
Journal of Computer Science 10 (8): 1575-1581, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1575.1581 Published Online 10 (8) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Siham Ezzouak, Department of Mathematics and Computer Science, Faculty of Science,
 University Mohammed First, Oujda, BP 60000, Morocco

1575 Science Publications

JCS

A VARIANT OF POLLARD’S RHO ATTACK
ON ELLIPTIC CURVE CRYPTOSYSTEMS

Siham Ezzouak, Mohammed Elamrani and Abdelmalek Azizi

Department of Mathematics and Computer Science,
Faculty of Science, University Mohammed First, Oujda, BP 60000, Morocco

Received 2014-02-18; Revised 2014-04-05; Accepted 2014-04-09

ABSTRACT

Elliptic Curve cryptosystems appear to be more secure and efficient when requiring small key size to
implement than other public key cryptosystems. Its security is based upon the difficulty of solving
Elliptic Curve Discrete Logarithm Problem (ECDLP). This study proposes a variant of generic algorithm
Pollard’s Rho for finding ECDLP using cycle detection with stack and a mixture of cycle detection and
random walks. The Pollard’s Rho using cycle detection with stack requires less iterations than Pollard’s
Rho original in reaching collision. Random walks allow the iteration function to act randomly than the
original iteration function, thus, the Pollard rho method performs more efficiently. In practice, the
experiment results show that the proposed methods decreases the number of iterations and speed up the
computation of discrete logarithm problem on elliptic curves.

Keywords: Cycle Detection, Discrete Logarithm Problem, Elliptic Curve, Pollard Rho Method, Random Walk

1. INTRODUCTION

Elliptic curves over finite fields have been proposed
by Diffie-Hellman to implement key passing scheme and
elliptic curves variants for digital signature. The security
of this cryptosystem is linked to the difficulty to solve
elliptic curve discrete logarithm problem and if this
problem is resolved the cryptosystem is broken.

Although there are several attacks against this
cryptosystem such as Baby-Step Giant-Step (Shanks,
1971), Pollard’s Rho method and its parallelized variant,
their complexity is the square root of the prime order of
the generating point used (Harrison, 2010). Up to now,
Pollard’s Rho method is known as the best method to
resolve the discrete logarithm problem on general
groups, specifically elliptic curve. Hence automorphism
of the group (Duursma et al., 1990), parallelization
(Oorschot and Wiener, 1999), iteration function (Teske,
1998; 2001) or cycle detection (Brent, 1980; Cheon et al.,
2012) are used to improve this attack. In this study, we try
to introduce a variant of Pollard’s Rho attack using the

new cycle detection proposed by (Nivasch, 2004) and the
random walks proposed by Teske. After that, we analyze
the running time and implement the new algorithm. The
remainder of this study is proceded as follow: Section 2
introduces some basic definitions for the elliptic curves,
Floyd’s algorithm and Pollard’s Rho algorithm. Section
3 describes how Pollard’s Rho algorithm may be
modified using Nivash’s cycle detection instead of
Floyd’s algorithm. We explain how to introduce random
walks on the modified Pollard’s Rho and the algorithms
are compared in section 4.

2. BACKGROUND

This section introduces the elliptic curve
cryptosystem, Floyd finding cycle algorithm Floyd
(1962) and Pollard’s Rho method (Pollard, 1978). The
Pollard’s Rho method uses iteration function to build
sequence of elements and it uses cycle detection to
find match or collision. The match leads to the
solution of ECDLP. In fact, this method is based on a

Siham Ezzouak et al. / Journal of Computer Science 10 (8): 1575-1581, 2014

1576 Science Publications

JCS

random walk and the Birthday Paradox which states
that in a a set of 23 randomly chosen people, the
chance that at least two of them share the same
birthday is greater than 50%. Then, if random objects
are selected with replacement from n objects, one may
expect n / 2π rounds before an object is picked twice.

2.1. Elliptic Curve Cryptosystem

The addition rule of the group of elliptic curves is
easy to be implemented. Therefore, algebraic formulas
for the group law can be derived from the geometric
description. A general elliptic curve E over finite field K
has the form y2+axy+by = x3+cx2+dx+e where a, b, c, d
and e are in K. The addition operation is defined over
elliptic curves with the inclusion of a point O called
point at infinity or identity.

