
Journal of Computer Science 10 (11): 2211-2219, 2014
ISSN: 1549-3636
© 2014 Wolfe and Harpe, This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
doi:10.3844/jcssp.2014.2211.2219 Published Online 10 (11) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Britton Wolfe, Department of Computer Science, Indiana University-Purdue University Fort Wayne
(IPFW), Fort Wayne, IN, USA

2211 Science Publications

JCS

INCORPORATING PRIOR KNOWLEDGE INTO TEMPORAL
DIFFERENCE NETWORKS

Britton Wolfe and James Harpe

Department of Computer Science, Indiana University-Purdue University Fort Wayne (IPFW),
Fort Wayne, IN, USA

Received 2014-06-06; Revised 2014-06-26; Accepted 2014-11-05

ABSTRACT

Developing general purpose algorithms for learning an accurate model of dynamical systems from example
traces of the system is still a challenging research problem. Predictive State Representation (PSR) models
represent the state of a dynamical system as a set of predictions about future events. Our work focuses on
improving Temporal Difference Networks (TD Nets), a general class of predictive state models. We adapt
the internal structure of the TD Net and we present an improved algorithm for learning a TD Net model
from experience in the environment. The new algorithm accepts a set of known facts about the environment
and uses those facts to accelerate the learning. These facts can come from another learning algorithm (as in
this study) or from a designer’s prior knowledge about the environment. Experiments demonstrate that
using the new structure and learning algorithm improves the accuracy of the TD Net models. When tested in
an in finite environment, our new algorithm outperforms all of the standard PSR learning algorithms.

Keywords: Predictive State, Temporal Difference, Modeling, Dynamical Systems

1. INTRODUCTION

This study addresses the problem of learning a
model of a discrete-time dynamical system from a
sequence of experience in the system. Such systems
have long been of interest to reinforcement learning
researchers (Sutton and Tanner, 2004; Sutton and
Barto 1998; Dahmani and Benyettou, 2005) but still
pose great challenges for learning and modeling.

Our work applies generally to a broad class of
dynamical systems. In such systems, at every time step t =
1, 2, 3,..., the agent takes some action at and receives some
observation ot from the system. We restrict our attention to
systems with a discrete set of possible actions and a discrete
set of possible observations.

1.1. Models and State Representations

A model of a system predicts the likelihood of
future observations given a sequence of actions that the

agent might take in the future. These predictions are
also conditioned upon the agent’s experience in the
systema1o1a2o2 . . . aτ oτ through the current time τ. This
experience is called history. Although predictions
depend upon history, a model cannot simply store
history, because it will grow without bound as the agent
continues to act in the world. Instead, a model
maintains a summary of the current history called state.
History changes after each time step, so the model’s
state also needs to change after each time step. The
structure and parameters of a model determine the state
update mechanism of the model: How the model
computes the state at time t + 1 from the state at time t
and the most recent action at+1 and observation ot+1.

For a given system, there are many possible ways to
summarize history, which lead to different state
representations. In general, state is simply a vector of
numbers, but the meaning or semantics of those numbers
differs among state representations. Models such as

Britton Wolfe and James Harpe / Journal of Computer Science 10 (11): 2211.2219, 2014

2212 Science Publications

JCS

Hidden Markov Models (HMMs) or Partially
Observable Markov Decision Processes (POMDPs)
represent state as a distribution over unobserved (latent)
system states. This distribution is called the belief state.
In contrast, Predictive State Representations (PSRs)
represent state as a set of predictions about future
events. For example, one element in a PSR’s state
might be the probability of seeing a particular
observation if the agent takes a particular action.

PSRs are capable of representing partially
observable, stochastic dynamical systems, including
any system that can be modeled by a finite POMDP
(Singh et al., 2004). There is evidence that predictive
state is useful for generalization (Rafols et al., 2005)
and helps to learn more accurate models than the state
representation of a POMDP (Wolfe et al., 2005).

