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ABSTRACT 

In kernel methods, choosing a suitable kernel is indispensable for favorable results. No well-founded 
methods, however, have been established in general for unsupervised learning. We focus on kernel Principal 
Component Analysis (kernel PCA), which is a nonlinear extension of principal component analysis and has 
been used electively for extracting nonlinear features and reducing dimensionality. As a kernel method, 
kernel PCA also suffers from the problem of kernel choice. Although cross-validation is a popular method 
for choosing hyperparameters, it is not applicable straightforwardly to choose a kernel in kernel PCA 
because of the incomparable norms given by different kernels. It is important, thus, to develop a well-
founded method for choosing a kernel in kernel PCA. This study proposes a method for choosing 
hyperparameters in kernel PCA (kernel and the number of components) based on cross-validation for the 
comparable reconstruction errors of pre-images in the original space. The experimental results on 
synthesized and real-world datasets demonstrate that the proposed method successfully selects an 
appropriate kernel and the number of components in kernel PCA in terms of visualization and 
classification errors on the principal components. The results imply that the proposed method enables 
automatic design of hyperparameters in kernel PCA. 
 
Keywords: Kernel Principal Component Analysis, Pre-Image, Kernel Choice, Cross-Validation 

 
1. INTRODUCTION 

Dimension reduction is an essential part of modern data 
analysis, where we often need to handle large dimensional 
data. The purpose of dimension reduction may be 
visualization, noise reduction and pre-processing for further 
analysis. Among others, the Principal Component Analysis 
(PCA), (Pearson, 1901) is one of the most famous methods 
to reduce the dimensionality by projecting data onto a low-
dimensional subspace with largest variance. 

Kernel Principal Component Analysis (kernel PCA) 
(Scholkopf et al., 1998) has been proposed as a nonlinear 
extension of the standard PCA and has been applied to 
various purposes including feature extraction, denoising 
and pre-processing of regression. Kernel PCA is an 
example of the so-called kernel methods (Scholkopf and 
Smola, 2002), which aim to extract nonlinear features of 

the original data by mapping them into a high-dimensional 
feature space Reproducing Kernel Hilbert Space (RKHS). 
This mapping is called feature map. A number of methods 
have been proposed as kernel methods, which include 
Support Vector Machine (SVM), (Boser et al., 1992), 
kernel ridge regression (Saunders et al., 1998), kernel 
canonical correlation analysis (Akaho, 2001; Bach and 
Jordan, 2002; Alam et al., 2010), A novel multiclass 
SVM algorithm using mean reversion and coefficient of 
variance (Premanode et al., 2013) and so on. 

It is well known that the performance of a kernel 
method is dependent highly on the choice of kernel. For 
supervised learning such as SVM and kernel ridge 
regression, cross-validation is popularly used for 
choosing the hyperparameters of a kernel algorithm, such 
as parameters in a kernel (e.g., bandwidth of Gaussian 
RBF kernel), with the objective function of learning. On 
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the other hand, no well-founded methods have been 
proposed in general for unsupervised learning such as 
kernel PCA and kernel canonical correlation analysis. 

This study focuses on kernel PCA and proposes a 
method for choosing hyperparameters: Parameters in a 
kernel and the number of kernel principal components. 
In the case of standard linear PCA, the algorithm can be 
formulated as minimization for self-regression with 
reduced rank and cross-validation approaches have been 
proposed for choosing the number of components 
(Krzanowski, 1987; Wold, 1978). In contrast, while a 
similar regression formulation is possible for kernel 
PCA, the crossvalidation approach is not applicable 
straightforwardly for choosing a kernel in kernel PCA: 
The error of the regression is given by the RKHS 
norm of the feature space associated with the kernel 
and thus the cross-validation errors are not 
comparable for different kernels. 

As detailed in section 2, the proposed method for 
choosing the hyperparameters of kernel PCA uses 
crossvalidation for the reconstruction errors of pre-
images in the original space. The pre-image of a 
feature vector is defined by an approximate inverse 
image of the feature map (Mika et al., 1999). Various 
methods have been already proposed to calculate the pre-
image of a feature vector, as explained in section 2.1 
(Mika et al., 1999; Kwok and Tsang, 2003; Bakir et al., 
2004; Rathi et al., 2006; Arias et al., 2007; Zheng et al., 
2010). In the proposed method, given an evaluation 
data in the cross-validation, we compute the pre-image 
of the corresponding feature vector projected onto the 
subspace given by kernel PCA and then evaluate the 
reconstruction error of the evaluation point. A kernel 
and the number of components corresponding to the 
minimum average reconstruction error are chosen as 
the optimum ones. We demonstrate the effectiveness of 
this method experimentally with various synthesized 
and real-world datasets. 

