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ABSTRACT 

The performance of MPI implementation operations still presents critical issues for high performance 
computing systems, particularly for more advanced processor technology. Consequently, this study 
concentrates on benchmarking MPI implementation on multi-core architecture by measuring the 
performance of Open MPI collective communication on Intel Xeon dual quad-core Gigabit Ethernet and 
InfiniBand clusters using SKaMPI. It focuses on well known collective communication routines such as 
MPI-Bcast, MPI-AlltoAll, MPI-Scatter and MPI-Gather. From the collection of results, MPI collective 
communication on InfiniBand clusters had distinctly better performance in terms of latency and throughput. 
The analysis indicates that the algorithm used for collective communication performed very well for all 
message sizes except for MPI-Bcast and MPI-Alltoall operation of inter-node communication. However, 
InfiniBand provides the lowest latency for all operations since it provides applications with an easy to use 
messaging service, compared to Gigabit Ethernet, which still requests the operating system for access to one 
of the server communication resources with the complex dance between an application and a network. 
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1. INTRODUCTION 

Over the past few years, clusters have become the 

main architecture used for high performance 
computing systems. The emerging trend of using 

cluster as High Performance Computing (HPC) has 
led to much research in this field, particularly the 

standard approach utilized for communication 

between nodes; Message Passing Interface (MPI) 
(Isaila et al., 2010; Balaji et al., 2009). MPI is a 

library of routines provides a portable programming 
paradigm for existing development environments with a 

fundamental message management service and standard 

message passing API. Since MPI is used to program 

parallel machines, the performance of most clusters 
depends critically on the performance of the 

communication routines provided by the MPI library. 

 Cluster interconnect is another important factor that 

can influence the communication performance of 

clusters. Slower interconnects may cause processes to 

run slowly. The ideal cluster interconnect should provide 

low latency high bandwidth and non-blocking 

interconnect architecture. Consequently, numerous 

protocols have been designed and proposed to maximize 

the MPI standard implementation in high performance 

clusters such as InfiniBand and Gigabit Ethernet. 
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 Currently, InfiniBand and Gigabit Ethernet are the 

most popular interconnect employed in High 

Performance Computers (HPC). Based on statistic on 

November 2012 from the top 500 supercomputers site, 

InfiniBand came on top with 44.8% while Gigabit 

Ethernet was the close second with 37.8%. Gigabit 

Ethernet provides LAN technology with a latency range 

between 40-300 µs and is able to deliver up to 1 Gbit/sec 

(or 1000 MBytes/sec) bandwidth of full duplex 

communication using TCP/IP. Meanwhile, InfiniBand 

is able to provide lower latency and higher bandwidth 

than Gigabit Ethernet. It has latency range between 1-

10 µs and can support network bandwidth up to 10 

Gbit/sec (or 10000 MBytes/sec). InfiniBand with multi 

path provides much better throughput as compared to 

Gigabit Ethernet since latency effects throughput in 

HPC network. However, high speed InfiniBand network 

is more expensive than Gigabit Ethernet. 

 As most clusters use these two types of 

interconnect for communicating data between the 

nodes, It is important to implement the MPI on top of 

the cluster interconnect efficiently in order to achieve 

the optimal performance. Therefore, the analysis and 

evaluation of the MPI routines performance on clusters 

are indispensable. This study discusses the 

benchmarking results of Open MPI collective 

communication on Gigabit Ethernet and InfiniBand 

clusters of UPM Biruni Grid. The measurements were 

done using SKaMPI, one of the most commonly used 

MPI benchmark tools. The outcome would be 

beneficial for further research related to the Open MPI 

implementation on multi-core clusters. 

2. RELATED WORKS 

There has been considerable previous research 
focusing on the performance analysis of MPI 
implementation on different parallel machines and 
different interconnects. Some studies provide 
performance evaluation of MPI communication on 
clusters with ccNUMA nodes (Hamid and 
Coddington, 2010; Kayi et al., 2008) and multi-core 
architecture such as dual-core and quad-core nodes 
(Gu et al., 2013; Cheng and Gu, 2012; Kayi et al., 2009). 