There are two main categories of predictive state
models: Temporal Difference Networks (TDNets)
(Sutton and Tanner, 2004; Tanner and Sutton, 2005a)
and linear predictive models, which include linear PSRs
(Littman et al., 2001) and transformed PSRs
(Rosencrantz et al., 2004). The primary difference
between the categories is their different state update
mechanisms. Linear predictive models use a specific
functional form that involves linear functions of the
state vector. In contrast, TDNets do not specify a
particular functional form for updating state (see
Section 1.2 for details).

This study focuses on improving both the TDNets’
design and the algorithms to learn TDNet models from
training data. These improvements are motivated by the
goal of easily incorporating knowledge of specific facts into
the TDNet. As an example, consider the fact “If the most
recent observation was blue, then the next observation will
be blue if the agent takes the ’do nothing’ action.” This fact
corresponds to a prediction that something will happen (in
certain situations) with probability 1.0.

To incorporate this fact into a linear predictive model,
we would need to alter its parameters so that the model
will make the prediction of 1.0 in the appropriate
situations. However, altering the model’s parameters ends
up changing all of the model’s predictions, due to the
particular state update mechanism of a linear predictive
model. In contrast, Section 2 describes how one can easily
incorporate specific facts into a TDNet model. In this
study, those facts are themselves automatically learned
from the training data by a separate algorithm, but
incorporating someone’s prior knowledge about the
environment would work in the same way.

1.2. TDNets

There is a good deal of flexibility regarding what
comprises a TDNet. The essential components are (1) the
semantics (i.e., definition) of each element in the state
vector and (2) the state update mechanism.

1.2.1. Defining State

Each element in the state vector of a TDNet is
defined in terms of actions and observations, either past
or future (or both). In order to make this more precise,
we use some terminology from the predictive state
literature. A history is a possible sequence of actions and
observations a1o1a2o2 . . . aτ oτ from the beginning of
time through the current time τ. A test is a sequence of
possible future actions and observations a1o1 . . . akok.
The prediction for a test t = a1o1 . . . akok from a history h
= a1o1 . . . aτ oτ is defined as the probability of seeing the
observations of t when the actions of t are taken from
history h. Formally, this prediction is:

() 1 1 1

1

1
1 1

(, , ,

, ,)

kdef i
i T

i

i
i

p t h Pr o o a o a o a

a o o a a

τ
τ τ τ

τ
τ

τ

+
+

−
= +

+
−

=

= = =

∏ L

L

The state of a TDNet typically consists of some

features of a small, finite portion of history (e.g., an
indicator variable that is 1 if the most recent observation
was “blue” and 0 otherwise) and predictions about some
tests (Tanner and Sutton, 2005b). Once the particular
history features and tests are selected, the state
representation of the TDNet is completely defined.

1.2.2. State Update Mechanism

The state update mechanism defines how the TDNet
takes the state at time t and the most recent
action/observation (at time t + 1) and uses them to
compute the state at time t + 1. TDNets are not
constrained to use any specific form for updating state.
However, in practice, the following form is commonly
used (Sutton and Tanner, 2004; Tanner and Sutton,
2005b; Sutton et al., 2005; Tanner and Sutton, 2005a).
Let st be the state vector at time t and let 1tS +

pred be the part
of state at time t + 1 that consists of predictions about
tests. Let xt+1 be a vector of binary indicator variables for
the action and observation at time t + 1. That vector
includes a variable for every possible action, which is set
to 1 if the action was taken at time t + 1 and 0 otherwise.
This 1-of-K encoding is also used for each dimension of
the observation vector at time t + 1. In this way, the
action and observation at time t + 1 are encoded in xt+1,

Britton Wolfe and James Harpe / Journal of Computer Science 10 (11): 2211.2219, 2014

2213 Science Publications

JCS

which is concatenated with st to yield the vectorts+ . Then
1ts +
Pred = ()tWs σ + , where W is a matrix of weights and σ is

the logistic function. The remainder of the state at time t
+ 1- the features of history-are set based upon the new
history. Notice that this state update is like a neural
network with logistic activation function and no hidden
layers. The inputs to the network are the elements of ts+
and the outputs arePr

1
ed

ts + .