1.1. Kernel PCA 

In kernel methods, the nonlinear feature map is given 
by a positive definite kernel, which provides nonlinear 
methods for data analysis with efficient computation. A 
symmetric kernel k(.,.) defined on a space x is called 
positive definite if for arbitrary number of points x1,…, 
xn∈x the Gram matrix (k(xi, xj))ij is positive semi-
definite. It is known (Aronszajn, 1950) that a positive 
definite kernel k is associated with a Hilbert space H, 
called Reproducing Kernel Hilbert Space (RKHS), 
consisting of functions on x so that the function value is 

reproduced by the kernel; namely, for any function f∈H 
and point x∈x, the function value f (x) is given by: 
 

( ) ( ) ( )
H

f x f . ,k ., x=  (1) 

 
where, 〈,〉H in the inner product of H. Equation 1 is called 

the reproducing property. Replacing f with ( )k .,xɶ  yields 

( ) ( ) ( )
H

k x,x k .,x ,k ., x=ɶ ɶ for any x,x x∈ɶ . 

 To transform data for extracting nonlinear features, 
the mapping  Φ: x→H is defined by: Φ(x) = k(.,x). 
Which is regarded as a function of the first argument. 
This map is called feature map and the vector Φ (x) in H 
is called feature vector. The inner product of two feature 

vectors is then given by ( ) ( ) ( )
H

x , x k x,xΦ Φ =ɶ ɶ . This is 

known as the kernel trick, serving as a central equation 
in kernel methods. By this trick the kernel can evaluate 
the inner product of any two feature vectors efficiently 
without knowing an explicit form of either Φ(.) or H. 
With this computation of inner product, many linear 
methods of classical data analysis can be extended to 
nonlinear ones with efficient computation based on 
Gram matrices. Once Gram matrices are computed, the 
computational cost does not depend on the imensionality 
of the original space. 
 Kernel PCA (Scholkopf et al., 1998) conducts 
principal component analysis for the feature vectors. 
More precisely, given data points Xi∈x, i = 1, 2,..,n, 
kernel PCA outputs a set of principal functions by the 
following two-step procedure: (i) transform the data 
nonlinearly into the feature space H, i.e., Xi → Φ(X i), (ii) 
solve the linear PCA problem for the feature vectors, i.e., 
solve the directions in H for which the variance of 
{ Φ(X i)} along those directions is maximized. The 
algorithm of kernel PCA is described as follows 
(Scholkopf et al., 1998). Let 

n

jj 1

1
(X) : (X) (X )

n =
Φ = Φ − Φ∑ɶ  be the centered feature 

vector. The estimated covariance matrix is given by 

( ) ( )Tn

i ii 1

1
G X X

n =
= Φ Φ∑ ɶ ɶ with the centered feature 

vectors. The principal directions g∈H are given by the 
unit eigenvectors corresponding to the largest 
eigenvalues and thus the problem is converted to solving 
the eigenequation: 

 

Gg g= λɶ  
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By using the kernel trick, this problem is reduced to 
the generalized eigenproblem that finds 

n

i ii 1
g (X )

=
= α Φ∑ ɶ such that Equation 2: 

 
TM n , subject to M 1α = λα α α =ɶ  (2) 

 
where, M is the n×n centered Gram matrix defined by M 

= CKC with Kij = k(Xi, X j) and T
n n n

1
C I 1 1

n
= − . Here In is 

the identity matrix of size n and 1n is the vector with n 
ones. The constraint αTMα = 1 corresponds to the 
condition 〈gi, gh〉 = δjh, where δjh is the Kronecker’s delta. 

Let  λ1≥λ2≥…≥λn≥0 denote the ordered 
eigenvalues of M with associated eigenvectors 
α1,..,αn, where αj = (α1j…αnj)

T. The vectors are 
normalized so that T

j h jhMαα = δ . The j-th principal 

direction gj ∈ H is then given by: 
 

n

j ij i
i 1j

1
g (X )

=

= α Φ
λ
∑ ɶ  

 
and the j-th principal component of the data point X i is 
given by: 
 

i i j j ij

j

1
g , (X ) (M )αΦ = = λ α

λ
ɶ  

 
For a test point X out of the sample, the j-th principal 

component is similarly given by: 
 

( ) ( )
n

j i ij
i 1j

1
g , x k x,x

=

Φ = α
λ
∑ ɶɶ  

 

where, ( ) ( ) ( ) ( )n n
i 1 i i 1 i

1 1
k x, y k x,y k x,X k X ,y

n n= == − −∑ ∑ɶ  

( )n
i, j 1 i i2

1
k X ,X

n =+ ∑ is the centered kernel. 

1.2. Choice of Kernel 

The result of kernel PCA obviously depends on the 
choice of kernel. It is often the case that the kernel has 
some parameters like the popular examples shown in 
Table 1. In such a case, these parameters may have 
strong influence on the results. To depict the 
influence, using Wine data (see section 3) we show 
the plots of the first two kernel principal components 
with different values of inverse band width parameter 

s in Gaussian RBF kernel and degree d and constant c 
in the polynomial kernel (Fig. 1). From the figure, we 
see that in both the kernels the results of kernel PCA 
depend strongly on the parameters and an appropriate 
choice is indispensable for the method to give 
reasonable low-dimensional representation of data. 

