TD Net and we present an improved algorithm for learning a TD Net model 
from experience in the environment. The new algorithm accepts a set of known facts about the environment 
and uses those facts to accelerate the learning. These facts can come from another learning algorithm (as in 
this study) or from a designer’s prior knowledge about the environment. Experiments demonstrate that 
using the new structure and learning algorithm improves the accuracy of the TD Net models. When tested in 
an in finite environment, our new algorithm outperforms all of the standard PSR learning algorithms. 
 
Keywords: Predictive State, Temporal Difference, Modeling, Dynamical Systems 

1. INTRODUCTION 

This study addresses the problem of learning a 
model of a discrete-time dynamical system from a 
sequence of experience in the system. Such systems 
have long been of interest to reinforcement learning 
researchers (Sutton and Tanner, 2004; Sutton and 
Barto 1998; Dahmani and Benyettou, 2005) but still 
pose great challenges for learning and modeling. 

Our work applies generally to a broad class of 
dynamical systems. In such systems, at every time step t = 
1, 2, 3,..., the agent takes some action at and receives some 
observation ot from the system. We restrict our attention to 
systems with a discrete set of possible actions and a discrete 
set of possible observations. 

1.1. Models and State Representations 

A model of a system predicts the likelihood of 
future observations given a sequence of actions that the 

agent might take in the future. These predictions are 
also conditioned upon the agent’s experience in the 
systema1o1a2o2 . . . aτ oτ through the current time τ. This 
experience is called history. Although predictions 
depend upon history, a model cannot simply store 
history, because it will grow without bound as the agent 
continues to act in the world. Instead, a model 
maintains a summary of the current history called state. 
History changes after each time step, so the model’s 
state also needs to change after each time step. The 
structure and parameters of a model determine the state 
update mechanism of the model: How the model 
computes the state at time t + 1 from the state at time t 
and the most recent action at+1 and observation ot+1. 

For a given system, there are many possible ways to 
summarize history, which lead to different state 
representations. In general, state is simply a vector of 
numbers, but the meaning or semantics of those numbers 
differs among state representations. Models such as 
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Hidden Markov Models (HMMs) or Partially 
Observable Markov Decision Processes (POMDPs) 
represent state as a distribution over unobserved (latent) 
system states. This distribution is called the belief state. 
In contrast, Predictive State Representations (PSRs) 
represent state as a set of predictions about future 
events. For example, one element in a PSR’s state 
might be the probability of seeing a particular 
observation if the agent takes a particular action. 

PSRs are capable of representing partially 
observable, stochastic dynamical systems, including 
any system that can be modeled by a finite POMDP 
(Singh et al., 2004). There is evidence that predictive 
state is useful for generalization (Rafols et al., 2005) 
and helps to learn more accurate models than the state 
representation of a POMDP (Wolfe et al., 2005). 

There are two main categories of predictive state 
models: Temporal Difference Networks (TDNets) 
(Sutton and Tanner, 2004; Tanner and Sutton, 2005a) 
and linear predictive models, which include linear PSRs 
(Littman et al., 2001) and transformed PSRs 
(Rosencrantz et al., 2004). The primary difference 
between the categories is their different state update 
mechanisms. Linear predictive models use a specific 
functional form that involves linear functions of the 
state vector. In contrast, TDNets do not specify a 
particular functional form for updating state (see 
Section 1.2 for details). 

This study focuses on improving both the TDNets’ 
design and the algorithms to learn TDNet models from 
training data. These improvements are motivated by the 
goal of easily incorporating knowledge of specific facts into 
the TDNet. As an example, consider the fact “If the most 
recent observation was blue, then the next observation will 
be blue if the agent takes the ’do nothing’ action.” This fact 
corresponds to a prediction that something will happen (in 
certain situations) with probability 1.0. 

To incorporate this fact into a linear predictive model, 
we would need to alter its parameters so that the model 
will make the prediction of 1.0 in the appropriate 
situations. However, altering the model’s parameters ends 
up changing all of the model’s predictions, due to the 
particular state update mechanism of a linear predictive 
model. In contrast, Section 2 describes how one can easily 
incorporate specific facts into a TDNet model. In this 
study, those facts are themselves automatically learned 
from the training data by a separate algorithm, but 
incorporating someone’s prior knowledge about the 
environment would work in the same way. 