Other studies provide performance analysis of 

point to point or collective communication on 

different interconnects (Ismail et al., 2011; Rashti and 

Afsahi, 2007) while some provide comparison and 

analysis of multiple algorithms for collective 

communication in order to find the best solution for 

different parallel systems (Nanri and Kurokawa, 2011; 

Hamid and Coddington, 2007). Other related studies 

focused on optimizing the performance of MPI 

collective communication by proposing topology 

aware mechanisms (Gong et al., 2013; Subramoni et al., 

2011; 2013; Kandalla et al., 2010) and process arrival 

patterns aware mechanisms (Qian and Afsahi, 2009; 

2011; Patarasuk and Yuan, 2008) to achieve the best 

performance in terms of time. 
 However, there have been no studies on the 

comparison and measurement of MPI collective 
communication for Open MPI in Gigabit Ethernet and 
InfiniBand technology, particularly on a cluster with 
dual quad-core nodes. Unlike previous works, the work 
presented in this article provides the measurement of 
the MPI collective communication performance on 
clusters with Intel Xeon II dual quad-core processor 
using two different types of interconnect: Gigabit 
Ethernet and InfiniBand. This study discusses the 
results of Open MPI for collective communication. All 
findings are discussed and highlighted. 

3. CLUSTER CONFIGURATION 

The experiments in this study were conducted on 
clusters of Biruni Grid. Biruni Grid is a project that was 
developed and managed by the InfoComm 
Development Centre (iDEC) of UPM as part of the 
HPC clusters for A-Grid. This project was initiated in 
2008 with the funding from EuAsiaGrid. Biruni Grid 
consists of three clusters: Khaldun, Razi and Haitham 
which consist of six, twenty and eight worker nodes 
respectively. Each cluster node uses IBM Blade HS21 
Servers running Scientific Linux 5.4 64 bit Operating 
Systems and uses a GCC compiler to compile the 
benchmark programs. 

Each node has dual Intel Xeon quad-core processors 

E5405, 2 GHz with 8 GB RAMs. For MPI 

implementation, Khaldun uses Open MPI-1.3.3 while 

Razi and Haitham Open MPI-1.4.3. The inter-node 

interconnects for Khaldun and Razi were done through 

Gigabit Ethernet with a Maximum data transfer of 2×1 

Gb/sec while Haitham through high speed InfiniBand 

technology with a maximum of 2×10 Gb/sec of data 

transfer. All nodes were connected together using a 48-

port switch employing star topology. 
However, this study only provides a comparison of 

MPI collective communication conducted on the Razi and 
Haitham clusters as both have identical configuration 
except their inter-node interconnection. The different 
configuration of the clusters is listed in Table 1 while 
Fig. 1 represents the block diagram of Intel Xeon II dual 
quad-core processor E5405.  
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Table 1. Cluster configuration 

 Khaldum Razi Haitham 

Number of nodes 6 20 8 

Machines IBM blade HS21 servers 

CPU 2×Intel Xeon Quad-Core2 GHZ Processors (8 cores per node) 

RAM 8 GB 

Storage capacity each node has 2×147 GB (only1×147 GB opend the rest reserved  

 for future use (multilayer grid)) 

O.S Scientific Linux 5.4 64 bit 

Compiler GCC Compiler 

Interconnect Gigabit ethernet switch Infini band switch 

MPI Implementation Open-MPI-1.3.3 Open-MPI-1.4.3 

 

4. COLLECTIVE COMMUNICATION  

A group of processes can exchange data by collective 

communication. MPI-Bcast is one of the most commonly 

used collective communication routines. It enables the 

root process to broadcast the data from the buffer to all 

processes in the communicator. A broadcast has a 

specified root process and every process receives one copy 

of the message from the root. All processes must specify 

the same root. The root argument is the rank of the root 

process. The buffer, count and data type arguments are 

treated as in a point-to-point send on the root and as in a 

point-to-point receive elsewhere. The process for MPI-

Bcast is shown in Fig. 2. MPI-Alltoall routine refers to the 

operation of sending distinct data from all processes to all 

other processes in the same group. In this operation, each 

process performs a scatter operation in order. Data 

distribution is to all processes of two data objects from each 

process. The process for MPI-Alltoall is shown in Fig. 3. 