1.2.3. Learning a TDNet

Given some definition for the state of a TDNet and a
functional form for updating state, “learning the model”
involves estimating the parameters of the state update
mechanism from training data. The training data consists
of one or more sequences of experience a1o1a2o2 ... from
the system (generated from the agent’s exploration).
Since the state update mechanism is supposed to
compute 1

pred
ts + from ts+ , one way to learn the TDNet

parameters is to solve a regression problem. That is,
learn a function to map ts+ to 1

pred
ts + . In order to learn this

function, the TDNet learning algorithm uses estimated
pairs(), 1ˆ ˆt

pred
ts s+
+ , one for each time step of the training

data. These training examples are passed into the
appropriate learning algorithm for whatever functional
form is used to update state (e.g., back propagation to
train a feed forward neural network). That learning
algorithm yields estimates of the parameters for the state
update. These are the parameters of the TDNet model.

Algorithm 1 Computing the TD Target for a Test

t = a1o1 . . . anon in (), 1ˆ ˆt
pred
ts s+
+ using the training data

 at+2ot+2 . . .
 for i = 1 to n do
 if ai 6= at+1+i then
 /* Combine the test’s success through step i-1
 with the TDNet’s estimate that the rest of the test
 will succeed. */
 return TDNet’s estimate that aioi . . . anon will
 succeed from time t + 1 + i
 else if oi 6= ot+1+i then
 return 0.0 /* The test failed */
 end if
end for
return 1.0 /* The test succeeded */

When learning a TDNet, the training
examples()1,ˆ ˆ pred

t ts s+
+ are themselves estimated using some

current parameters for the TDNet (details given below).
Thus, training a TDNet is an iterative process: Initialize

the TDNet parameters to some values θ0. On each
iteration i, use the current parameters θi to compute a
training example from every time step of the training
data. Feed those training examples into back propagation
(or other regression algorithm) to get new parameters
θi+1. Repeat until the parameters converge.

1.2.4. Computing the TD Targets

The training examples for the regression algorithm are
determined from the training data as follows. Each 1ˆ ts +

Pred is

simply the value for the state at time t given the current
TDNet parameters θi, concatenated with the indicators for
the action and observation at time t+1. The targets 1ˆ ts +

Pred are

computed using the TD(λ) algorithm (Algorithm 1)for
learning TDNets with λ = 1, which is consistently the best
value of λ (Tanner and Sutton, 2005a).

In expectation, the target for the prediction is equal to
the true prediction when the estimates from the TDNet
are accurate. Of course, the TDNet’s estimates will not
start out being accurate, but the idea behind the learning
algorithm is that the cases where the targets are 1.0 and
0.0 (which do not rely upon TDNet estimates) should
help the learning algorithm bootstrap. That is, those
targets that come solely from the data should provide
enough information to learn reasonable estimates for the
predictions, which can then be used to iteratively
improve the estimates. However, part of the motivation
for our work is that these 1.0 and 0.0 targets tended to be
insufficient in practice for learning a TDNet with
reasonable estimates. This motivates our idea of using
better targets for the learning algorithm when the values
of certain predictions are known, either from another
learning algorithm or from someone’s knowledge of the
environment (Section 2).

1.3. Simple Recurrent TD Networks

Simple recurrent TD networks (SR-TDNs) (Makino,
2009) are an adaptation of standard TDNets. Our
improved TD network (Section 2) incorporates some of
the concepts from SR-TDNs, which we describe in this
section. SR-TDNs move beyond the standard TDNet
structure (described in Section 1.2) in three ways. Firstly,
the state update mechanism is a neural network with a
hidden layer, which is not present in previous TDNets.

Secondly, the neural network is explicitly recurrent.
Even in the original TDNet, the state update mechanism
was effectively recurrent. That is, some of the inputs for
computing 2ts +

Pred are the outputs 1ts +
Pred from the previous

time step t + 1. However, the standard TDNet training
algorithm uses simple back propagation applied to a feed

Britton Wolfe and James Harpe / Journal of Computer Science 10 (11): 2211.2219, 2014

2214 Science Publications

JCS

forward neural network. This treats the input/output
values for one time step independently from the other time
steps, not accounting for the fact that error in2ts +

Pred could be

due to error in 1ts +
Pred (the immediate inputs) or t is −

Pred (some

predictions further back in time). In contrast, SR-TDNs are
trained using Back Propagation Through Time (BPTT),
which back propagates error in predictions across multiple
time steps of state updates.

