
Journal of Computer Science 10 (7): 1115-1119, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1115.1119 Published Online 10 (7) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Gianluca Costa, Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo Marconi”,
University of Bologna, Italy

1115 Science Publications

JCS

GRAPHSJ 3: A MODERN DIDACTIC
APPLICATION FOR GRAPH ALGORITHMS

1Gianluca Costa, 2Claudia D’Ambrosio and 1Silvano Martello

1Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo Marconi”, University of Bologna, Italy
2LIX CNRS (UMR7161), École Polytechnique, 91128 Palaiseau Cedex, France

Received 2013-12-06; Revised 2014-01-28; Accepted 2014-02-10

ABSTRACT

In 2009 the authors developed an open source Java application and framework, GraphsJ, to help the
students in their approach to the study of graph algorithms, by guiding them to understand their logical
structures through experiments on numerical instances. After four years, the availability of Java 7 and of
new tools suggested the implementation of a new major release. We present a new major release, GraphsJ 3,
whose implementation in Java 7 maintains the main characteristics of a useful educational application:
Portability, extensibility, ease of use and availability as open source software. The new release provides a
redesigned architecture, implemented through cutting-edge languages and technologies and a robust Maven-
based build. The presented Java framework constitutes a further step towards the implementation of didactic
instruments for the teaching of graph theory. Future developments will include extensions to ease the
automatic addition of new algorithms.

Keywords: Computer-Aided Education, Visualization, Graph Theory, Algorithms, Java

1. INTRODUCTION

 GraphsJ is an open source Java framework designed
and implemented in 2009 at the University of Bologna to
help students in their approach to the study of graph
algorithms. The framework was implemented so as to be
portable and easy to use and includes a library that
anyone can easily use to develop custom algorithms. We
refer the reader to (Costa et al., 2010) and to (Costa,
2009) for a detailed description of GraphsJ. In the
present paper we present a new major release, GraphsJ 3,
whose implementation targets Java 7.
 The new release maintains the main
characteristics that a useful educational application
should have, namely:

• Portability: It should run on most operating systems
• Extensibility: Even non-experienced programmers

should be able to quickly create and run a new
algorithm

• Ease of use: It should enable students to enjoy their
learning experience

• Availability as open source software

 At the didactic home page
http://www.or.deis.unibo.it/staff_pages/martello/GraphsJ
3/GraphsJ3.htm the user can directly execute GraphsJ via
Java Web Start.

2. MATERIALS AND METHODS

 Algorithms: GraphsJ 3 implements the algorithms
already available in GraphsJ for the solution of four
basic graph theory problems arising in different graph
families:

• Shortest spanning tree: Algorithm by (Prim, 1957)
• Shortest paths: Algorithm by (Dijkstra, 1959)
• Maximum flow: Algorithm by (Ford and

Fulkerson, 1962)

Gianluca Costa et al. / Journal of Computer Science 10 (7): 1115-1119, 2014

1116 Science Publications

JCS

• Critical path: Algorithm (CPM) developed in the
mid Fifties, (Siemens, 1971)

 Main characteristics: The implementation of
GraphsJ 3 includes a number of innovative concepts and
techniques:

• Simplified and modular OOP architecture, inspired

by Domain Driven Design (DDD)
• Cutting-edge language and technologies, especially

Java 7, JavaFX 2, XStream and Spring 3
• Simplified, automated and robust build process,

based on Maven 3
• Open source availability on a shared Maven

repository

3. RESULTS

3.1. Language and Libraries

 GraphsJ 3 is written in Java 7. With respect to the
previous release (GraphsJ) it makes use of the most
recent and elegant language constructs available in
Java 7, such as the try-with-resources block or the
diamond operator.
 In addition to the language, a set of libraries was
employed for the creation of the new system:

• JavaFX 2: Oracle’s RIA (= Rich Internet

Application) framework, providing a far more
colorful and intense user experience than Swing, as
well as a more modern programming interface.
Unlike JavaFX 1, JavaFX 2 introduces types that
can be accessed by any JVM language, support for
GUIs designed in FXML (a dedicated XML syntax)
and configurable build tools that proved to be very
useful for the packaging of the finished application

• XStream: A library dedicated to XML serialization
(see http://xstream.codehaus.org/). Whereas the
other versions of GraphsJ were based on binary
serialization, GraphsJ 3 follows a different and more
open approach, by creating zipped documents
containing XML descriptors. This introduces the
flexibility and universality of XML, without
incurring in the issue of oversized files

• Spring 3: One of the most acclaimed J2EE
frameworks, Spring (see
http://www.springsource.org/) was employed in this
didactic project too and for a very important
function: Dependency injection. The GUI requests