Let p be a prime with p>3. Elliptic curves can be
implemented over fields of characteristic 2 and 3 and
enjoy many optimizations, but suffer from specialized
discrete log attacks Coppersmith (1984) and should
generally be avoided. Let Fp = GF(p) the Galois Field over
p and a, b ∈ Fp and satisfy the condition 4a3+27b2 mod(p)
≠ 0 then an elliptic curve over the Galois field E(Fp)(a,b) is
defined by equation y2 = x3+ax+b mod(p) where x∈ Fp.

Let P = (x1, y1) and Q = (x2, y2) be two points in the
elliptic curve E(Fp)(a, b), to compute the sum R = (x3, y3)
of points P and Q we use explicit formulas:

• If P = O then R = Q
• If Q = O then R = P
• Otherwise

- If x1 ≠ x2 put
λ = (y1-y2) (x1-x2)

-1 then
x3 = λ2-x1-x2

y3 = λ (x1-x3)-y1

-If x1 = x2 and y1 = -y2 then R = O
- If x1 = x2 and y1 ≠ y2 so P = Q put

2 1
1 1 2(3x A)(y y) then−λ = + +

x3 = λ2 –x1-x2
y3 = λ (x1-x3)-y1

The most expensive step is the division in the
computation of λ.

Definition 1

Hankerson et al. (2004) The Elliptic Curve Discrete
Logarithm Problem (ECDLP) is:

Given an elliptic curve E defined over a finite field
Fp, a point P ∈ E(Fp) of order n and a point Q∈〈P〉,

find the integer l∈[0, n-1] such that Q = lP. The
integer d is called the discrete logarithm of Q to the
base P, denoted l = logPQ.

This problem is considered as hard mathematical
problem like the Integer Factorisation Problem (IFP) and
the logarithm problem in multiplicative group of finite
field (DLP). All methods, proposed up to now which
solve ECDLP, require exponential running time.

2.2. Floyd’s Cycle-finding Algorithm

Instead of comparing each new Yi to all previous
ones and stores all elements until obtaining collision, It is
better to choose Floyd’s algorithm Floyd (1962) in order
to minimize the memory requirement and running time.
In fact, one computes pairs (Yi, Y2i) of points for i =
1,2,3... until finding Yi = Y2i. After computing a new
pair, the previous pair can be discarded, thus the storage
requirements are negligible.

Theorem 1

Knuth (1969) [exercises 6-7] for a periodic
sequence Y0, Y1, Y2,…, there exists an i>0 such that
Y i = Y2i and the smallest such i lies in the range
µ≤i≤µ+λ. µ and λ are the preperiod and the period of
the sequence Yi respectively.

If we suppose that the sequence is generated by
random function then the expected value of µ and λ is
close to n / 8π . As a consequence, µ+λ is

around n / 2π .

2.3. Pollard’s Rho Algorithm

The idea of Pollard is that three possibilities are
chosen in a random manner and the resulting sequence
is sufficiently complicated to be regarded as a random
mapping. Let us start with random point R0 and build
the sequence Ri with the iteration function f until the
collision occurs. In fact, E(Fp) is finite, the sequence
Ri become periodic after some iterations so there will
be some indices i<j such that Ri = Rj, j-i is the period
and Ri,Ri+1,Ri+2,…,Rj form a loop. For cycle detection,
Floyd’s method is used. The original Pollard’s Rho
method on elliptic curves is detailed bellow:

• Split E(Fp) into three disjoint sets S1, S2 and S3 of
roughly equal size

• Let R0 = a0P + b0Q with a0 and b0 two random
integers in]0, n[and the iterative function f was
defined as:

Siham Ezzouak et al. / Journal of Computer Science 10 (8): 1575-1581, 2014

1577 Science Publications

JCS

i i 1

i i 1 i i 2

i i 3

P R if R S

f (R) R 2R if R S

Q R if R S
+

 + ∈
= = ∈
 + ∈

The sequence ai and bi can be computed as follow:

i i i 1

i 1 i 1 i i i 2

i i i 3

(a 1,b)if R S

(a ,b) (2a ,2b)if R S

(a ,b 1)if R S
+ +

 + ∈
= ∈
 + ∈

• Compute Rj and R2j and compare them until a match

is found using the iteration function f

• If Rj = R2j, then 2 j j

j 2 j

a a
l (modn)

b b

−
=

−
with bj ≠ b2j. So

ECDLP is resolved

In the last step with negligible probability, we can
have bj = b2j. In this case, we restart the process with
different starting points R0.