Thirdly, the state of an SR-TDN is not defined in terms
of actions and observations, so it is not a “predictive state”
model. That is, state contains neither predictions about
future tests nor features of history. Instead, the SR-TDN’s
state consists of the activation levels of the neural
network’s hidden layer at the most recent time step. The
authors call this a proto-predictive representation of
state, because the state is used to compute predictions via
the neural network’s connections from the hidden layer
to the output layer. The output layer is defined as
predictions for a set of tests, so the SR-TDN uses the
TDNet targets to train the network.

When compared with standard TDNets, the SR-TDNs
are able to learn more accurate models of several simple
environments when using a small set of tests in the
output layer (Makino, 2009). This remains the case even
when a hidden layer is added to the TDNet, indicating
that simply adding a hidden layer does not significantly
enhance the TDNets’ accuracy.

2. IMPROVING TDNETS WITH
EXTERNAL KNOWLEDGE

Our work focuses upon enhancing the structure and
learning algorithm for TDNets in order to improve
their accuracy. As we have noticed in our work, the
current learning algorithms for TDNets are insufficient
for general-purpose application. Silver (2012) also note
this fact in their work with TDNets.

Our improvements are based upon the idea that there is
some external (to the TDNet learning algorithm) source of
information about the environment. In our experiments,
we use another learning algorithm as that source of
information, but it could just as well be a set of rules that
someone writes down (or a combination of the two).

We assume that the external information is in the
form of predictions whose values are known in particular
contexts. For instance, one fact about the environment
might be that p(t|h) = 1.0 for some particular test t when
observation “red” was seen more recently than “blue.”
The external information is used to “override” the state
values of the TDNet whenever an external fact is

applicable (e.g., history satisfies some criteria). For
example, the neural network part of the TDNet might
estimate one of its state values p(t|h) as 0.9, but the
external fact says the prediction should be 1.0. In that
case, the external value overrides the 0.9, so the state
value would be changed to 1.0.

Thus, our model’s state update mechanism proceeds
in two parts. The first part uses a neural network to
estimate the values for the next state. The second part
involves checking the list of external facts for rules that
apply to the current context. For each rule that applies,
the prediction estimate from the neural network is
replaced or “overridden” with the value from the rule.

We assume that the external facts are encoded in
terms of predictions and history features (i.e., actions and
observations) because that is a common language for
describing the environment. This is important for
incorporating the external information into the state of
the model. For a model where state is not a set of
predictions about future events, such as a POMDP or
SR-TDN, the external facts cannot be directly
incorporated into the model’s state. This is because the
meaning of the unobserved states of a POMDP or the
state in an SR-TDN (i.e., the hidden layer) is determined
by the learning algorithm. Therefore, the meaning of
their states may vary greatly depending upon the training
data. Thus, prior knowledge about an environment
cannot be encoded in terms of a POMDP or SR-TDN
state. However, when state is defined in terms of actions
and observations, other sources of information can speak
the same “language” as the state. The ability to directly
incorporate small pieces of information directly into state
is one advantage of predictive state models. Our work is
the first to take advantage of this feature by merging
external knowledge with a predictive state model.

2.1. The Model’s Neural Network

The neural network in our model adopts two of the
three changes to the basic TDNet that were introduced
by SRTDNs: Using BPTT to train the network and using
a neural network with a hidden layer. However, the third
change SR-TDNs made-a recurrent connection from the
hid- den layer to the input layer at the next time step-is
replaced in our model by a recurrent connection from the
output layer to the input layer at the next time step.
Because that output layer consists of predictions about
tests, this change ensures that our model’s state is
predictive (in contrast with SR-TDNs). Thus, our model
combines the advantage of using a recurrent network
(Makino, 2009) with the ability of predictive state to
easily accept external facts.