It is known that the standard PCA can be formulated 
as a self-regression or reconstruction problem; namely, 
the first r principal components of centered data 

{ }n d
i 1

X ⊂ ℝ are equal to the projections BXi given by the 

reduced rank regression: 
 

n 2 T
i i rA,B

i 1

min X ABX Subject to BB I
=

− =∑  

 
where, A and B are d×r and r×d matrices, respectively. 
Based on this regression formulation, the cross validation 
approach (Stone, 1974) has been used for the standard 
PCA to choose the number of components (Wold, 1978; 
Krzanowski, 1987) by minimizing the above self-
regression errors. 

In a similar manner, the kernel PCA can be also 
formulated as the self-regression of the centered feature 
vectors. In fact, it is easy to see that the first r principal 
directions are given by: 
 

( )
j j

2
n r

i j j i
f ,g , H i 1 j 1 H

min (X ) f g , X
∈ = =

Φ − Φ∑ ∑ɶ ɶ  

 
where, fj, gj∈H with 〈gi, gl〉 = δjl. One might expect that 
this self-regression formulation could be applied to the 
cross-validation method for choosing a kernel in kernel 
PCA. This is not possible, however, because the above 
regression error is measured by the RKHS norm given 
by the kernel and thus the errors are not comparable 
among different kernels. 

The goal of this study is thus to propose a method 
of choosing a kernel (and the number of components) 
in kernel PCA by introducing a criterion comparable 
for different kernels. 
 
Table 1. Examples of popular kernels with parameters 

Name of kernel k(x,x)ɶ  Parameter 

Gaussian RBF kernel  
2s x xe− − ɶ  s>0 

Polynomial kernel  ( )d
x,x c+ɶ   c 0,d≥ ∈ℕ  
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 (a) (b) (c) (d) 
 

 
 (e) (f) (g) (h) 
 
Fig. 1. Plots of the first two kernel principal components for wine data: Gaussian RBF kernel is used in the top panel (a) s = 0.05 (b) 

s = 0.75 (c) s = 1 (d) s = 10 and polynomial kernel in the bottom (e) c = 0.001, d = 2 (f) c = 10, d = 2 (g) c = 1, d = 3 (h) c = 1, d = 4 
 

2. MATERIALS AND METHODS 

The proposed method for choosing a kernel and the 
number of components uses cross-validation by the 
comparable reconstruction errors in the original space. 
To evaluate the errors, we need to solve the pre-image of 
the feature vectors projected on the subspace given by 
the principal directions. We first give a brief review of 
pre-image methods. 

2.1. Pre-Image of Kernel PCA 

While many kernel methods provide their output in 
the form of feature vectors in the RKHS, in some 
problems we want to find a point in the original space. 
Mika et al. (1999), kernel PCA is applied to a denoising 
task, in which an image corresponding to the RKHS 
vector obtained by kernel PCA is used as a denoised 
version of the original image. 

Given a vector f in RKHS H, it is in general not possible 
to find a rigorous pre-image, that is a point X in the original 
space such that Φ(X) = f holds exactly. We thus define an 
(approximate) pre-image of f by the minimize of: 
 

( )
HZ H

min f Z
∈

− Φ  

 
In the original paper, Mika et al. (1999) have used the 

fixed-point iterative method. Many other approaches 
have been also proposed to solve the pre-image problem. 
A non-iterative approach of distance constraint has been 
proposed by Kwok and Tsang (2003), while it is 
dependent on the choice of neighborhood. An approach 

of learning a pre-image map was developed by Bakir et al. 
(2004). To apply this technique, we need an additional 
regularization parameter. Some authors have extended 
these approaches in different ways (Rathi et al., 2006; 
Arias et al., 2007; Zheng et al., 2010). More recently, a 
two-stage closed-form approach has been also proposed 
(Honeine and Richard, 2011). These advanced methods, 
however, usually require some tuning parameters. We 
use the fixed-point method in our proposed method, 
since it has a simple form for Gaussian RBF kernel. 