Algorithm 1 . Iteration function
1: function f (R): R1
2: if R ∈ S1 then
3: R1← R + P
4: else if R ∈ S2 then
5: R1 ← 2R
6: else
7: R1← R + Q
8: end if
9: return R1
10: end function
11: function f (a, b): a1, b1
12: if R ∈ S1 then
13: a1←a + 1
14: else if R ∈ S2 then
15: a1← 2a
16: b1 ← 2b
17: else
18: b1← b + 1
19: end if
20: return a1, b1
21: end function

Algorithm 2. Pollard’s Rho with Floyd’s cycle finding
algorithm

Require: P, Q, S1, S2, S3
Ensure: Integer l where Q = lP
1: a0 ←random∈]0; n[
2: b0 ←random ∈]0; n[

3: j← 0
4: R0← a0P+b0Q
5: for all j such that Rj ≠ R2j do
6: (Rj+1, aj+1, bj+1) ← f(Rj), f(aj, bj)
7: (R2(j+1), a2(j+1), b2(j+1)) ←f(f(R2j)), f(f(a2j, b2j))
8: j ← j + 1
9: if Rj = R2j and bj ≠ b2j then

10: 2 j j

j 2 j

a a
l mod(n)

b b

−
←

−

11: else if bj = b2j then
12: a0 ← random ∈]0; n[
13: b0 ← random ∈]0; n[
14: j ← 0
15: end if
16: end for
17: Return l

The Pollard’s Rho algorithm is known as the best
algorithm to resolve ECDLP in the generic groups. If f
supposed a random map than the expected number of
iterations before a collision occurs is close ton / 2π . In
addition, the memory requirement is negligible and the
running time is exponential.

2.4. Pollard’s Rho Algorithm with Random
Walks

The iteration function used in Pollard’s Rho
algorithm is not random enough (Knuth, 1969), So Teske
proposed a better iteration function by applying more
arbitrary multipliers. Divide E(Fp) into s disjoint subsets
S1, S2,..,Ss of approximately the same size. A good
choice for s seems to be around 20 (Teske, 2001).
Choose 2s random integers ai, bi mod n.

Let Si = {R(X,Y) ∈E(Fp)} X(mod s) = i} and
M i = aiP + biQ So the iteration function is defined as

bellow:

j j 1 i j j if (R) R M R if R S+= = + ∈

Moreover, the pseudocode of the iteration function is:

Algorithm 3. Iteration function

1: function f (R): R1
2: if R∈Si then
3: R1← R +Mi
4: end if
5: return R1
6: end function

Siham Ezzouak et al. / Journal of Computer Science 10 (8): 1575-1581, 2014

1578 Science Publications

JCS

7: function f (R, a, b): a1, b1
8: if R∈Si then
9: a1← ai + a
10: b1←bi + b
11: end if
12: return a1, b1
13: end function

The Pollard Rho original can be modified just by
replacing the old iteration function by the new one.

3. POLLARD’S RHO ALGORITHM
USING STACK

In this section, we explain how we can improve
Pollard’s Rho method using stack. First, we describe
Nivasch’s method for cycle detection (Nivasch, 2004).
Second, we outline the Pollard’s Rho modified and we
show the two methods with random walks. Then we
compare them and select the best one. Finaly, we
implement the proposed algorithm and we make a
comparison with the original algorithm.

3.1. Nivasch’s Cycle-finding Algorithm

The stack has been created and starts out empty. At
each step j, remove all the top entries (xi, i) (pop) from
the stack where xi>xj. If xi = xj is found in the stack, we
are finished. So the cycle length is j-i. Else, add (xj, j) to
the top of the stack (push) and continue.