1.2. TDNets 

There is a good deal of flexibility regarding what 
comprises a TDNet. The essential components are (1) the 
semantics (i.e., definition) of each element in the state 
vector and (2) the state update mechanism.  

1.2.1. Defining State 

Each element in the state vector of a TDNet is 
defined in terms of actions and observations, either past 
or future (or both). In order to make this more precise, 
we use some terminology from the predictive state 
literature. A history is a possible sequence of actions and 
observations a1o1a2o2 . . . aτ oτ from the beginning of 
time through the current time τ. A test is a sequence of 
possible future actions and observations a1o1 . . . akok. 
The prediction for a test t = a1o1 . . . akok from a history h 
= a1o1 . . . aτ oτ is defined as the probability of seeing the 
observations of t when the actions of t are taken from 
history h. Formally, this prediction is: 
 

( ) 1 1 1

1

1
1 1

( , , ,

, , )

kdef i
i T

i

i
i

p t h Pr o o a o a o a

a o o a a

τ
τ τ τ

τ
τ

τ

+
+

−
= +

+
−

=

= = =

∏ L

L

 

 
The state of a TDNet typically consists of some 

features of a small, finite portion of history (e.g., an 
indicator variable that is 1 if the most recent observation 
was “blue” and 0 otherwise) and predictions about some 
tests (Tanner and Sutton, 2005b). Once the particular 
history features and tests are selected, the state 
representation of the TDNet is completely defined. 

1.2.2. State Update Mechanism 

The state update mechanism defines how the TDNet 
takes the state at time t and the most recent 
action/observation (at time t + 1) and uses them to 
compute the state at time t + 1. TDNets are not 
constrained to use any specific form for updating state. 
However, in practice, the following form is commonly 
used (Sutton and Tanner, 2004; Tanner and Sutton, 
2005b; Sutton et al., 2005; Tanner and Sutton, 2005a). 
Let st be the state vector at time t and let 1tS +

pred be the part 
of state at time t + 1 that consists of predictions about 
tests. Let xt+1 be a vector of binary indicator variables for 
the action and observation at time t + 1. That vector 
includes a variable for every possible action, which is set 
to 1 if the action was taken at time t + 1 and 0 otherwise. 
This 1-of-K encoding is also used for each dimension of 
the observation vector at time t + 1. In this way, the 
action and observation at time t + 1 are encoded in xt+1, 



Britton Wolfe and James Harpe / Journal of Computer Science 10 (11): 2211.2219, 2014 

 
2213 Science Publications

 
JCS 

which is concatenated with st to yield the vectorts+ . Then 
1ts +
Pred = ( )tWs  σ + , where W is a matrix of weights and σ is 

the logistic function. The remainder of the state at time t 
+ 1- the features of history-are set based upon the new 
history. Notice that this state update is like a neural 
network with logistic activation function and no hidden 
layers. The inputs to the network are the elements of ts+  
and the outputs arePr

1
ed

ts + . 

1.2.3. Learning a TDNet 

Given some definition for the state of a TDNet and a 
functional form for updating state, “learning the model” 
involves estimating the parameters of the state update 
mechanism from training data. The training data consists 
of one or more sequences of experience a1o1a2o2 ... from 
the system (generated from the agent’s exploration). 
Since the state update mechanism is supposed to 
compute 1

pred
ts +  from ts+ , one way to learn the TDNet 

parameters is to solve a regression problem. That is, 
learn a function to map ts+ to 1

pred
ts + . In order to learn this 

function, the TDNet learning algorithm uses estimated 
pairs( ), 1ˆ ˆt

pred
ts s+
+ , one for each time step of the training 

data. These training examples are passed into the 
appropriate learning algorithm for whatever functional 
form is used to update state (e.g., back propagation to 
train a feed forward neural network). That learning 
algorithm yields estimates of the parameters for the state 
update. These are the parameters of the TDNet model. 

