
Journal of Computer Science, 9 (4): 455-462, 2013

ISSN 1549-3636

© 2013 Science Publications

doi:10.3844/jcssp.2013.455.462 Published Online 9 (4) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Roswan Ismail, Department of Communication and Network Technology,

 Faculty of Computer Sciences and Information Technology, Universiti Putra Malaysia, Selangor, Malaysia

455 Science Publications

JCS

Performance Analysis of

Message Passing Interface Collective

Communication on Intel Xeon Quad-Core

Gigabit Ethernet and Infiniband Clusters

1,2
Roswan Ismail,

1
Nor Asilah Wati Abdul Hamid,

1
Mohamed Othman and

1
Rohaya Latip

1Department of Communication and Network Technology,

Faculty of Computer Sciences and Information Technology,

Universiti Putra Malaysia, Selangor, Malaysia
2Department of Computing, Faculty of Art, Computing and Creative Industry,

Universiti Pendidikan Sultan Idris, Perak, Malaysia

Received 2012-10-03, Revised 2013-04-03; Accepted 2013-05-09

ABSTRACT

The performance of MPI implementation operations still presents critical issues for high performance
computing systems, particularly for more advanced processor technology. Consequently, this study
concentrates on benchmarking MPI implementation on multi-core architecture by measuring the
performance of Open MPI collective communication on Intel Xeon dual quad-core Gigabit Ethernet and
InfiniBand clusters using SKaMPI. It focuses on well known collective communication routines such as
MPI-Bcast, MPI-AlltoAll, MPI-Scatter and MPI-Gather. From the collection of results, MPI collective
communication on InfiniBand clusters had distinctly better performance in terms of latency and throughput.
The analysis indicates that the algorithm used for collective communication performed very well for all
message sizes except for MPI-Bcast and MPI-Alltoall operation of inter-node communication. However,
InfiniBand provides the lowest latency for all operations since it provides applications with an easy to use
messaging service, compared to Gigabit Ethernet, which still requests the operating system for access to one
of the server communication resources with the complex dance between an application and a network.

Keywords: MPI Benchmark, Performance Analysis, MPI Communication, Open MPI, Gigabit, InfiniBand

1. INTRODUCTION

Over the past few years, clusters have become the

main architecture used for high performance
computing systems. The emerging trend of using

cluster as High Performance Computing (HPC) has
led to much research in this field, particularly the

standard approach utilized for communication

between nodes; Message Passing Interface (MPI)
(Isaila et al., 2010; Balaji et al., 2009). MPI is a

library of routines provides a portable programming
paradigm for existing development environments with a

fundamental message management service and standard

message passing API. Since MPI is used to program

parallel machines, the performance of most clusters
depends critically on the performance of the

communication routines provided by the MPI library.

 Cluster interconnect is another important factor that

can influence the communication performance of

clusters. Slower interconnects may cause processes to

run slowly. The ideal cluster interconnect should provide

low latency high bandwidth and non-blocking

interconnect architecture. Consequently, numerous

protocols have been designed and proposed to maximize

the MPI standard implementation in high performance

clusters such as InfiniBand and Gigabit Ethernet.

Roswan Ismail et al. / Journal of Computer Science 9 (4): 455-462, 2013

456 Science Publications

JCS

 Currently, InfiniBand and Gigabit Ethernet are the

most popular interconnect employed in High

Performance Computers (HPC). Based on statistic on

November 2012 from the top 500 supercomputers site,

InfiniBand came on top with 44.8% while Gigabit

Ethernet was the close second with 37.8%. Gigabit

Ethernet provides LAN technology with a latency range

between 40-300 µs and is able to deliver up to 1 Gbit/sec

(or 1000 MBytes/sec) bandwidth of full duplex

communication using TCP/IP. Meanwhile, InfiniBand

is able to provide lower latency and higher bandwidth

than Gigabit Ethernet. It has latency range between 1-

10 µs and can support network bandwidth up to 10

Gbit/sec (or 10000 MBytes/sec). InfiniBand with multi

path provides much better throughput as compared to

Gigabit Ethernet since latency effects throughput in

HPC network. However, high speed InfiniBand network

is more expensive than Gigabit Ethernet.