This algorithm run in linear time, use logarithmic space
and halt in the smallest value of the sequence cycle.

3.2. Pollard’s Rho Algorithm Modified

Our idea is to use stack to store elements generated
by the iteration function, the main algorithm is as
follow: We keep in the stack pairs (i, ai, bi, Ri), the Ri
in the stack forms increasing sequence, so we define
lexicography order on E(Fp). If Rj>Ri where 0<i<j, we
push the pairs (j, aj, bj, Rj) in the stack, otherwise if
Ri>Rj we pop all pairs (i, ai, bi, Ri) until we find Ri = Rj
or Ri<Rj. In the first case, we halt the process and
compute l. In the second case, we push (j, aj, bj, Rj) in
the stack and we generate other points. The details of
the procedure are as follow:

• E(Fp) is into three disjoint sets S1, S2 and S3
• S1, S2 and S3 contain points with y-coordinate value

between [0, p/3[, [p/3, 2p/3[or [2p/3, p[successively
• Let R0 = a0P + b0Q with a0 and b0 two random

integers ∈ [1, n-1] and we define the iterative
function f

i i 1

i i 1 i i 2

i i 3

P R if R S

f (R) R 2R if R S

Q R if R S
+

 + ∈
= = ∈
 + ∈

The sequence ai and bi can be computed as follow:

i i i 1

i 1 i 1 i i i 2

i i i 3

(a 1,b)if R S

(a ,b) (2a ,2b)if R S

(a ,b 1)if R S
+ +

 + ∈
= ∈
 + ∈

If Rj is less than Ri we pop from the stack all Ri where

Rj<Ri else we push Rj on the top of the stack and continue.
We halt the process when Ri = Rj then we find the

fixed point, the logarithm discrete is resolved and

j i

i j

a a
l (modn)

b b

−
=

−
.

The pseudo-code is as follow:

Algorithm 4 . Pollard’s Rho Algorithm with stack

Require: P, Q, S1, S2, S3
Ensure: Integer l such that Q = lP
1: a0←random ∈]0; n[
2: b0← random ∈]0; n[
3: j← 1
4: i ←0
5: R0←a0P + b0Q
6: (Rj, aj, bj)←(f(R0), f(a0, b0))
7: stack←push (i, ai, bi, Ri)
8: for all j such that Rj ≠ Ri do
9: if Rj<Ri then
10: repeat
11: stack.pop()
12: (i; ai; bi;Ri) ←stack:top()
13: until Rj≥Ri
14: end if
15: if Rj>Ri then
16: stack←push(j, aj, bj, Rj)
17: (Rj+1, aj+1, bj+1)←(f(Rj), f(aj, bj))
18: else

19: j i

i j

a a
l mod(n)

b b

−
←

−

20: break
21: end if
22: j ← j + 1
23: end for
24: Return l

Siham Ezzouak et al. / Journal of Computer Science 10 (8): 1575-1581, 2014

1579 Science Publications

JCS

The stack size must not exceeded the memory
allowed for this attack. In this case, this attack will be
discarded and unused. For this reason, we analyse stack
size at time n<µ+λ.

Theorem 2

Nivasch (2004) Given a positive integer n, let Sn be
the stack size at time n and Mn the maximum stack size
up to time n. Then:

• Sn has expectation ln n + O(1)
• Mn is almost surely<δ ln n for any constant δ>e

At each iteration, Nivash’s cycle finding algorithm
stores only one element Xi.

However, in our case, we store (i, ai, bi, Ri) which
means that the memory required is multiplied by 5. Thus
the stack size is approximately 6 ln n+O(1).