We here explain the fixed-point method for solving 
the pre-image problem in the kernel PCA setting. Let: 
X1, X2, …….. , Xn m∈ℝ  be the training data for kernel 
PCA and j i ji ig (X )( j 1,..., l)= α Φ =∑ ɶ  be the unit 

principal directions. The projector onto the subspace 

spanned by { }l

j j 1
g

=
 is denoted by Pl, i.e., 

l

l j jj 1
P f f ,g g

=
=∑ . Given test point X in the original 

space, x the feature vector projected onto the principal 
subspace is given by lP (X)Φɶ . The pre-image of this vector 

in the RKHS is defined by the minimizer of Equation 3: 
 

( ) ( ) ( ) 2

l H
Z P X Zρ = Φ − Φɶ ɶ  (3) 

 
It is easy to see that: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

lH H

2

l i iH
i 1

Z Z 2 Z ,P X

P X k Z,Z 2 k Z,X
=

ρ = Φ − Φ Φ

+ Φ = − γ + Ω∑

ɶ ɶ ɶ

ɶ ɶɶ
 (4) 
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where, i ji jh hj,h
k (X ,X)γ = α α∑ ɶ and Ω is a constant 

independent of Z. 
For Gaussian RBF kernel, Equation 4 is equal to 

2

is X Zn

ii 1
(Z) 1 2 e

− −

=
ρ = − γ + Ω∑  and by setting the 

derivative zero we obtain the fixed-point algorithm: 
 

2

i t

2

i t

s X Zn n
i 1 i i 1 i i

t 1 i ns X Zn j 1 j
j 1 i

e a X
Z X

ae

− −
= =

+
− −

=
=

γ
= =

γ

∑ ∑
∑∑

 (5) 

 

where, 
2

i ts X Z

i i e
− −α = γ . 

In the case of polynomial kernels, the fixed point 
condition does not derive such an iterative form as the 
Gaussian RBF kernel. We thus use the steepest descent 
method for Equation 4 in our experiments on polynomial 
kernels in section 3.4. 

2.2. Method for Hyperparameter Choice 

For the objective function of cross-validation, we 
use reconstruction errors between a test point X and 
the corresponding pre-image Z of the projected feature 
vector lP (X)Φɶ  given by kernel PCA. The 
reconstruction errors are measured by the distance of 
the original space mx = ℝ . By this approach, unlike the 
regression error in the RKHS, we can consider 
comparable errors for different kernels. The 
architecture of the proposed method is given in Fig. 2. 
The algorithm of the kernel choice in kernel PCA is 
given in Fig. 3. We describe the Leave-One-Out Cross 
Validation (LOOCV) for simplicity, but the extension 
to the general K-fold cross-validation is 
straightforward. By a similar algorithm we are able to 
select the number of principal components or any 
other hyperparameters. 

In solving approximate pre-images, the fixed-point or 
the steepest descent method may be trapped by local 
minima. To avoid this problem, we use five initial points 
for the optimization algorithm and choose the best one. 
As shown in the next section, the obtained pre-images 
give appropriate results. 

Note also that the fixed-point method may not 
work well for a very large inverse-bandwidth s, since 
the term of the nearest Xi is dominant in the right hand 
side of Equation 5 so that Zt may stay at Xi. In the 
experiments, we set a reasonable parameter range of s 
by checking the kernel PCA results with two 
components. 

 
 
Fig. 2. Architecture of kernel choice in kernel PCA 
 

 
 
Fig. 3. Algorithm of kernel choice in kernel PCA with 

Gaussian RBF kernel 
 

3. RESULTS 

We apply the proposed method for choosing the 
parameters in a kernel and the number of principal 
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components in kernel PCA for various datasets. Gaussian 
RBF kernel is used except section 3.4, where polynomial 
kernel is discussed. We use two synthesized and seven 
real-world datasets, which are summarized in Table 2. 
For the real world datasets, we standardize each variable 
of data before applying kernel PCA. In solving pre-
images, we take initial values from the uniform 
distribution on the interval [-1; 1]. The detailed 
discussions on the results will be shown in section 4. 

3.1. Synthesized Data 

We use two synthesized datasets to illustrate the 
effectiveness of the proposed method. Each dataset is of 
two dimension and have three clusters. 

Synthesized data-1. About 175 data are generated 
along three circles of different radii with small noise: 
 

( )
( )

i

i i i

i

cos Z
X r

sin Z

 
 = + ∈
 
 

 (6) 

 
where, ri = 1, 0.5 and 0.25, for i = 1,…,100, i = 
101,….,150 and i = 151,….,175, respectively, Zi ∼ U[-π, 
π] and ∈i ∼ N(0, 0.01 I2) independently. 

Synthesized data-2. This is an example taken from 
(Scholkopf and Smola, 2002). The dataset has 150 
points, which consists of 50 points from each of three 
Gaussian distributions with means (-0.5, -0.1), (0, 0.7) 
and (0.5, 0.1) and variance 0.1. 

We prepare the inverse bandwidth parameters 
s∈{0.05, 1, 5, 10, 25, 50} and s∈{1, 5, 10, 20, 50, 
100, 200} for Synthesized data-1 and Synthesized 
data-2, respectively and calculate the LOOCV 
reconstruction errors by pre-images. To see the 
variations over sampling, we generate 100 samples for 
each case of data 1 and 2 and make boxplots. Figure 4 
shows (a): Scatter plots of a sample of the original 
datasets, (b): The boxplots and (c,d): The scatter plots 
of first two kernel principal components with the best 
kernel bandwidths (c) and with other ones (d). We can 
see by comparing (c) and (d) that the proposed method 
chooses a hyper parameter that can separate three 
clusters clearly, which suggests the effectiveness of 
the method. Note that kernel PCA does not use the 
explicit information of the three clusters, while they 
are displayed with different colors and markers for 
visualization purpose. 
 