Britton Wolfe and James Harpe / Journal of Computer Science 10 (11): 2211.2219, 2014

2215 Science Publications

JCS

To reiterate, our model is most similar to an SR-TDN.
The primary differences are (1) the change in the recurrent
connection’s source layer (from hidden layer to output
layer) and (2) the extra step in the state update process
where external facts are checked and state values are
overridden if applicable. An additional difference between
our model and any prior TDNet (including SR-TDNs) is
that we use softmax groups for the output layer instead of
a logistic function. The softmax groups ensure that the
predictions for all the tests with the same action sequence
sum to 1.0. For example, when the TDNet is built, if a test
a1o1a2o2 ... is in the state, then all tests with action
sequence a1a2 . . . will also be included in the state. Those
tests form a softmax group. While the softmax groups
ensure that subsets of tests’ predictions sum to 1.0, that
may no longer be true after a value is overridden. Thus,
when evaluating the model (i.e., not when learning the
parameters), after all the overrides are performed, each
softmax group is normalized so its predictions sum to 1.0.

2.2. Learning the Model

We used Back Propagation Through Time (BPTT)
with a quadratic regularization term to learn the
parameters of the neural network. The training targets for
the predictions were computed using the TD(λ = 1)
algorithm described in Section 1.2. Whenever a target
uses an estimate from the state of the TDNet, that
estimate’s value includes any overriding that is done
based upon the external facts (because the overriding is
part of the model’s state update process). Thus, the
external facts provide higher quality training targets for
the network learning algorithm.

The external facts also help with another aspect of
learning the neural network: Assigning blame for errors.
In general BPTT, the error in the output layer at time t is
back propagated to all previous time steps. This is
because error at time t could have been due to error in
any of the prior layers in the unrolled network. However,
our algorithm assumes that the external facts are accurate
predictions. In particular, when a value at an output
neuron at time t has been overridden, we assume that
passing that value along as an input at time t+1 does not
contribute to errors at time t + 1 or thereafter. However,
prior to overriding, the network made some estimate for
the overridden value at time t. That estimate has some
error, which is back propagated from time t backwards.
Specifically, the partial derivative of the error with
respect to the input (i.e., weighted sum) of the overridden
neuron is set to the difference between the current
network’s prediction and the target value (given by the
external fact). This is the same derivative as if there were

no future time steps after the override. In other words, any
error at those future time steps is not attributed to the
overridden neuron. This change to BPTT provides more
information to the learning algorithm about which neural
network parameters to change in order to reduce the error.

3. RESULTS

We tested our new model and learning algorithm in a
simulated environment where the agent has an “eye” that
can see one single pixel. The agent can move the eye
around an infinite canvas that contains several shapes. The
canvas is divided into grid squares, each of which contains
one shape. Each grid square is several pixels wide and tall,
so the agent needs several observations from within a grid
square in order to determine what shape is there. Each
shape can be red or blue, a square or a triangle. The shapes
are on a white background, so each observation is red,
blue, or white. The agent has has nine actions available to
it: It can move the eye one pixel in each of the four
cardinal directions (north, east, south, or west), move to
the “primary point” (i.e., the top center point) of the
current shape, or leap to the primary point of an adjacent
shape in any of the four cardinal directions.

Because of the unbounded canvas of shapes, learning
everything about the environment is impossible, but
there are some things that should be easy to pick out. For
example, if the agent sees red, goes east, then goes back
west, it should see red again. As our results will show,
this type of domain-some simple aspects embedded in a
large environment-presents difficulties for other
predictive state models, but our algorithm is able to learn
the simple aspects of the domain without getting
befuddled by the large environment.

3.1. Learning External Facts

The external information for our model was the
result of applying a second learning algorithm to the
training data. The algorithm generates a list of rules of
the following form: If the most recent k≤2 time steps
of history were h’, then the prediction for a test t is
1.0 (or 0.0). That is, this algorithm looks for things
that will deterministically happen (or not) based upon
the most recent k time steps. For our experiments, we
allowed h’ to begin with either an action (e.g., h’ = ao)
or an observation (e.g., h’ = oao). In order to find
these rules, we used two simple concepts from
association rule mining.

The first concept is that of minimum support. Let the
sup- port for a rule [p(t| * h’) = x] for x Є {0.0, 1.0} be
the number of occurrences in the training data where the

Britton Wolfe and James Harpe / Journal of Computer Science 10 (11): 2211.2219, 2014

2216 Science Publications

JCS

actions of the test t were executed following some
history with suffix h’. Suppose that the test t succeeds (or
fails) in every one of those instances. Then we add a rule
to the list if the support for that rule is at least the
minimum support. For our experiments, we set the
minimum support at 10. Evaluating different values for
the minimum support threshold is left for future work.