3.3. Random Walks

Random walks developed by Teske are known to do
much better than the original iteration function at the
cost of little more computation. Hence, we use a mixture
of random walks and stack in the Pollard’s Rho
algorithm. The steps in Pollard’s Rho modified is
described as follows:

• We partitioned E(Fp) into 20 disjoint sets S1, S2,.. S20
• S1, S2,…,S20 contain points with x-coordinate mod

20 equals to 0, 1, 2, …19 successively
• We generete 20 random couples (ai, bi) and we

compute the points Mi = ai P + biQ
• Let R0 = a0P+b0Q with a0 and b0 two random integers

in [1, n-1] and we define the iterative function f:

i i 1 j i i jf (R) R {M R if R S }+= = + ∈

The sequence ai and bi can be computed as follow:

i i j j i j(a ,b) {(a a ,b b)} if R S= + + ∈

• If Ri+1 is less than Ri we pop from the stack all Ri

where Ri+1 is the least else we push Ri+1 on the top of
the stack and continue

• We halt process when Ri = Rk then we find the fixed
point, the logarithm discrete is resolved and

k i

i k

a a
l (mod n)

b b

−=
−

3.4. Implementation

The Pollard’s Rho has been tested using stack on
modern PC Core Duo with the Software Software
Algebra Geometry Experimentation (SAGE) (Stein,
2010). First, we produce data file containing p prime
numbers and for each prime number we build a secure
elliptic curve and choose arbitrary point P and Q, we
add the X and Y coordinate of P and Q to the file.
Second, we use our approach to compute the discrete
logarithm of Q to the base P. We follow these steps to
implement the algorithm:

• Generate p prime numbers with size between six and

fourteen digits (ten generation for each size)
• Generate random numbers A and B such that (4A3 +

27B2)mod(p) different from 0
• Use p prime numbers, A and B numbers to generate

elliptic curve
• Choose random X coordinate for Points P and Q

from E(Fp) and calculate Y coordinate using
Weierstrass Equation

• Compute integer l such that Q = lP using the method
described above

4. COMPARISON BETWEEN
ALGORITHMS

Analysis algorithm is quite important in computer
programming because there are usually several
algorithms available for a particular application and we
would like to know which is the best.

4.1. Analysis

The most expensive steps in the Pollard’s Rho method
is the evaluation of the iteration function, thus it’s quite
important to compute the number of evaluation of this last
to analyze the performance of the modified method.

The number of iterations in Pollard’s Rho modified is
at most µ+2λ that is roughly 3 n / 8π . However, with

the original Pollard’s Rho is n / 2π but at each
iteration, f has been evaluated three times instead of
one time with the Pollard’s Rho modified. Therefore,
the number of evaluations of f before the algorithm
terminates is 3 n / 2π with the original Pollard’s Rho

and 3 n / 8π with the modified Pollard’s Rho. We
conclude that the running time will be the greatest in
the Pollard’s Rho original. However, the amount of

Siham Ezzouak et al. / Journal of Computer Science 10 (8): 1575-1581, 2014

1580 Science Publications

JCS

memory is increased because with the Pollard’s Rho
original we store only pair (Yi, Y2i) and in each step,
we generate the new pairs and we discard the previous
pairs, so the memory used is negligeable. However,
with Pollard’s Rho modified we store all generated Ri
that form an increasing sequence and we delete the
element from the stack only if the current Ri is less
than this element.

4.2. Experiment Results

In order to validate what we claim, we made
severel experiments on random elliptic curves by
computing the running time and the number of
evaluations of iteration function for each of them. In
Table 1, we found that if the length of p is less than

fifteen digits, the running time of Pollard’s Rho
modified is less than the original Pollard’s Rho. In
Table 2, we will compare the number of evaluations
of the iteration function of two methods, it is the
lowest in Pollard’s Rho with stack. As a consequence,
the Pollard Rho’s modified method performs better
than the original Pollard’s Rho method.

In Table 3, we will compare the running time of
Pollard’s Rho with random walks and Pollard’s Rho
mixing stack and random walks. Our experiment used
prime numbers with size between six and eleven digits
and the experimental results prove that the first method
is lower than the second. We found that mixed walks
using stack perform better than Pollard’s Rho only with
random walks.