Algorithm 1 Computing the TD Target for a Test 

t = a1o1 . . . anon in ( ), 1ˆ ˆt
pred
ts s+
+ using the training data 

 at+2ot+2 . . . 
 for i = 1 to n do 
 if ai 6= at+1+i then 
 /* Combine the test’s success through step i-1 
 with the TDNet’s estimate that the rest of the test 
 will succeed. */ 
 return TDNet’s estimate that aioi . . . anon will 
 succeed from time t + 1 + i 
 else if oi 6= ot+1+i then 
 return 0.0 /* The test failed */ 
 end if 
end for 
return 1.0 /* The test succeeded */ 
 

When learning a TDNet, the training 
examples( )1,ˆ ˆ pred

t ts s+
+ are themselves estimated using some 

current parameters for the TDNet (details given below). 
Thus, training a TDNet is an iterative process: Initialize 

the TDNet parameters to some values θ0. On each 
iteration i, use the current parameters θi to compute a 
training example from every time step of the training 
data. Feed those training examples into back propagation 
(or other regression algorithm) to get new parameters 
θi+1. Repeat until the parameters converge. 

1.2.4. Computing the TD Targets 

The training examples for the regression algorithm are 
determined from the training data as follows. Each 1ˆ ts +

Pred is 

simply the value for the state at time t given the current 
TDNet parameters θi, concatenated with the indicators for 
the action and observation at time t+1. The targets 1ˆ ts +

Pred are 

computed using the TD(λ) algorithm (Algorithm 1)for 
learning TDNets with λ = 1, which is consistently the best 
value of λ (Tanner and Sutton, 2005a). 

In expectation, the target for the prediction is equal to 
the true prediction when the estimates from the TDNet 
are accurate. Of course, the TDNet’s estimates will not 
start out being accurate, but the idea behind the learning 
algorithm is that the cases where the targets are 1.0 and 
0.0 (which do not rely upon TDNet estimates) should 
help the learning algorithm bootstrap. That is, those 
targets that come solely from the data should provide 
enough information to learn reasonable estimates for the 
predictions, which can then be used to iteratively 
improve the estimates. However, part of the motivation 
for our work is that these 1.0 and 0.0 targets tended to be 
insufficient in practice for learning a TDNet with 
reasonable estimates. This motivates our idea of using 
better targets for the learning algorithm when the values 
of certain predictions are known, either from another 
learning algorithm or from someone’s knowledge of the 
environment (Section 2). 

1.3. Simple Recurrent TD Networks 

Simple recurrent TD networks (SR-TDNs) (Makino, 
2009) are an adaptation of standard TDNets. Our 
improved TD network (Section 2) incorporates some of 
the concepts from SR-TDNs, which we describe in this 
section. SR-TDNs move beyond the standard TDNet 
structure (described in Section 1.2) in three ways. Firstly, 
the state update mechanism is a neural network with a 
hidden layer, which is not present in previous TDNets. 

Secondly, the neural network is explicitly recurrent. 
Even in the original TDNet, the state update mechanism 
was effectively recurrent. That is, some of the inputs for 
computing 2ts +

Pred are the outputs 1ts +
Pred from the previous 

time step t + 1. However, the standard TDNet training 
algorithm uses simple back propagation applied to a feed 
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forward neural network. This treats the input/output 
values for one time step independently from the other time 
steps, not accounting for the fact that error in2ts +

Pred could be 

due to error in 1ts +
Pred (the immediate inputs) or t is −

Pred (some 

predictions further back in time). In contrast, SR-TDNs are 
trained using Back Propagation Through Time (BPTT), 
which back propagates error in predictions across multiple 
time steps of state updates. 

Thirdly, the state of an SR-TDN is not defined in terms 
of actions and observations, so it is not a “predictive state” 
model. That is, state contains neither predictions about 
future tests nor features of history. Instead, the SR-TDN’s 
state consists of the activation levels of the neural 
network’s hidden layer at the most recent time step. The 
authors call this a proto-predictive representation of 
state, because the state is used to compute predictions via 
the neural network’s connections from the hidden layer 
to the output layer. The output layer is defined as 
predictions for a set of tests, so the SR-TDN uses the 
TDNet targets to train the network. 

When compared with standard TDNets, the SR-TDNs 
are able to learn more accurate models of several simple 
environments when using a small set of tests in the 
output layer (Makino, 2009). This remains the case even 
when a hidden layer is added to the TDNet, indicating 
that simply adding a hidden layer does not significantly 
enhance the TDNets’ accuracy. 

