
Journal of Computer Science 9 (11): 1602-1617, 2013
ISSN: 1549-3636
© 2013 Science Publications
doi:10.3844/jcssp.2013.1602.1617 Published Online 9 (11) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Muthuraman Thangaraj, Department of Computer Science, Madurai Kamaraj University, Madurai, India

1602 Science Publications

JCS

A CONTEXT-BASED TECHNIQUE USING
TAG-TREE FOR AN EFFECTIVE RETRIEVAL

FROM A DIGITAL LITERATURE COLLECTION

Muthuraman Thangaraj and Vengatasubramanian Gayathri

Department of Computer Science, Madurai Kamaraj University, Madurai, India

Received 2013-08-07, Revised 2013-09-24; Accepted 2013-10-05

ABSTRACT

The increasing growth of information in online digital libraries causes an increasing need to develop
techniques to retrieve. In the digital library, findability-finding the user required information is a hectic task
than those of usability. The major issues in findability are (a) topic diffusion: results of a traditional
keyword based search, often leads to multiple topic areas, some of which are not interested to user; (b) lack
of scoring mechanism: at present, digital libraries lack effective and accurate publication rankings. Thus the
users are forced to scan a large result set, which leads them to miss the important ones; providing accurate
publication scores can help users in reducing the time spent in searching and (c) selecting search keywords:
users spend more time to choose their search keywords, which will express their information need. This
study proposes TAG, a new context based retrieval technique that controls the topic diversity and
overcomes the above mentioned issues effectively. Using IEEE publications as the test bed and IEEE
thesaurus terms as context, our experiments indicate that the proposed retrieval technique effectively
produces output results and considerably reduces the resultant set.

Keywords: Context-Based Search, Literature Collection, Topic Diffusion, Publications Ranking, TAG-

Tree, Information Retrieval

1. INTRODUCTION

 The digital library is an electronic library where the
information is acquired, stored and retrieved in digital
form. These libraries have diversified collection of
information resources such as full texts of journals,
conference papers, CD-ROM databases, thesis and
dissertations, e-journals, e-books, examination papers,
manuscripts and these are available to the users at any
time. Many academic libraries, includes not only the
familiar books and journals of the general collections,
but many rare and unique materials.
 Each year sees the introduction of new digital
libraries promoted as valuable resources for education
and other needs. Digital libraries offer diverse
information resources in digital format. Traditionally,
libraries have been warehouse of knowledge providing
information services to the users.

 Ranganathan (Abideen and Srivathsan, 2004), the
father of library science has rightly mentioned’ Right
information to the right user at the right time in the right
form’. It is observed that the features of digital library
seem to reflect the vision of Ranganathan. Yet
systematic evaluation of the implementation and efficacy
of these digital library systems is often lacking, due to
the traditional keyword based search.
 Digital libraries provide instant access to all
information, for all sectors of society, from anywhere in
the world. This is simply unrealistic. This concept comes
from the early days when people were unaware of the
complexities of building digital libraries. Instead, they
mostly like a collection of disparate resources and
disparate systems, catering to specific communities and
user groups, created for specific purposes. They also will
include, perhaps indefinitely, paper-based collections.

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1603 Science Publications

JCS

 Further, interoperability across digital libraries of
technical architectures, metadata and document formats
will also be possible only within relatively bounded
systems developed for those specific purposes and
communities.
 On the one hand, there seem to have an explosion of
information with journals and magazines piling high in
the book shelves of libraries. On the other hand, either
because of limited knowledge on how to retrieve
information or there is an insufficient amount of
information available, the number of clients asking
librarians for information is steadily increasing.
 Any given query may fetch huge number of results.
It is obvious that very few results are relevant to the user
needs out of the huge set of results even though they
contain the keyword. Thus, we need an effective
searching technique in digital collection, to produce the
best result. The main problem here is, the relation
between the terms in the given query (Lamberti et al.,
2009; Li et al., 2007) i.e., the meaning of the entire query
is missing. Thus it is needed to consider the query as the
contexts instead of considering just as keywords. Not
only the keywords, but the synonym of it also plays an
important role in the searching era.
 These high growth rates introduced several challenges
facing the information access capability of digital libraries.
Some of the challenges that motivated the research work
presented in this study are (a) large sizes and topic
diversity of search output results; (b) lack of effective
scoring functions for publications; (c) lack of effective
scoring functions for search outputs (Bani-Ahmad, 2008);
(d) supporting example-based search queries; and (e)
scalable search-keyword suggestion to users.
 The remainder of the study is organized as follows:
Section 2 is devoted to the issues relevant to searching in
the digital collection. In Section 3, we describe the
working mechanism of TAG. Section 4 shows our
performance evaluation result. Finally, Section 5
presents conclusion.