Table 1. Running time comparison of new Pollard’s RHO and Original Pollard’s RHO

Digit Pollard’s Rho Pollard’s Rho
No. (p) with stack with Floyd’s
6 0.13816063 0.09353127
7 0.52002090 0.38864080
8 1.55706340 1.10163240
9 5.01763730 3.78752410
10 12.94963120 9.72552160
11 47.00025480 36.28078460
12 173.74268710 120.13733630
13 763.50992900 458.66987140
14 1994.19594744 1499.03777833

Table 2. Number evaluation of function iteration comparison of Pollard’s RHO modified and Pollard’s RHO original
Digit Pollard’s Rho Pollard’s Rho
No. (p) with stack with Floyd’s
6 1147 550
7 4554 2310
8 13376 6208
9 38560 21502
10 147098 77176
11 456563 214430
12 796299 416246
13 2717168 1477922
14 12819430 6433273

Table 3. Running time of Pollard’s Rho with random walks and mixing stack and random walks

Digit Pollard with Random Walks
No. (p) Random Walks stack
6 3.9533380 1.3746310
7 17.4098880 11.2679040
8 44.5107820 30.9887360
9 210.4911547 108.6511900
10 638.0878780 447.9731964
11 3834.4660393 1618.8607724

Siham Ezzouak et al. / Journal of Computer Science 10 (8): 1575-1581, 2014

1581 Science Publications

JCS

5 CONCLUSION

In this study we have outlined a new algorithm to
speed-up Pollard’s Rho attack by make use of first
Nivasch’s cycle detection and second mixing Nivasch’s
cycle detection and random walks. However, this variant
is not appropriate if the memory used is limited. For
further research, we intend to improve Pollard’s Rho
method using at the same time cycle detection, random
walks and Parallelization.

6. REFERENCES

Brent, R.P., 1980. An improved monte carlo
factorization algorithm. BIT Numerical Math., 20:
176-184. DOI: 10.1007/BF01933190

Cheon, J.H., J. Hong and M. Kim, 2012. Accelerating
Pollard’s Rho algorithm on finite fields. J. Cryptol.,
25: 195-242. DOI: 10.1007/s00145-010-9093-7

Coppersmith, D., 1984. Fast evaluation of logarithms in
fields of characteristic two. IEEE Trans. Inform.
Theory, 30: 587-594. DOI:
10.1109/TIT.1984.1056941

Duursma, I.M., P. Gaudry and F. Morain, 1990.
Speeding up the discrete log computation on curves
with automorphisms. Proceedings of the
International Conference on the Theory and
Application of Cryptology and Information Security,
Nov. 14-18, Springer Berlin Heidelberg, Singapore,
pp: 103-121. DOI: 10.1007/978-3-540-48000-6_10

Floyd, R.W., 1962. Algorithm 97: Shortest path. Commun.
ACM, 5: 345-345. DOI: 10.1145/367766.368168

Hankerson, D., S. Vanstone and A.J. Menezes, 2004.
Guide to Elliptic Curve Cryptography. 1st Edn.,
Springer-Verlag, New York, ISBN-10:
038795273X, pp: 311.

Harrison, A., 2010. Square-Root Methods for the
Discrete Logarithm Problem. African Institute for
Mathematical Sciences.

Knuth, D.E., 1969. The art of Computer Programming. 2nd
Edn., Addison-Wesley Pub. Co., Reading, pp: 634.

Nivasch, G., 2004. Cycle detection using a stack. Inform.
Process. Lett., 90: 135-140. DOI:
10.1016/j.ipl.2004.01.016

Oorschot, P.C.V. and M.J. Wiener, 1999. Parallel
collision search with cryptanalytic applications. J.
Cryptol., 12: 1-28. DOI: 10.1007/PL00003816

Pollard, J.M., 1978. Monte carlo methods for index
computation $({\rm mod}\p)$. Math. Comput., 32:
918-924. DOI: 10.1090/S0025-5718-1978-0491431-9

Shanks, D., 1971. Class Number, a Theory of
Factorisation and Genera. In: Symposia in Pure
Math-Ematics, Donald, J. lewis, (Eds.), Lecture
Notes in Computer Science, American Mathematical
Society (AMS), pp: 415-440.

Stein, W., 2010. SAGE mathematical software. Version 4.6.
Teske, E., 1998. Speeding up Pollards rho Method for

Computing Discrete Logarithms. In: ANTS 1998.
LNCS, Buhler, J.P., (Eds.), Springer, Heidelberg,
pp: 541-554.

Teske, E., 2001. On random walks for Pollard’s RHO
method. Mathem. Comput., 70: 809-825.