Table 2. The configuration of datasets 

Dataset # data  Dimension # classes 
Synthesized-1 175 2 (3) 
Synthesized-2 150 2 (3) 
Wine 178 13 3 
Diabetes 145 3 3 
BUPA 345 6 2 
Fertility 100 9 2 
Zoo 101 16 7 
USPSG-500 500 256 5 
Food 961 6 -  

 

 
 (a) (b) (c) (d) 
 
Fig. 4. Kernel PCA for Synthesized data-1 (top) and Synthesized data-2 (bottom), (a) scatter plot for the two variables of a sample. 

(b) boxplots of the LOOCV reconstruction errors for 100 samples, (c,d) scatter plot of the first two kernel principal 
components using (c) the best inverse kernel widths (s = 5, 10) and (d) larger bandwidths s = 50, 200 
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3.2. Computational Cost 

To illustrate the computational cost of the 
proposed method, the CPU time (in second) for six 
different sizes of data (n) and five numbers of 
components (l) using synthesized data-2 are shown in 
Table 3. The CPU time increases as the sample size is 
larger, since the computation of LOOCV and the 
optimization of pre-images is heavier for larger 
samples. The configuration of the computer is Intel 
(R) Core (TM) i7 CPU 920@ 2.67 GHz., memory 
12.00 GB and 64-bit operating system. We have used 
‘kernlab’ package in R program for implementation of 
the kernel PCA. Gaussian RBF kernel is used inverse 
band width s = 50. 

3.3. Real World Problems 

We first apply the proposed method to five datasets: 
Wine, Diabetes, BUPA liver disorders, Fertility and Zoo, 
the former three of which are taken from Izenman (2008) 
and available at the website of the book and the latter 
two are taken from UCI Machine Learning Repository 
(Bache and Lichman, 2013). 

As the kernel PCA is an unsupervised method, the 
evaluation of results is not straightforward. Since 
kernel PCA is often used as a pre-processing 
technique for regression and classification, we 
evaluate the LOOCV classification errors with the k-
NN classifier (k = 5) to see the appropriateness of the 
hyper parameters chosen by the proposed method. 
Note that we do not use the class labels for kernel 
PCA, but use them only for evaluating the 
classification errors. 

We consider a set of inverse bandwidths s∈{0.05, 
0.10, 0.25, 0.50, 0.75, 1.00, 10.00} and six numbers of 
kernel principal components l ∈ {2, 3, 4, 5, 8, 10} for 
each dataset. The LOOCV reconstruction errors used in 
the proposed method and the LOOCV classification 

errors for all the hyperparameters are shown in Table 4, 
from which we see that the selected hyperparameters 
attain the minimum or close to the minimum 
classification error for all the datasets. This suggests that 
the proposed method provides appropriate 
hyperparameters that maintain the cluster structure 
effective for the classification tasks. 

We next apply the proposed method for larger 
datasets in dimensionality and sample size. USPS data 
(Song et al., 2008) consists of 16×16 gray scale images 
of handwritten digits and thus the dimensionality is 256. 
The original dataset has 2007 images, but we draw 
100 images from each of five digits 1, 2, 3, 4, 5 and 
add Gaussian noise with mean 0 and standard 
deviation 0.01. The dataset is referred to as USPSG-
500. We take seven inverse bandwidths s∈{0.0001, 
0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025} and eight 
numbers of kernel principal components l∈{2, 4, 8, 
16, 32, 64, 128, 256}. The LOOCV reconstruction 
errors in the proposed method are shown in Table 5, 
in which the minimum is attained at s = 0.01 and l = 
64. The kNN (k = 5) misclassification rates estimated 
with LOOCV are also listed in the table. 

We next apply the proposed method to the 
nutritional value of food, which is not for 
classification. The dataset has 961 food items with six 
nutritional components as attributes (Izenman, 2008). 
We consider seven values of inverse bandwidths s ∈ 
{0.001, 0.1, 0.5, 0.75, 1, 5, 10, 100, 200} and five 
numbers of components l ∈ {1, 2, 3, 4, 5, 6}. The 
results are displayed in Table 6. The smallest LOOCV 
reconstruction error is attained at s = 0.5 and l = 2. 
Since, unlike classification tasks, it is not 
straightforward to evaluate the performance of the 
proposed method, we show the scatter plots of the first 
two kernel principal components using three values of 
inverse bandwidths s∈{0.001, 0.5, 200} in Fig. 5.  