The second concept from association rule mining
lets us comb through the set of candidate rules without
enumeratingall of them. In particular, if some sequence
h’ never occurred more than c times in the training
data, then no rules about h’ will have minimum support
c. Furthermore, any rule about any extension of h’ (i.e.,
oh’ or aoh’) will also fail to have minimum support.
Thus, the set of candidates h’ of length k are built by
taking the sequences of length k-1 with minimum
support and extending them with each observation and
(optionally) action. For each of those candidates h’, we
check every test up to length 2 to see if the rule [p(t| *
h’) = x] has minimum support.

3.2. Experimental Details

We compared our learning algorithm against algorithms
for learning several other types of models: Linear PSRs,
transformed PSRs, POMDPs, second-order Markov models
and a few variations of TDNets (with different state update
mechanisms). Each of the learning algorithms was given the
same type of training data: One sequence of experience in
the environment. The action-selection policy tends to
explore the current shape for several steps before leaping to
another shape. The exact policy is as follows: 0.04
Probability for each action that leaps to an adjacent shape or
to the primary point of the current shape. If the most recent
action was a single-pixel action, then there was 0.26
probability of repeating that action, with 0.18 probability for
the other three single-pixel actions. Otherwise, each single-
pixel action had 0.20 probability.

For the linear PSRs and TPSRs, the respective learning
algorithms (Wolfe et al., 2005; Rosencrantz et al., 2004)
each have a free parameter that helps determine the
number of tests in the state. The parameter value was
chosen automatically using a validation set. That is, 10%
of the training data was held out (i.e., not used for learning
the model) and the parameter value that led to the highest
likelihood on the validation set was used. For POMDPs, the
free parameter is the number of hidden states in the
POMDP, which was selected to be 30 by a manual
parameter sweep. The second-order Markov model predicts
the next observation based upon the most recent 1.5 time
steps of history (i.e., an observation, action, observation).

All of our TDNet variations selected the elements of
the state vector in the same way. For the history features,
we used binary indicator variables (i.e., 1-of-K
encoding) for (1) the most recent observation, (2) the
most recent action and (3) the most recent two time
steps of history. The tests represented in the state
included all of the length-one tests. With those in the
state, the model can make any prediction (via a
combination of making one-step predictions and rolling
forward its state). In addition, tests of length two were
randomly selected to add to the state until the total
number reached a user-defined cutoff value. After each
randomly selected test is added to the state, the
algorithm adds additional tests as needed to ensure that
two things remain true: (1) If a test is in the state, all of
its suffixes are also in the state. This guarantees the
existence of the TD target for each test. (2) If a test is in
the state, all other tests with the same action sequence
are also in the state. Thus, each test belongs to a group
of tests whose predictions sum to 1.0.

The state update mechanism for each TDNet variation
includes a neural network with softmax activation in the
output layer. Each group of tests with the same action
sequence formed one of several softmax groups in the
output layer. The network had one hidden layer with a
sigmoid activation function. The differences among the
TDNet variations are the type of recurrence and overriding
used in the network. We examined an SR-TDN; the new
TDNet variation we developed in Section 2; and a
variation that uses the same neural network structure as
our new model but does not incorporate external
information. The last variation helps to distinguish the
effects of changing the neural network structure from the
effects of incorporating external information.

For each TDNet variation, we set the number of tests
used in the state vector, the size of the hidden layer, the
regularization coefficient and the learning rate by doing a
parameter sweep. Using the best parameter values, we
ran another set of experiments. Those results are
presented in Section 4.

3.3. Error Measures

For each type of model, we varied the amount of
training data given to the learning algorithm. For each
type of model and amount of training data, we learned 15
models (each one from a different set of training data),
averaging the resulting error.