2. IMPROVING TDNETS WITH 
EXTERNAL KNOWLEDGE 

Our work focuses upon enhancing the structure and 
learning algorithm for TDNets in order to improve 
their accuracy. As we have noticed in our work, the 
current learning algorithms for TDNets are insufficient 
for general-purpose application. Silver (2012) also note 
this fact in their work with TDNets. 

Our improvements are based upon the idea that there is 
some external (to the TDNet learning algorithm) source of 
information about the environment. In our experiments, 
we use another learning algorithm as that source of 
information, but it could just as well be a set of rules that 
someone writes down (or a combination of the two). 

We assume that the external information is in the 
form of predictions whose values are known in particular 
contexts. For instance, one fact about the environment 
might be that p(t|h) = 1.0 for some particular test t when 
observation “red” was seen more recently than “blue.” 
The external information is used to “override” the state 
values of the TDNet whenever an external fact is 

applicable (e.g., history satisfies some criteria). For 
example, the neural network part of the TDNet might 
estimate one of its state values p(t|h) as 0.9, but the 
external fact says the prediction should be 1.0. In that 
case, the external value overrides the 0.9, so the state 
value would be changed to 1.0. 

Thus, our model’s state update mechanism proceeds 
in two parts. The first part uses a neural network to 
estimate the values for the next state. The second part 
involves checking the list of external facts for rules that 
apply to the current context. For each rule that applies, 
the prediction estimate from the neural network is 
replaced or “overridden” with the value from the rule. 

We assume that the external facts are encoded in 
terms of predictions and history features (i.e., actions and 
observations) because that is a common language for 
describing the environment. This is important for 
incorporating the external information into the state of 
the model. For a model where state is not a set of 
predictions about future events, such as a POMDP or 
SR-TDN, the external facts cannot be directly 
incorporated into the model’s state. This is because the 
meaning of the unobserved states of a POMDP or the 
state in an SR-TDN (i.e., the hidden layer) is determined 
by the learning algorithm. Therefore, the meaning of 
their states may vary greatly depending upon the training 
data. Thus, prior knowledge about an environment 
cannot be encoded in terms of a POMDP or SR-TDN 
state. However, when state is defined in terms of actions 
and observations, other sources of information can speak 
the same “language” as the state. The ability to directly 
incorporate small pieces of information directly into state 
is one advantage of predictive state models. Our work is 
the first to take advantage of this feature by merging 
external knowledge with a predictive state model. 

2.1. The Model’s Neural Network 

The neural network in our model adopts two of the 
three changes to the basic TDNet that were introduced 
by SRTDNs: Using BPTT to train the network and using 
a neural network with a hidden layer. However, the third 
change SR-TDNs made-a recurrent connection from the 
hid- den layer to the input layer at the next time step-is 
replaced in our model by a recurrent connection from the 
output layer to the input layer at the next time step. 
Because that output layer consists of predictions about 
tests, this change ensures that our model’s state is 
predictive (in contrast with SR-TDNs). Thus, our model 
combines the advantage of using a recurrent network 
(Makino, 2009) with the ability of predictive state to 
easily accept external facts. 
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To reiterate, our model is most similar to an SR-TDN. 
The primary differences are (1) the change in the recurrent 
connection’s source layer (from hidden layer to output 
layer) and (2) the extra step in the state update process 
where external facts are checked and state values are 
overridden if applicable. An additional difference between 
our model and any prior TDNet (including SR-TDNs) is 
that we use softmax groups for the output layer instead of 
a logistic function. The softmax groups ensure that the 
predictions for all the tests with the same action sequence 
sum to 1.0. For example, when the TDNet is built, if a test 
a1o1a2o2 ... is in the state, then all tests with action 
sequence a1a2 . . . will also be included in the state. Those 
tests form a softmax group. While the softmax groups 
ensure that subsets of tests’ predictions sum to 1.0, that 
may no longer be true after a value is overridden. Thus, 
when evaluating the model (i.e., not when learning the 
parameters), after all the overrides are performed, each 
softmax group is normalized so its predictions sum to 1.0. 

2.2. Learning the Model 

We used Back Propagation Through Time (BPTT) 
with a quadratic regularization term to learn the 
parameters of the neural network. The training targets for 
the predictions were computed using the TD(λ = 1) 
algorithm described in Section 1.2. Whenever a target 
uses an estimate from the state of the TDNet, that 
estimate’s value includes any overriding that is done 
based upon the external facts (because the overriding is 
part of the model’s state update process). Thus, the 
external facts provide higher quality training targets for 
the network learning algorithm. 