 
Table 3. Computational cost (in second) of the proposed method for synthesized data-2 with di-erent data sizes (n) and the numbers 

of components (l) 

N/l 2 4 6 8 10 

100 20.3 20.3 22.3 28.5 29.0 
200 86.8 87.0 102 110 152 
400 512 549 610 684 896 
600 1.54×103 1.55×103 1.56×103 1.63×103 2.23103 
800 3.39×103 3.40×103 3.67×103 3.51×103 4.77×103 
1000 6.06×103 6.51×103 6.50×103 6.52×103 1.07×104 
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Table 4. Five real-world data sets. LOOCV reconstruction errors and LOOCV classification errors for inverse bandwidths (s) and the 
number of components (l), the minimum values are written in bold fonts and the classification errors with the 
hyperparameters chosen by the proposed method are underlined 

 Reconstruction errors    Classification errors 
 ------------------------------------------------------------------- ------------------------------------------------------------------------------ 
S/l 2 3 4 5 8 10 2 3 4 5 8 10 
Wine 
0.05 3.749 3.846 3.952 3.713 3.893 4.040 5.056 3.933 3.371 2.809 3.371 2.809 
0.10 3.418 3.495 3.582 3.560 3.556 3.845 2.247 2.809 3.371 2.247 2.809 3.371 
0.25 3.422 3.596 3.531 3.885 3.584 3.733 2.247 2.809 4.494 3.933 5.618 5.618 
0.50 3.518 3.603 3.651 3.719 3.790 3.723 3.933 5.057 6.180 5.618 7.303 8.427 
0.75 3.789 3.703 3.751 3.858 3.882 3.939 25.281 7.303 6.180 6.180 7.865 9.551 
1.00 3.788 3.923 3.883 3.919 3.807 3.825 33.708 30.337 9.551 8.427 9.551 10.674 
10.00 4.131 4.070 4.005 4.073 4.119 4.134 39.888 41.573 42.697 41.011 38.764 42.135 
Diabetes 
0.05 2.343 2.398 2.183 7.591 16.027 20.605 20.690 21.310 21.310 20.000 20.000 20.000 
0.10 1.761 1.872 1.795 1.713 4.879 6.913 23.448 21.310 21.310 24.828 24.138 25.517 
0.25 1.598 1.467 1.660 1.636 2.066 2.751 20.690 20.000 21.310 20.690 21.379 20.000 
0.50 1.505 1.318 1.492 1.476 1.597 1.712 22.069 20.690 20.000 21.379 21.379 21.379 
0.75 1.555 1.494 1.560 1.519 1.575 1.716 21.379 20.000 22.069 22.069 22.069 21.379 
1.00 1.626 1.617 1.609 1.530 1.647 1.512 20.690 23.448 24.138 20.690 20.000 20.690 
10.00 2.362 2.167 2.152 2.098 2.292 2.269 37.241 37.241 40.000 34.483 36.552 37.241 
BUPA 
0.05 2.964 2.751 2.758 2.190 5.462 5.300 42.319 43.479 40.580 42.029 42.029 42.029 
0.10 2.439 2.232 2.325 2.042 4.266 4.838 48.116 46.667 41.739 47.826 48.116 47.826 
0.25 2.064 2.042 2.012 2.123 2.175 2.269 50.145 48.696 42.029 50.145 50.145 50.145 
0.50 2.138 2.148 2.077 2.238 2.166 2.071 50.145 46.957 44.638 49.855 49.855 49.855 
0.75 2.253 2.196 2.147 2.364 2.138 2.241 53.333 42.609 49.855 53.333 53.333 53.623 
1.00 2.128 2.177 2.154 2.282 2.256 2.123 50.145 43.189 47.826 50.145 50.145 50.145 
10.00 2.464 2.447 2.467 2.427 2.392 2.481 44.058 44.928 44.928 44.058 44.058 44.058 
Fertility 
0.05 3.955 4.132 4.100 3.911 3.876 3.811 13.000 14.000 16.000 13.000 13.000 13.000 
0.10 3.570 3.568 3.560 8.067 3.490 3.428 15.000 11.000 12.000 15.000 15.000 15.000 
0.25 3.325 3.330 3.349 3.279 3.442 3.407 11.000 14.000 15.000 11.000 11.000 11.000 
0.50 3.601 3.592 3.630 3.713 3.764 3.559 13.000 11.000 11.000 13.000 13.000 13.000 
0.75 3.896 3.848 3.911 4.031 3.624 3.673 10.000 10.000 12.000 10.000 10.000 10.000 
1.00 3.989 3.936 3.892 3.919 3.774 3.819 12.000 15.000 13.000 12.000 12.000 12.000 
10.00 3.678 3.663 3.568 3.714 3.489 3.500 12.000 15.000 13.000 12.000 12.000 12.000 
Zoo 
0.05 4.581 4.644 5.460 6.051 7.434 5.957 12.871 12.871 13.861 12.871 11.881 11.881 
0.10 3.861 3.858 3.816 3.820 4.886 5.369 14.851 11.881 12.871 15.842 16.832 14.851 
0.25 3.607 3.615 3.632 3.748 3.863 3.871 19.802 15.842 10.891 17.822 19.802 19.802 
0.50 3.572 4.078 3.460 3.637 3.935 3.667 22.772 12.871 11.881 22.772 22.772 21.782 
0.75 3.523 3.591 3.801 3.750 3.893 4.140 27.723 27.723 26.733 26.733 24.752 24.752 
1.00 3.738 3.853 3.866 3.999 3.896 4.013 24.752 25.743 30.693 22.772 24.752 25.743 
10.00 4.013 4.049 3.992 4.024 4.037 4.006 56.436 53.465 48.514 55.446 55.446 56.436 