Spring for its windows and components, to simplify
the management of runtime dependencies

 The new architecture: GraphsJ 3 is not a
monolithic project: Actually, it is now just the top-
level module in a stack of 10 different components.
The overall architecture diagram, depicted in Fig. 1,
shows that modularization and strong separation
between layers are among the key principles driving
the development of GraphsJ 3.
 The three identifiable macro-blocks are Helios,
Arcontes and GraphsJ 3 (see http://gianlucacosta.info):

• Helios is a general-purpose library. Module helios-

core is the most basic module and provides core
utilities. On top of it, helios-fx, helios-xml and
helios-spring introduce specific types

• Arcontes is the library describing the graph
domain and providing visual components for the
user. The very first module in the stack dealing
with the graph model is arcontes-core, while
arcontes-fx introduces JavaFX controls such as
the graph canvas and the related utilities. Finally,
arcontes-test is a small library supporting the
creation of graph-oriented unit tests

• GraphsJ is the final product: A JavaFX application
built on top of Helios and Arcontes. The core of the
application is graphsj-sdk: By describing its own
model using the concepts introduced by Arcontes, it
provides classes and interfaces that developers can
use to create new scenarios to be plugged into
GraphsJ. The algorithms available in the program
(that can be reused to compose more sophisticated
algorithms, or even within another application)
are contained in graphsj-algorithms. Finally,
graphsj itself is just a program managing the
document workspace (opening and saving files,
for example) and showing the graph canvas
provided by arcontes-fx

3.2. Helios

 Helios is an open source, general-purpose Java
library currently composed by 4 modules:

• Helios-core is the most general module, providing

support for common development issues such as
simplified event handling, conversions, serialization
and I/O, predicates and conditions, collections,
regular expressions:

Gianluca Costa et al. / Journal of Computer Science 10 (7): 1115-1119, 2014

1117 Science Publications

JCS

Fig. 1. GraphsJ 3 general architecture

• Helios-fx is a toolkit created to introduce common

patterns in JavaFX development. In particular, it
defines a coherent and minimalistic API for creating
JavaFX dialogs and introduces some common
dialogs such as info/warning/error/question/input
windows

• Helios-xml contains classes and interfaces
pertaining to XML reading and manipulation,
especially via XStream

• Helios-spring provides utilities for the Spring
framework, in particular for the dependency injector

 Helios is open source and is designed to be an
evolving project. New types are constantly added to the
library, to support the creation of new software and, at
the same time, to isolate and reuse valuable structures
and techniques. For example, Helios 1.3 was released
together with EasyPmd 3, a NetBeans plugin that
requires the support of helios-core and introduces new
abstractions in the fields of I/O management and regular
expression parsing.

3.3. Arcontes

 Arcontes is an open source Java library describing
the graph domain and providing a visual toolkit for
rendering and editing graphs. Arcontes was designed
to be the kernel of GraphsJ 3, introducing concepts
and utilities required by the application. However, it is
totally independent of GraphsJ and can be easily

referenced by any Java software. Arcontes is
composed by 3 modules:

• Arcontes-core, that contains: (i) basic types such as

Graph, Vertex, Link, …, which define the graph
structures and (ii) the declaration of Algorithm – the
interface for graph algorithms, as well as a default
implementation and related utilities

• Arcontes-fx, that provides a suite of JavaFX
components for graph rendering. The main types in
the module are the interfaces GraphRenderer and
GraphCanvas, along with their default
implementations: DefaultGraphRenderer is a read-
only panel showing a graph, while
DefaultGraphCanvas adds event handling on top of
it, in order to support user interaction

• Arcontes-test, a very simple set of utilities that
simplify test fixtures for graph algorithms

 Arcontes widely relies on Helios, starting from the
meta-information management package provided by
helios-core, especially for its rendering engine. Several
parts of Arcontes work by processing the meta-
information tokens attached to the graph elements.