MPI-Scatter is used to distribute distinct data from 

the root process to all processes in the group including 

itself. In this case, each process including the root 

process sends the contents of its send buffer to the root 

process. It specifies a root process and all processes must 

specify the same root. The main difference from MPI-

Bcast is that the send and receive details are in general 

different and therefore, both must be specified in the 

argument lists. The sendbuf, sendcount, sendtype 

arguments are only significant at the root. The process 

for MPI-Scatter is shown in Fig. 4. 

MPI-Gather does the reverse operation of MPI-Scatter 

by recombining the data back from each processor into a 

single large data set. The argument list is the same as for 

MPI-Scatter. It specifies a root process and all processes 

must specify the same root. The recvbuf, recvcount, 

recvtype arguments are only significant at the root. 

However the data in recvbuf are held by rank order. The 

process for MPI-Gather is shown in Fig. 5. 

5. EXPERIMENTAL RESULTS 

This section describes the SKaMPI results for MPI-

Bcast, MPI-Alltoall, MPI-Scatter and MPI-Gather 

operations on 16 and 32 cores on Gigabit Ethernet 

(GBE) and InfiniBand (IB) quad-core clusters as shown 

in Fig. 6-9. As expected from Fig. 6, the MPI-Bcast on 

16 and 32 cores on GBE gave the highest result as 

compared to IB. The results show that the InfiniBand has 

the lowest latency, approximately 24.2% compared to 

the Gigabit Ethernet for both cores. This happened since 

the multi path of high speed InfiniBand allows 

transmission of data to be completed faster than the 

Gigabit Ethernet. 

 It is noted that the broadcast latency at 1048576 byte 

on GBE and IB were slightly decreased and getting 

closer to latency for 16 cores on IB. However, this 

phenomenon does not occur for latency on 16 cores in 

IB. It means that the change-over point of multiple 

algorithms used in Open MPI affected the results of 

inter-node communication on both technologies but not 

on 16 cores on IB where the results obtained were 

consistent for all message sizes. In this case, for future 

enhancement the changeover point at 1048576 bytes of 

multiple algorithms used in Open MPI will be 

highlighted to justify the results. 

As predictable from Fig. 7, the MPI-Alltoall 

operation on larger core on both clusters gave the 

highest latency compared to the smaller number of 

cores. The results show that the InfiniBand has the 

lowest latency, approximately 8.8% compared to the 

Gigabit Ethernet for both sizes. InfiniBand gives 

every application direct to the messaging service 

which means that an application does not rely on the 

operating system to transfer data. This contrasts with 

Gigabit Ethernet, which must rely on the involvement 

of the operating system to move data. 
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Fig. 1. Block diagram of intel xeon processor E5405  

 

 
 

Fig. 2. MPI_Bcast process 

 

 
 

Fig. 3. MPI_AlltoAll process 
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Fig. 4. MPI_Scatter process 
 

 
 

Fig. 5. MPI_Gather process 

 

 
 

Fig. 6. SKaMPI results for MPI Bcast on different cores 
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Fig. 7. SKaMPI results for MPI AlltoAll on different cores 

 

 
 

Fig. 8. SKaMPI results for MPI Scatter on different cores 

 

The results on Fig. 9 show that IB has the lowest 

latency, approximately 7.9% compared to GBE for 

both sizes. From Fig. 8 and 9, it can be concluded that 

MPI Scatter and MPI Gather with 16 and 32 cores on 

GBE provided higher results compared to IB as it will 

take a longer time to complete since it needs to 

distribute and gather data to/from processors using a 

lower bandwidth compared to IB. Consequently, it 

produces more overheads. It was also noted that the 

results trend for MPI-Scatter and MPI-Gather were 

consistent for both clusters, which means that the 

selection of multiple algorithms used to gather and 

scatter message performed very well for all message 

sizes. 
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Fig. 9. SKaMPI results for MPI gather on different cores 
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