 

3.4. Polynomial Kernel 

We use the proposed method for choosing the 
hyperparameters in the polynomial kernel. Using Wine 
dataset, we consider seven values of offset parameters c ∈ 

{0.1, 0.5, 1, 5, 10, 25, 50}, two values of degree d ∈ {2, 
3} and four numbers of kernel principal components l ∈ 
{2, 3, 4, 5}. The results are given in Table 7. We observe 
that the smallest LOOCV reconstruction error is attained 
in the area close to the minimum classification error. 



Md. Ashad Alam and Kenji Fukumizu / Journal of Computer Science 10 (7): 1139-1150, 2014 

 
1147 Science Publications

 
JCS 

Table 5. USPSG-500. LOOCV reconstruction errors and LOOCV classification errors (bold numbers indicate the minimum value) 
s/l 2 4 8  16 32 64 128  256 
Reconstruction errors in the proposed method 
0.0001 1139.810 1203.316 1159.020 752.494 134.936 130.678 143.080 534.779 
0.0010 129.168 129.627 124.333 110.106 143.470 82.734 69.729 203.068 
0.0025 42.422 40.708 44.493 38.588 51.707 26.516 92.497 107.448 
0.0050 18.967 21.120 22.642 20.010 18.957 20.592 26.828 33.991 
0.0075 18.989 15.903 16.963 14.804 14.369 13.909 14.879 17.523 
0.0100 16.648 15.081 14.161 12.785 12.485 12.444 15.787 14.270 
0.0250 13.339 13.498 13.149 13.085 13.915 14.173 14.086 14.595 
Classification errors (%) 
0.0001 32.000 11.200 4.600 2.000 3.000 3.000 3.400 4.000 
0.0010 31.000 12.200 4.400 2.200 2.800 3.000 3.000 4.200 
0.0025 31.400 11.600 4.400 2.600 2.200 3.000 3.200 3.400 
0.0050 31.600 11.000 4.600 3.00 1.800 2.400 3.600 4.400 
0.0075 28.200 11.400 4.800 3.400 1.800 2.800 3.200 5.200 
0.0100 31.000 15.200 4.400 3.800 3.000 2.200 2.600 5.000 
0.0250 45.800 25.400 7.600 5.200 5.600 6.800 5.200 15.600 

 
Table 6. LOOCV reconstruction errors for food data 

S/l 1 2 3 4 5 6 

0.001 20.226 18.741 18.334 18.361 18.462 13.901 
0.1 2.215 2.024 1.977 1.840 1.849 1.956 
0.5 1.923 1.738 2.143 2.097 2.034 1.922 
0.75 1.817 1.908 1.883 1.891 1.850 1.930 
1 1.854 1.844 1.813 1.798 2.050 1.927 
5 2.306 2.214 2.128 2.229 2.203 2.238 
10 2.380 2.286 2.200 2.239 2.808 2.259 
100 1.987 1.982 1.943 2.014 2.088 2.234 
200 2.070 2.066 2.097 2.123 2.234 2.192 
 
Table 7.  Polynomial kernel for Wine data: LOOCV reconstruction errors and the LOOCV classification errors (bold numbers 

indicate the minimum value) 
 l = 2  l = 3  l = 4  l = 5 
 ----------------------------- ----------------------------- --------------------------- ----------------------------- 
c/d 2 3 2 3 2 3 2 3 

Reconstruction errors in the proposed method 
0.1 4.165 3.807 4.059 3.818 4.108 3.821 4.153 3.805 
0.5 4.051 3.781 3.978 3.758 4.003 3.768 3.952 3.805 
1.0 3.976 3.837 3.888 3.869 3.966 3.709 4.023 3.819 
5.0 3.752 3.859 3.759 3.813 4.108 3.803 4.153 3.739 
10.0 3.784 3.780 3.740 3.810 4.003 3.762 3.952 3.792 
25.0 3.755 3.820 3.709 3.730 3.966 3.768 4.023 3.775 
50.0 3.761 3.782 3.735 3.724 3.750 3.777 3.736 3.743 
Classification errors (%) 
0.1 18.539 17.978 16.292 3.933 15.730 5.056 15.730 4.494 
0.5 14.045 17.978 11.798 3.933 11.798 3.933 14.045 4.494 
1.0 15.730 16.292 12.360 3.371 11.798 3.933 8.989 3.933 
5.0 2.247 3.371 3.933 3.371 3.933 3.371 1.685 3.933 
10.0 2.809 1.685 3.371 2.809 1.685 3.371 2.247 2.809 
25.0 3.933 3.371 2.809 2.247 4.494 2.247 2.247 2.247 
50.0 4.494 3.933 2.809 2.809 4.494 2.247 2.247 2.247 
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 (a) (b) (c) 
 