The external facts also help with another aspect of 
learning the neural network: Assigning blame for errors. 
In general BPTT, the error in the output layer at time t is 
back propagated to all previous time steps. This is 
because error at time t could have been due to error in 
any of the prior layers in the unrolled network. However, 
our algorithm assumes that the external facts are accurate 
predictions. In particular, when a value at an output 
neuron at time t has been overridden, we assume that 
passing that value along as an input at time t+1 does not 
contribute to errors at time t + 1 or thereafter. However, 
prior to overriding, the network made some estimate for 
the overridden value at time t. That estimate has some 
error, which is back propagated from time t backwards. 
Specifically, the partial derivative of the error with 
respect to the input (i.e., weighted sum) of the overridden 
neuron is set to the difference between the current 
network’s prediction and the target value (given by the 
external fact). This is the same derivative as if there were 

no future time steps after the override. In other words, any 
error at those future time steps is not attributed to the 
overridden neuron. This change to BPTT provides more 
information to the learning algorithm about which neural 
network parameters to change in order to reduce the error. 

3. RESULTS 

We tested our new model and learning algorithm in a 
simulated environment where the agent has an “eye” that 
can see one single pixel. The agent can move the eye 
around an infinite canvas that contains several shapes. The 
canvas is divided into grid squares, each of which contains 
one shape. Each grid square is several pixels wide and tall, 
so the agent needs several observations from within a grid 
square in order to determine what shape is there. Each 
shape can be red or blue, a square or a triangle. The shapes 
are on a white background, so each observation is red, 
blue, or white. The agent has has nine actions available to 
it: It can move the eye one pixel in each of the four 
cardinal directions (north, east, south, or west), move to 
the “primary point” (i.e., the top center point) of the 
current shape, or leap to the primary point of an adjacent 
shape in any of the four cardinal directions. 

Because of the unbounded canvas of shapes, learning 
everything about the environment is impossible, but 
there are some things that should be easy to pick out. For 
example, if the agent sees red, goes east, then goes back 
west, it should see red again. As our results will show, 
this type of domain-some simple aspects embedded in a 
large environment-presents difficulties for other 
predictive state models, but our algorithm is able to learn 
the simple aspects of the domain without getting 
befuddled by the large environment. 

3.1. Learning External Facts 

The external information for our model was the 
result of applying a second learning algorithm to the 
training data. The algorithm generates a list of rules of 
the following form: If the most recent k≤2 time steps 
of history were h’, then the prediction for a test t is 
1.0 (or 0.0). That is, this algorithm looks for things 
that will deterministically happen (or not) based upon 
the most recent k time steps. For our experiments, we 
allowed h’ to begin with either an action (e.g., h’ = ao) 
or an observation (e.g., h’ = oao). In order to find 
these rules, we used two simple concepts from 
association rule mining. 

The first concept is that of minimum support. Let the 
sup- port for a rule [p(t| * h’) = x] for x Є {0.0, 1.0} be 
the number of occurrences in the training data where the 
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actions of the test t were executed following some 
history with suffix h’. Suppose that the test t succeeds (or 
fails) in every one of those instances. Then we add a rule 
to the list if the support for that rule is at least the 
minimum support. For our experiments, we set the 
minimum support at 10. Evaluating different values for 
the minimum support threshold is left for future work. 

The second concept from association rule mining 
lets us comb through the set of candidate rules without 
enumeratingall of them. In particular, if some sequence 
h’ never occurred more than c times in the training 
data, then no rules about h’ will have minimum support 
c. Furthermore, any rule about any extension of h’ (i.e., 
oh’ or aoh’) will also fail to have minimum support. 
Thus, the set of candidates h’ of length k are built by 
taking the sequences of length k-1 with minimum 
support and extending them with each observation and 
(optionally) action. For each of those candidates h’, we 
check every test up to length 2 to see if the rule [p(t| * 
h’) = x] has minimum support. 