 As most clusters use these two types of

interconnect for communicating data between the

nodes, It is important to implement the MPI on top of

the cluster interconnect efficiently in order to achieve

the optimal performance. Therefore, the analysis and

evaluation of the MPI routines performance on clusters

are indispensable. This study discusses the

benchmarking results of Open MPI collective

communication on Gigabit Ethernet and InfiniBand

clusters of UPM Biruni Grid. The measurements were

done using SKaMPI, one of the most commonly used

MPI benchmark tools. The outcome would be

beneficial for further research related to the Open MPI

implementation on multi-core clusters.

2. RELATED WORKS

There has been considerable previous research
focusing on the performance analysis of MPI
implementation on different parallel machines and
different interconnects. Some studies provide
performance evaluation of MPI communication on
clusters with ccNUMA nodes (Hamid and
Coddington, 2010; Kayi et al., 2008) and multi-core
architecture such as dual-core and quad-core nodes
(Gu et al., 2013; Cheng and Gu, 2012; Kayi et al., 2009).

Other studies provide performance analysis of

point to point or collective communication on

different interconnects (Ismail et al., 2011; Rashti and

Afsahi, 2007) while some provide comparison and

analysis of multiple algorithms for collective

communication in order to find the best solution for

different parallel systems (Nanri and Kurokawa, 2011;

Hamid and Coddington, 2007). Other related studies

focused on optimizing the performance of MPI

collective communication by proposing topology

aware mechanisms (Gong et al., 2013; Subramoni et al.,

2011; 2013; Kandalla et al., 2010) and process arrival

patterns aware mechanisms (Qian and Afsahi, 2009;

2011; Patarasuk and Yuan, 2008) to achieve the best

performance in terms of time.
 However, there have been no studies on the

comparison and measurement of MPI collective
communication for Open MPI in Gigabit Ethernet and
InfiniBand technology, particularly on a cluster with
dual quad-core nodes. Unlike previous works, the work
presented in this article provides the measurement of
the MPI collective communication performance on
clusters with Intel Xeon II dual quad-core processor
using two different types of interconnect: Gigabit
Ethernet and InfiniBand. This study discusses the
results of Open MPI for collective communication. All
findings are discussed and highlighted.

3. CLUSTER CONFIGURATION

The experiments in this study were conducted on
clusters of Biruni Grid. Biruni Grid is a project that was
developed and managed by the InfoComm
Development Centre (iDEC) of UPM as part of the
HPC clusters for A-Grid. This project was initiated in
2008 with the funding from EuAsiaGrid. Biruni Grid
consists of three clusters: Khaldun, Razi and Haitham
which consist of six, twenty and eight worker nodes
respectively. Each cluster node uses IBM Blade HS21
Servers running Scientific Linux 5.4 64 bit Operating
Systems and uses a GCC compiler to compile the
benchmark programs.

Each node has dual Intel Xeon quad-core processors

E5405, 2 GHz with 8 GB RAMs. For MPI

implementation, Khaldun uses Open MPI-1.3.3 while

Razi and Haitham Open MPI-1.4.3. The inter-node

interconnects for Khaldun and Razi were done through

Gigabit Ethernet with a Maximum data transfer of 2×1

Gb/sec while Haitham through high speed InfiniBand

technology with a maximum of 2×10 Gb/sec of data

transfer. All nodes were connected together using a 48-

port switch employing star topology.
However, this study only provides a comparison of

MPI collective communication conducted on the Razi and
Haitham clusters as both have identical configuration
except their inter-node interconnection. The different
configuration of the clusters is listed in Table 1 while
Fig. 1 represents the block diagram of Intel Xeon II dual
quad-core processor E5405.