4. DISCUSSION

 The new technologies employed and the totally
redesigned architecture do not conclude the series of

Gianluca Costa et al. / Journal of Computer Science 10 (7): 1115-1119, 2014

1118 Science Publications

JCS

innovations introduced by GraphsJ 3: Such a complex
software system required a modern build process, needed
to efficiently manage its creation and maintenance-which
is why Maven 3 was chosen.
 Maven is an elegant and open source build tool
focusing on the following principles:

• Knowledge accumulation: Maven provides a

flexible, plugin-based cycle and plugins exist for
almost any issue that could arise during software
development, from resource filtering to packaging,
from license headers in source files to jar signing. It
also provides a plugin for Apache Ant, to save
previous investments in that tool. As a further step
of reuse, Maven introduces the concept of project
inheritance, enabling users to create derivative,
customized projects based on a shared template. The
modules in the stack of GraphsJ 3 are all based on a
parent project

• Versioning and dependency management: Unlike
.NET, Java does not natively introduce constraints
on the version of its artifacts (for example, jar files).
This means that, when working with a wide network
of dependencies, as is the case of GraphsJ 3, it might
be easy to forget a required library or, even worse, to
use some wrong, incompatible version

 Maven supports the user in two main ways:

• All artifacts (JARs, POMs, WARs, EARs, NBMs,

…) are uniquely identified by the tuple (groupId,
artifactId, version)

• Every project can declare its own dependencies
(using, for each of them, the above coordinates)
and Maven will automatically download them and
their dependencies, recursively, from centralized
repositories

 The <dependency> tag is one of the most flexible
and effective configuration points in Maven’s Project
Object Model (POM) and significantly simplifies the
setup of a project.
 After considering the advantages provided by
Maven, it was decided to make it the official build tool
of every project in the new system, so as to make them
as standard and reusable as possible: To this end, a
dedicated Maven repository was created, hosting Helios,
Arcontes, GraphsJ and other open source projects. It is
called Hephaestus and further information about it can be
found on the Internet at the web page
http://gianlucacosta.info/website/services/hephaestus.

4.1. Developing a Custom Scenario

 Helios, Arcontes and GraphsJ are composed by
standard jar files, created as Maven artifacts.
Consequently, every component in the architectural stack
can be accessed by any widely-used tool in the Java
ecosystem. However, the suggested way of referencing
them is as Maven dependencies, in the context of a
POM, in order to dramatically increase productivity.
 The framework released with GraphsJ 3 defines a
new concept, called Scenario, which decouples GraphsJ-
related operations (mainly having the responsibilities of
a controller, in terms of the MVC pattern) from the
underlying algorithm, expressed using the constructs
exposed by Arcontes.
 To create a new scenario, a developer should:

• Reference graphsj-sdk (and, if needed, graphsj-

algorithms) as a provided dependency (because they
are provided by GraphsJ at runtime, so they should
not be deployed with custom scenario jars)

• Create the algorithm (a class implementing the
Algorithm interface) and the related meta-
information tokens. Algorithm is defined in
arcontes-core, while meta-information classes
implement the MetaInfo interface declared by
helios-core

• Implement the Scenario interface, which can be
found in graphsj-sdk, or inherit from one of its
default implementations, overriding methods as
required. Developers can also decide to extend one
of GraphsJ’s scenarios, to introduce custom behavior

• Generate the complete artifact (a jar file) and use
GraphsJ’s “New scenario” window to test it: This
dialog has been simplified and enhanced in GraphsJ
3. For example, the provided custom jar file can be
scanned to search for custom scenarios, without the
need of knowing the exact fully-qualified name of
the classes implementing Scenario

5. CONCLUSION

 We presented a new major release, called GraphsJ 3,
of GraphsJ, an open source Java framework designed
and implemented by Costa, D’Ambrosio and Martello,
2010 to help students in their approach to the study of
graph algorithms. The new release targets Java 7. The
presented Java framework constitutes a further step
towards the implementation of didactic instruments for
the teaching of graph theory. Future developments will

Gianluca Costa et al. / Journal of Computer Science 10 (7): 1115-1119, 2014

1119 Science Publications

JCS

include extensions to ease the automatic addition of new
algorithms and will present a larger library of algorithms
for basic problems on graphs.

6. REFERENCES

Costa, G., 2009. Didactic Java software for graph
algorithms. Bachelor’s Thesis, University of
Bologna.

Costa, G., C. D’Ambrosio and S. Martello, 2010. A free
educational java framework for graph algorithms. J.
Comput. Sci., 6: 87-91. DOI:

10.3844/jcssp.2010.87.91

Dijkstra, E.W., 1959. A note on two problems in
connection with graphs. Numerische Mathematik, 1:
269-271.

Ford, L.R. and D.L. Fulkerson, 1962. Flows in
Networks. 1st Edn., Princeton University Press,
New Jersey, USA., ISBN-10: 0691079625, pp: 198.

Prim, R.C., 1957. Shortest connection networks and
some generalizations. Bell. Syst. Tech. J., 36: 1389-
1401.

Siemens, N., 1971. A simple CPM time-cost tradeoff
algorithm. Manage. Sci., 17: B354-B363. DOI:
10.1287/mnsc.17.6.B354