3.2. Experimental Details 

We compared our learning algorithm against algorithms 
for learning several other types of models: Linear PSRs, 
transformed PSRs, POMDPs, second-order Markov models 
and a few variations of TDNets (with different state update 
mechanisms). Each of the learning algorithms was given the 
same type of training data: One sequence of experience in 
the environment. The action-selection policy tends to 
explore the current shape for several steps before leaping to 
another shape. The exact policy is as follows: 0.04 
Probability for each action that leaps to an adjacent shape or 
to the primary point of the current shape. If the most recent 
action was a single-pixel action, then there was 0.26 
probability of repeating that action, with 0.18 probability for 
the other three single-pixel actions. Otherwise, each single-
pixel action had 0.20 probability. 

For the linear PSRs and TPSRs, the respective learning 
algorithms (Wolfe et al., 2005; Rosencrantz et al., 2004) 
each have a free parameter that helps determine the 
number of tests in the state. The parameter value was 
chosen automatically using a validation set. That is, 10% 
of the training data was held out (i.e., not used for learning 
the model) and the parameter value that led to the highest 
likelihood on the validation set was used. For POMDPs, the 
free parameter is the number of hidden states in the 
POMDP, which was selected to be 30 by a manual 
parameter sweep. The second-order Markov model predicts 
the next observation based upon the most recent 1.5 time 
steps of history (i.e., an observation, action, observation). 

All of our TDNet variations selected the elements of 
the state vector in the same way. For the history features, 
we used binary indicator variables (i.e., 1-of-K 
encoding) for (1) the most recent observation, (2) the 
most recent action and (3) the most recent two time 
steps of history. The tests represented in the state 
included all of the length-one tests. With those in the 
state, the model can make any prediction (via a 
combination of making one-step predictions and rolling 
forward its state). In addition, tests of length two were 
randomly selected to add to the state until the total 
number reached a user-defined cutoff value. After each 
randomly selected test is added to the state, the 
algorithm adds additional tests as needed to ensure that 
two things remain true: (1) If a test is in the state, all of 
its suffixes are also in the state. This guarantees the 
existence of the TD target for each test. (2) If a test is in 
the state, all other tests with the same action sequence 
are also in the state. Thus, each test belongs to a group 
of tests whose predictions sum to 1.0. 

The state update mechanism for each TDNet variation 
includes a neural network with softmax activation in the 
output layer. Each group of tests with the same action 
sequence formed one of several softmax groups in the 
output layer. The network had one hidden layer with a 
sigmoid activation function. The differences among the 
TDNet variations are the type of recurrence and overriding 
used in the network. We examined an SR-TDN; the new 
TDNet variation we developed in Section 2; and a 
variation that uses the same neural network structure as 
our new model but does not incorporate external 
information. The last variation helps to distinguish the 
effects of changing the neural network structure from the 
effects of incorporating external information. 

For each TDNet variation, we set the number of tests 
used in the state vector, the size of the hidden layer, the 
regularization coefficient and the learning rate by doing a 
parameter sweep. Using the best parameter values, we 
ran another set of experiments. Those results are 
presented in Section 4. 

3.3. Error Measures 

For each type of model, we varied the amount of 
training data given to the learning algorithm. For each 
type of model and amount of training data, we learned 15 
models (each one from a different set of training data), 
averaging the resulting error. 

For each model, we evaluated the error for several 
different categories of predictions, each of which 
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corresponds to some fact about the domain that we 
would like a learning algorithm to discover. Here are the 
facts that correspond to each prediction category: (1) 
Jumping to the primary point of the current shape will 
not result in white (i.e., the probability of seeing white 
after jumping to the primary point of the current shape is 
0.0). (2) Jumping to the primary point and going south 
(one pixel) will not result in white. (3) Jumping to the 
primary point and going north will result in white. (4) 
Leaping to any shape will not result in white. (5) 
Leaping to any shape then going south will not result in 
white. (6) Leaping to any shape then going north will 
result in white. (7) Making a single-pixel move will not 
result in a different (non-white) color than the last color 
seen. (8) Jumping to the primary point will result in the 
most recent (non-white) color that was seen. (9) If you 
just leapt some direction from a shape X to another shape 
Y, then if you leap in the opposite direction, the result 

will be the color of the shape X. (10) If you saw some 
observation Z and then took a single-pixel step in some 
direction, then if you take a single-pixel step in the 
opposite direction, the result will be Z. (11) Every blue 
shape has a red shape to the north. 