Roswan Ismail et al. / Journal of Computer Science 9 (4): 455-462, 2013

457 Science Publications

JCS

Table 1. Cluster configuration

 Khaldum Razi Haitham

Number of nodes 6 20 8

Machines IBM blade HS21 servers

CPU 2×Intel Xeon Quad-Core2 GHZ Processors (8 cores per node)

RAM 8 GB

Storage capacity each node has 2×147 GB (only1×147 GB opend the rest reserved

 for future use (multilayer grid))

O.S Scientific Linux 5.4 64 bit

Compiler GCC Compiler

Interconnect Gigabit ethernet switch Infini band switch

MPI Implementation Open-MPI-1.3.3 Open-MPI-1.4.3

4. COLLECTIVE COMMUNICATION

A group of processes can exchange data by collective

communication. MPI-Bcast is one of the most commonly

used collective communication routines. It enables the

root process to broadcast the data from the buffer to all

processes in the communicator. A broadcast has a

specified root process and every process receives one copy

of the message from the root. All processes must specify

the same root. The root argument is the rank of the root

process. The buffer, count and data type arguments are

treated as in a point-to-point send on the root and as in a

point-to-point receive elsewhere. The process for MPI-

Bcast is shown in Fig. 2. MPI-Alltoall routine refers to the

operation of sending distinct data from all processes to all

other processes in the same group. In this operation, each

process performs a scatter operation in order. Data

distribution is to all processes of two data objects from each

process. The process for MPI-Alltoall is shown in Fig. 3.

MPI-Scatter is used to distribute distinct data from

the root process to all processes in the group including

itself. In this case, each process including the root

process sends the contents of its send buffer to the root

process. It specifies a root process and all processes must

specify the same root. The main difference from MPI-

Bcast is that the send and receive details are in general

different and therefore, both must be specified in the

argument lists. The sendbuf, sendcount, sendtype

arguments are only significant at the root. The process

for MPI-Scatter is shown in Fig. 4.

MPI-Gather does the reverse operation of MPI-Scatter

by recombining the data back from each processor into a

single large data set. The argument list is the same as for

MPI-Scatter. It specifies a root process and all processes

must specify the same root. The recvbuf, recvcount,

recvtype arguments are only significant at the root.

However the data in recvbuf are held by rank order. The

process for MPI-Gather is shown in Fig. 5.

5. EXPERIMENTAL RESULTS

This section describes the SKaMPI results for MPI-

Bcast, MPI-Alltoall, MPI-Scatter and MPI-Gather

operations on 16 and 32 cores on Gigabit Ethernet

(GBE) and InfiniBand (IB) quad-core clusters as shown

in Fig. 6-9. As expected from Fig. 6, the MPI-Bcast on

16 and 32 cores on GBE gave the highest result as

compared to IB. The results show that the InfiniBand has

the lowest latency, approximately 24.2% compared to

the Gigabit Ethernet for both cores. This happened since

the multi path of high speed InfiniBand allows

transmission of data to be completed faster than the

Gigabit Ethernet.

 It is noted that the broadcast latency at 1048576 byte

on GBE and IB were slightly decreased and getting

closer to latency for 16 cores on IB. However, this

phenomenon does not occur for latency on 16 cores in

IB. It means that the change-over point of multiple

algorithms used in Open MPI affected the results of

inter-node communication on both technologies but not

on 16 cores on IB where the results obtained were

consistent for all message sizes. In this case, for future

enhancement the changeover point at 1048576 bytes of

multiple algorithms used in Open MPI will be

highlighted to justify the results.

As predictable from Fig. 7, the MPI-Alltoall

operation on larger core on both clusters gave the

highest latency compared to the smaller number of

cores. The results show that the InfiniBand has the

lowest latency, approximately 8.8% compared to the

Gigabit Ethernet for both sizes. InfiniBand gives

every application direct to the messaging service

which means that an application does not rely on the

operating system to transfer data. This contrasts with

Gigabit Ethernet, which must rely on the involvement

of the operating system to move data.