Fig. 5. Visualization of the first two kernel principal components of food data (a) s = 0.001, (b) s = 0.5 and (c) s = 200 
 

4. DISCUSSION 

While kernel PCA has been applied in various areas of 
machine learning, such as dimensionality reduction, feature 
extraction, de-noising and so on (Scholkopf and Smola, 
2002; Rathi et al., 2006; Hofmann, 2007; Zheng et al., 
2010; Feng and Liu, 2013), in most cases the kernel and the 
number of features are chosen in a heuristic way. Recently, 
multi-kernel PCA (Ren et al., 2013) has been also 
proposed, which applies combination of multiple kernels 
instead of choosing one. It is well known, however, that 
the multi-kernel approach results in a computationally 
heavy algorithm, which may need advanced optimization 
technique. The method proposed in this study, in 
contrast, is based on the reconstruction errors in the 
original space, which can be regarded as a natural 
extension of the aim of the standard linear PCA. The 
required computation is simply cross-validation with a 
basic optimization algorithm such as the fixed-point 
or gradient method. 

We provide detailed discussions on the experimental 
results for real-world data sets in section 3. For 
classification data sets, we can see from Table 4 and 5 
that the hyperparameter (bandwidth parameter in 
Gaussian RBF kernel and the number of principal 
components) gives the best or close to best LOOCV 
classification error: The best for Wine data and the 
second or third best for the other 5 data sets. In all cases, 
we observe that the chosen hyperparameters are close to 
the best parameters for the classification error. These 
experimental observations imply that the proposed 
method gives appropriate hyperparameters, with which 
the low dimensional features obtained by kernel PCA 
represent effective information of data.  

From Table 6 and Fig. 5, we can see that the 
hyperparameter chosen by the proposed method provides 
the features with clearer structure than the other two 
hyperparameters used in (a) and (c). For this data set, 

Izenman (2008) provides detailed analysis on the results 
of kernel PCA with a hand-tuned bandwidth parameter: 
A meaningful “curve” structure is observed in the result 
of two-dimensional kernel PCA. As shown in Fig. 5, our 
method automatically chooses such a hyperparameter 
that accords with the observation in Izenman (2008). 

We can also observe from Table 7 that the proposed 
method chooses the hyperparameters for kernel PCA 
with polynomial kernel so that the corresponding 
LOOCV for classification error attains the third best. 
This accords with the observation on the other cases with 
Gaussian RBF kernel and demonstrates the 
appropriateness of the proposed method. 

Regarding the computational cost of the proposed 
method, the proposed method needs to solve the 
preimage problem for each of the data, which may cause 
a computational issue for large data set. Table 3 shows 
that the computational time increases roughly 
quadratically with respect to the sample size. To reduce 
the computational cost, it may be possible to use only a 
part of data for evaluating reconstruction errors in 
choosing hyperparameters. 

5. CONCLUSION 

We have discussed the kernel PCA and proposed a 
method for choosing hyperparameters, optimal kernel 
(parameters in a kernel) and the number of kernel 
principal components, through the LOOCV for the 
reconstruction errors of pre-images. We have made 
empirical studies using synthesized examples and real-
world datasets. For evaluation of the proposed method, 
in addition to visualization, we used classification errors 
for the projected data onto the subspace chosen by the 
method, if the data set is provided for a classification 
task. We have observed that for all the datasets 
classification performance of the kernel PCA chosen by 
the proposed method is the best or close to the best 
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among the candidates of hyperparameters. The 
experimental results imply that the proposed method 
successfully provides an automatic way of finding such 
hyperparameters that give appropriate low-dimensional 
representation of data by kernel PCA. 

There are also limitations of the proposed method. 
First, the optimization such as fixed-point and steepest 
descent method for computing the pre-image has 
possibility of being trapped by local optimum. Applying 
other pre-image methods to alleviate this problem will be 
an important future research. Second, since our method 
uses the cross-validation with pre-image optimization, it 
may be time-consuming for large datasets. One possible 
approach is to use a part of data for evaluating 
reconstruction errors and it is also an interesting future 
direction to develop a more efficient way of 
hyperparameter choice for kernel PCA. Third, the 
reconstruction errors in the proposed method assume that 
the original space admits a metric, while kernel PCA can 
be applied to more general data spaces including non-
metric spaces. It is also among our future studies to 
consider hyperparameter choice applicable to kernel 
PCA for non-metric spaces. 
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