For each model, we evaluated the error for several
different categories of predictions, each of which

Britton Wolfe and James Harpe / Journal of Computer Science 10 (11): 2211.2219, 2014

2217 Science Publications

JCS

corresponds to some fact about the domain that we
would like a learning algorithm to discover. Here are the
facts that correspond to each prediction category: (1)
Jumping to the primary point of the current shape will
not result in white (i.e., the probability of seeing white
after jumping to the primary point of the current shape is
0.0). (2) Jumping to the primary point and going south
(one pixel) will not result in white. (3) Jumping to the
primary point and going north will result in white. (4)
Leaping to any shape will not result in white. (5)
Leaping to any shape then going south will not result in
white. (6) Leaping to any shape then going north will
result in white. (7) Making a single-pixel move will not
result in a different (non-white) color than the last color
seen. (8) Jumping to the primary point will result in the
most recent (non-white) color that was seen. (9) If you
just leapt some direction from a shape X to another shape
Y, then if you leap in the opposite direction, the result

will be the color of the shape X. (10) If you saw some
observation Z and then took a single-pixel step in some
direction, then if you take a single-pixel step in the
opposite direction, the result will be Z. (11) Every blue
shape has a red shape to the north.

This list covers predictions of several different forms,
including predictions that are always the same
(regardless of history), predictions that depend upon a
finite window of history and predictions that depend
upon a potentially unbounded amount of history (e.g.,
the last color seen). The list also measures predictions for
one time step in future and predictions for further in the
future. Roughly speaking, the categories of predictions
get more challenging as one moves down the list.

At each time step of the testing sequence, the models’
predictions were evaluated and compared against the
correct predictions. The average absolute value of the error
(i.e., L1 error) is shown in Fig. 1 for the different models.

Fig. 1. Prediction error vs. amount of training data for several models: The new TDNet model (“Override”), the new TDNet model

without using override information (“No Override”), SR-TDNs, TPSRs, Linear PSRs, 2nd-order Markov models and
POMDPs. See Section 3.3 for details about the different error categories

Britton Wolfe and James Harpe / Journal of Computer Science 10 (11): 2211.2219, 2014

2218 Science Publications

JCS

4. DISCUSSION

The new TDNet model outperforms all of the other
predictive state models when looking across the range of
training data and the different categories. Thus, these
results support the idea of incorporating external facts into
the TDNet model. In particular, comparing the “Override”
and “No Override” TDNet variations-where the only
differenceis including or not including external facts,
respectively-shows that incorporating those external facts
dramatically improves the model’s accuracy.

Because our primary motivation for the new TDNet
model is to make accurate predictions about some
aspects of a complex system, our experiments measure
predictions about simple, mostly Markovian facts.
Thus, we expected that the Markov-based models (2nd-
order Markov Models and POMDPs) would perform
very well. Indeed, Fig. 1 illustrates that, for most
categories, the Markov-based models leave little room
for improvement in the accuracy as the amount of
training data gets large. Thus, the primary question that
these experiments aim to answer is “Did our changes to
the standard TDNet model result in accuracy that is
comparable to the Markov-based models?” Our results
indicate that the answer is “yes.” Specifically, as the
amount of training data grows, the new TDNet model is
comparable to the accuracy of the best models for all
the categories except one (category 8).

Furthermore, for some prediction categories, the
improved TDNet model performs the best over the range
of training data amounts (e.g., categories 3 and 6).
Overall, these experiments demonstrate that
incorporating external facts into a TDNetmodel can
significantly improve its accuracy, enabling it to
accurately learn simple facts about an infinite, complex
system. This is true even when the external facts are very
simple. Using more sophisticated external facts is an
interesting direction for future research, which we expect
will further improve the models’ accuracy.

5. CONCLUSION

We have introduced a new type of TDNet model
and an algorithm for learning such a model from
training data. The new model combines ideas from the
original TDNets and SR-TDNs with the new idea of
using an external source of information to help
calculate the predictions that form the state of a
predictive state model. From the original TDNets, we
utilize the idea of predictive state that is updated via a
neural network. From SR-TDNs, we utilize the ideas of

using a hidden layer in the neural network and using
backpropagation through time to learn the network
parameters. However, as our experiments demonstrate
(Fig. 1), the key to our new model’s accuracy is the
incorporation of external information.