Roswan Ismail et al. / Journal of Computer Science 9 (4): 455-462, 2013

458 Science Publications

JCS

Fig. 1. Block diagram of intel xeon processor E5405

Fig. 2. MPI_Bcast process

Fig. 3. MPI_AlltoAll process

Roswan Ismail et al. / Journal of Computer Science 9 (4): 455-462, 2013

459 Science Publications

JCS

Fig. 4. MPI_Scatter process

Fig. 5. MPI_Gather process

Fig. 6. SKaMPI results for MPI Bcast on different cores

Roswan Ismail et al. / Journal of Computer Science 9 (4): 455-462, 2013

460 Science Publications

JCS

Fig. 7. SKaMPI results for MPI AlltoAll on different cores

Fig. 8. SKaMPI results for MPI Scatter on different cores

The results on Fig. 9 show that IB has the lowest

latency, approximately 7.9% compared to GBE for

both sizes. From Fig. 8 and 9, it can be concluded that

MPI Scatter and MPI Gather with 16 and 32 cores on

GBE provided higher results compared to IB as it will

take a longer time to complete since it needs to

distribute and gather data to/from processors using a

lower bandwidth compared to IB. Consequently, it

produces more overheads. It was also noted that the

results trend for MPI-Scatter and MPI-Gather were

consistent for both clusters, which means that the

selection of multiple algorithms used to gather and

scatter message performed very well for all message

sizes.

Roswan Ismail et al. / Journal of Computer Science 9 (4): 455-462, 2013

461 Science Publications

JCS

Fig. 9. SKaMPI results for MPI gather on different cores

6. ACKNOWLEDGEMENT

This study was supported by the Malaysian Ministry

of Higher Education (MOHE). Thanks to infoComm

Development Center (iDEC) of Universiti Putra

Malaysia for granting access to the Biruni Grid. Special

thanks to Muhammad Farhan Sjaugi from iDEC for

testing support and his useful feedback.

7. REFERENCES

Balaji, P., A. Chan, R. Thakur, W. Gropp and E. Lusk,

2009. Toward message passing for a million

processes: Characterizing MPI on a massive scale

blue gene/p. Comput. Sci. Res. Dev., 24: 11-19.

DOI: 10.1007/s00450-009-0095-3

Cheng, P. and Y. Gu, 2012. An analysis of multicore

specific optimization in MPI implementations.

Proceedings of the IEEE 26th International Parallel

and Distributed Processing Symposium Workshops

and PhD Forum, May 21-25, IEEE Xplore Press,

Shanghai, pp: 1874-1878. DOI:

10.1109/IPDPSW.2012.231

Gong, Y., B. He and J. Zhong, 2013. Network

performance Aware MPI collective communication

operations in the cloud. IEEE Trans. Parall. Distrib.

Syst. DOI: 10.1109/TPDS.2013.96

Gu, Z., M. Small, X. Yuan, A. Marathe and D.K.
Lowenthal, 2013. Protocol customization for
improving MPI performance on RDMA-enabled
clusters. Int. J. Parallel Programm. DOI:
10.1007/s10766-013-0242-0

Hamid, N.A.W.A and P. Coddington, 2010.
Comparison of MPI benchmark programs on
shared memory and distributed memory machines
(point-to-point communication). Int. J. High
Perform. Comput. Applic., 24: 469-483. DOI:
10.1177/1094342010371106

Hamid, N.A.W.A. and P. Coddington, 2007. Analysis of
algorithm selection for optimizing collective
communication with mpich for ethernet and myrinet
networks. Proceedings of the 8th International
Conference on Parallel and Distributed Computing,
Applications and Technologies, Dec. 3-6, IEEE
Xplore Press, Adelaide, SA., pp: 133-140. DOI:
10.1109/PDCAT.2007.65

Isaila, F., F.J.G. Blas, J. Carretero, W.K. Liao and A.
Choudhary, 2010. A scalable message passing
interface implementation of an ad-hoc parallel I/O
system. Int. J. High Perform. Comput. Applic., 24:
164-184. DOI: 10.1177/1094342009347890