This list covers predictions of several different forms, 
including predictions that are always the same 
(regardless of history), predictions that depend upon a 
finite window of history and predictions that depend 
upon a potentially unbounded amount of history (e.g., 
the last color seen). The list also measures predictions for 
one time step in future and predictions for further in the 
future. Roughly speaking, the categories of predictions 
get more challenging as one moves down the list. 

At each time step of the testing sequence, the models’ 
predictions were evaluated and compared against the 
correct predictions. The average absolute value of the error 
(i.e., L1 error) is shown in Fig. 1 for the different models. 

 

 
 
Fig. 1. Prediction error vs. amount of training data for several models: The new TDNet model (“Override”), the new TDNet model 

without using override information (“No Override”), SR-TDNs, TPSRs, Linear PSRs, 2nd-order Markov models and 
POMDPs. See Section 3.3 for details about the different error categories 
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4. DISCUSSION 

The new TDNet model outperforms all of the other 
predictive state models when looking across the range of 
training data and the different categories. Thus, these 
results support the idea of incorporating external facts into 
the TDNet model. In particular, comparing the “Override” 
and “No Override” TDNet variations-where the only 
differenceis including or not including external facts, 
respectively-shows that incorporating those external facts 
dramatically improves the model’s accuracy. 

Because our primary motivation for the new TDNet 
model is to make accurate predictions about some 
aspects of a complex system, our experiments measure 
predictions about simple, mostly Markovian facts. 
Thus, we expected that the Markov-based models (2nd-
order Markov Models and POMDPs) would perform 
very well. Indeed, Fig. 1 illustrates that, for most 
categories, the Markov-based models leave little room 
for improvement in the accuracy as the amount of 
training data gets large. Thus, the primary question that 
these experiments aim to answer is “Did our changes to 
the standard TDNet model result in accuracy that is 
comparable to the Markov-based models?” Our results 
indicate that the answer is “yes.” Specifically, as the 
amount of training data grows, the new TDNet model is 
comparable to the accuracy of the best models for all 
the categories except one (category 8). 

Furthermore, for some prediction categories, the 
improved TDNet model performs the best over the range 
of training data amounts (e.g., categories 3 and 6). 
Overall, these experiments demonstrate that 
incorporating external facts into a TDNetmodel can 
significantly improve its accuracy, enabling it to 
accurately learn simple facts about an infinite, complex 
system. This is true even when the external facts are very 
simple. Using more sophisticated external facts is an 
interesting direction for future research, which we expect 
will further improve the models’ accuracy. 

5. CONCLUSION 

We have introduced a new type of TDNet model 
and an algorithm for learning such a model from 
training data. The new model combines ideas from the 
original TDNets and SR-TDNs with the new idea of 
using an external source of information to help 
calculate the predictions that form the state of a 
predictive state model. From the original TDNets, we 
utilize the idea of predictive state that is updated via a 
neural network. From SR-TDNs, we utilize the ideas of 

using a hidden layer in the neural network and using 
backpropagation through time to learn the network 
parameters. However, as our experiments demonstrate 
(Fig. 1), the key to our new model’s accuracy is the 
incorporation of external information. 

The external information is used to accelerate the 
learning of the neural network part of the TDNet model 
by providing more accurate training data and guiding 
the backpropagation of errors across time. Furthermore, 
the model integrates the external information into its 
state update mechanism, overriding predictions’ values 
in the state in order to improve their accuracy. Our 
experiments demonstrate that even when the external 
source of information only contains simple, history-
based rules about deterministic events, that information 
can greatly improve the accuracy of the model. One 
direction for future research is to investigate the 
incorporation of more complicated forms of external 
information into a TDNet. 

Our new TDNet was motivated by the goal of 
accurately learning simple facts about a complex 
system. Thus, we evaluated the models’ predictions for 
simple, Markovian facts about an infinite system. 
Markovian models are tailor-made for these types of 
predictions and approach perfect accuracy. 
Nonetheless, our new TDNets’ predictions are 
comparable to the Markovian models and are more 
accurate than other predictive state models (linear 
PSRs, TPSRs and SR-TDNs). The new TDNets even 
achieve near-zero error for some types of predictions, 
demonstrating an ability to make highly accurate 
predictions about simple aspects of complex systems. 
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