The external information is used to accelerate the
learning of the neural network part of the TDNet model
by providing more accurate training data and guiding
the backpropagation of errors across time. Furthermore,
the model integrates the external information into its
state update mechanism, overriding predictions’ values
in the state in order to improve their accuracy. Our
experiments demonstrate that even when the external
source of information only contains simple, history-
based rules about deterministic events, that information
can greatly improve the accuracy of the model. One
direction for future research is to investigate the
incorporation of more complicated forms of external
information into a TDNet.

Our new TDNet was motivated by the goal of
accurately learning simple facts about a complex
system. Thus, we evaluated the models’ predictions for
simple, Markovian facts about an infinite system.
Markovian models are tailor-made for these types of
predictions and approach perfect accuracy.
Nonetheless, our new TDNets’ predictions are
comparable to the Markovian models and are more
accurate than other predictive state models (linear
PSRs, TPSRs and SR-TDNs). The new TDNets even
achieve near-zero error for some types of predictions,
demonstrating an ability to make highly accurate
predictions about simple aspects of complex systems.

6. REFERENCES

Dahmani, Y. and A. Benyettou, 2005. Seek of an optimal
way by q-learning. J. Comput. Sci., 1: 28-30. DOI:

10.3844/ jcssp.2005.28.30
Littman, M.L., R. Sutton and S. Singh, 2001. Predictive

representations of state. Proceedings of the
Advances in Neural Information Processing
Systems, (IPS’ 01), MIT Press, pp: 1555-1561.

Makino, T., 2009. Proto-predictive representation of
states with simple recurrent temporal-difference
networks. Proceedings of the 26th International
Conference on Machine Learning, Jun. 14-18,
Montreal, QC, Canada, pp: 697-704. DOI:
10.1145/1553374.1553464

Britton Wolfe and James Harpe / Journal of Computer Science 10 (11): 2211.2219, 2014

2219 Science Publications

JCS

Rafols, E.J., M.B. Ring, R. Sutton and B. Tanner, 2005.
Using predictive representations to improve
generalization in reinforcement learning.
Proceedings of the 19th International Joint
Conference on Artificial Intelligence, (CAI’ 05),
Professional Book Center, pp: 835-840.

Rosencrantz, M., G. Gordon and S. Thrun, 2004. Learning
low dimensional predictive representations.
Proceedings of the 21st International Conference on
Machine Learning, (CML’ 04), ACM, pp: 88-95.

DOI: 10.1145/1015330.1015441
Silver, D., 2012. Gradient temporal difference

networks. J. Machine Learn. Res., 1: 1-12.
Singh, S., James, M.R. and M. Rudary, 2004. Predictive

state representations: A new theory for modeling
dynamical systems. Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence,
(UAI’ 04), AUAI Press, Virginia, pp: 512-519.

Sutton, R. and B. Tanner, 2004. Temporal-difference
networks. Proceedings of the Advances in Neural
Information Processing Systems, (IPS’ 4), MIT
Press, pp: 1377-384.

Sutton, R., E.J. Rafols and A. Koop, 2005. Temporal
abstraction in temporal-difference networks.
Proceedings of the Advances in Neural
Information Processing Systems, (NIPS’ 05), MIT
Press, pp: 1313-1320.

Sutton, R.S. and A.G. Barto, 1998. Reinforcement
Learning: An Introduction. 1st Edn., MIT Press,
Cambridge, Mass, ISBN-10: 0262193981, pp: 322.

Tanner, B. and R. Sutton, 2005a. TD (lambda)
networks: Temporal-difference networks with
eligibility traces. Proceedings of the 22nd
International Conference on Machine Learning,
ACM, pp: 889-896. DOI:
10.1145/1102351.1102463.

Tanner, B. and R. Sutton, 2005b. Temporal-difference
networks with history. Proceedings of the 19th
International Joint Conference on Artificial
Intelligence, Professional Book Center, pp: 865-870.

Wolfe, B., M.R. James and S. Singh, 2005. Learning
predictive state representations in dynamical
systems without reset. Proceedings of the 22nd
International Conference on Machine Learning,
ACM, pp: 985-992. DOI:
10.1145/1102351.1102475