Ismail, R., N.A.W.A. Hamid, M. Othman, R. Latip and
M.A. Sanwani, 2011. Point-to-point communication on
gigabit ethernet and InfiniBand networks. Proceedings
of the International Conference on Informatics
Engineering and Information Science, Nov. 14-16,
Springer Berlin Heidelberg, Kuala Lumpur, pp: 369-
382. DOI: 10.1007/978-3-642-25483-3_30

Roswan Ismail et al. / Journal of Computer Science 9 (4): 455-462, 2013

462 Science Publications

JCS

Kandalla, K., H. Subramoni, A. Vishnu and D.K. Panda,

2010. Designing topology-aware collective

communication algorithms for large scale

InfiniBand clusters: Case studies with scatter and

gather. Proceedings of the IEEE International

Symposium on Parallel and Distributed Processing,

Workshops and Phd Forum, Apr. 19-23, IEEE

Xplore Press, Atlanta, GA., pp: 1-8. DOI:

10.1109/IPDPSW.2010.5470853

Kayi, A., E. Kornkven, T. El-Ghazawi and G. Newby,

2008. Application performance tuning for clusters

with ccnuma nodes. Proceedings of the 11th IEEE

International Conference on Computational Science

and Engineering, Jul. 16-18, IEEE Xplore Press, Sao

Paulo, pp: 245-252. DOI: 10.1109/CSE.2008.46

Kayi, A., T. El-Ghazawi and G.B. Newby, 2009.

Performance issues in emerging homogeneous multi-

core architectures. Simulat. Modell. Pract. Theory,

17: 1485-1499. DOI: 10.1016/j.simpat.2009.06.014

Nanri, T. and M. Kurokawa, 2011. Effect of dynamic

algorithm selection of Alltoall communication on

environments with unstable network speed.

Proceedings of the International Conference on High

Performance Computing and Simulation, Jul. 4-8,

IEEE Xplore Press, Instanbul, pp: 693-698. DOI:

10.1109/HPCSim.2011.5999894

Patarasuk, P. and X. Yuan, 2008. Efficient MPI bcast

across different process arrival patterns. Proceedings

of the IEEE International Symposium on Parallel

and Distributed Processing, Apr. 14-18, IEEE

Xplore Press, Miami, FL., pp: 1-11. DOI:

10.1109/IPDPS.2008.4536308

Qian, Y. and A. Afsahi, 2009. Process arrival pattern and
shared memory aware alltoall on infiniband.
Proceedings of the 16th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface,
Sept. 7-10, Springer Berlin Heidelberg, Espoo,
Finland, pp: 250-260. DOI: 10.1007/978-3-642-
03770-2_31

Qian, Y. and A. Afsahi, 2011. Process arrival pattern
aware alltoall and allgather on InfiniBand clusters.
Int. J. Parallel Programm., 39: 473-493. DOI:
10.1007/s10766-010-0152-3

Rashti, M.J. and A. Afsahi, 2007. 10-gigabit iwarp
ethernet: Comparative performance analysis with
InfiniBand and myrinet-10G. Proceedings of the
IEEE International Parallel and Distributed
Processing Symposium, Mar. 26-30, IEEE Xplore
Press, Long Beach, CA., pp: 1-8. DOI:
10.1109/IPDPS.2007.370480

Subramoni, H., J. Vienne and D.K. Panda, 2013. A
scalable InfiniBand network topology-aware
performance analysis tool for MPI. Proceedings of
the 18th International Conference on Parallel
Processing Workshops, Aug. 27-31, Springer Berlin
Heidelberg, Rhodes Islands, Greece, pp: 439-450.
DOI: 10.1007/978-3-642-36949-0_49

Subramoni, H., K. Kandalla, J. Vienne, S. Sur and B.

Barth, et al., 2011. Design and evaluation of

network topology-/speed-aware broadcast

algorithms for InfiniBand clusters. Proceedings of

the IEEE International Conference on Cluster

Computing, Sept. 26-30, IEEE Xplore Press, Austin,

TX., pp: 317-325). DOI:

10.1109/CLUSTER.2011.43