2. RELATED WORK

 As the fabulous growth of the digital library in each
year, the problems with indexing and searching a digital
library is increased in a high rate. There are many digital
literature systems that produce results based on the
importance of the query keyword. These systems do not
use contexts to organize search results.
 In contextual web search approach, e.g., Y!Q
Contextual Search (Kraft et al., 2006) and IntelliZap
(Finkelstein et al., 2004), a context is captured around

the user-highlighted text, from which queries are created.
The users can specify contexts of interests before
viewing search results and no structural and hierarchical
information are used. Sometimes user need not give
keyword to initiate the search, e.g., in (Coppola et al.,
2010), according to the environment variables, contexts
are selected automatically. Results are retrieved for the
set of predefined query based on the corresponding
context. The user can select from the list of results that
are generated automatically.
 A variety of categorization techniques, classification
and clustering are proposed that will make the results
more understandable. Scatter/Gather (Hearst and
Pedersen, 1996) was one of the first clustering systems
on top of the Information Retrieval engine, in which it
groups documents based on the similarities in their
contents. Grouper (Zamir and Etzioni, 1999) uses Suffix
Tree Clustering (STC) that identifies sets of documents
sharing common phrases. Lingo (Osinski and Weiss,
2004) uses Singular Value Decomposition (SVD) to find
meaningful labels for the clusters. Findex (Kaki, 2005)
seeks frequent words from the results to classify them.
SemreX (Jin and Chen, 2008), a semantic overlay for
desktop literature/document retrieval in peer-to-peer
networks. Similarly other techniques like fuzzy systems,
support vector machine are also used to cluster documents
(You and Hwang, 2008; Saracoglu et al., 2007).
 Similarly to improve search experience some
systems use classifications of documents. In
(Campbell et al., 2007), documents are classified
based on the user’s background information. Similarly
in (Isa et al., 2008) Bayes formula is used to identify to
which predefined group, this document belongs to. But if
a single keyword represents multiple contexts, then this
system will produce highly inaccurate results.
 If these categorizations are done in online, then the
most relevant document may not appear in the top of the
result set, also partially relevant documents may be
scattered around the list. Mostly search systems are
based on the importance of the papers and/or the
existence of the keywords. They do not give much
importance for the context.
 For checking the existence of the keyword, similarity
techniques like Text-based (Chen and Chiu, 2010),
Google based (Cilibrasi and Vitanyi, 2007; Aliguliyev,
2009) similarity is used. Even though there are many
techniques are available, still the end users are struggling
to get the desired information. Because, in a keyword -
based search, the main ambiguity is that, a single word
may have different meanings, where as different words
may also refer to the same thing. Thus we need to search
by considering the context of the given query.

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1604 Science Publications

JCS

 In Context Based Search (CBS) (Ratprasartporn et al.,
2009), during pre-querying, publications are assigned
into pre-specified ontology-based contexts and query-
independent context scores are attached to papers with
respect to the assigned contexts. When a query is
posed, relevant contexts are selected, search is
performed within the selected contexts, context scores
of publications are revised into relevancy scores with
respect to the query at hand and the context that they
are in and query outputs are ranked within each
relevant context. The major drawback in this system is
that for searching within each selected context, all the
publications in the database are verified linearly. Thus
it takes more number of comparisons and which in turn
increases the retrieval time.
 As an alternate Search-and-Distribute-to-Contexts
(SDC) approach is also handled here in order to utilize
the context information. In SDC, the same strategy is
followed as in CBS, to assign papers to Contexts and to
compute the context scores of each paper. When a query
is given, unlike CBS, it first performs a keyword-based
search, across all the publications from which it finds the
contexts and publications that falls in. Then re-ranks the
publications within each located contexts. Since the
query is matched against the whole database, increases
the computation overhead. The meaning of the query is
not conveyed, because of the keyword-based search.
 To overcome these issues New Context-Based
Search (NCBS) (Thangaraj and Gayathri, 2011a) uses its
searching structure to hold the contexts and its synonyms
along with its publications. The searching structure is a
combination of B+-tree and inverted list. Contexts are
extracted from the documents in the corpus using pattern
extraction based techniques. All the documents in the
corpus are classified based on the context regardless of
the query and are mapped into the NCBS structure, has a
combination of B+-tree and Inverted List.
 When a query is given, the relevant context is
identified and returned with its synonym as well as the
appropriate document of the context. The main drawback
of this method is it can search only with the context,
not with its synonyms. It will just return the list of
synonyms. Thus improved version NCOSBS
(Thangaraj and Gayathri, 2011b) will search both in
Context and its synonyms. The data structures used are
B+-tree and hash table. Here it searches contexts first in
the context tree; if available then proceeds searching to
its publications and finally its related synonyms are
returned. If it is not available then, the relevant hash
table’s look up is done; find its relevant synonyms tree, it
is where the given query is searched against synonyms.

The major drawback of this system is to search either
context or synonyms and not in a combined form.

3. TAG ARCHITECTURE

 A new architecture called as TAG is formulated to
address these issues. TAG uses Context-Based Search, in
which the query can be done using the keywords and its
synonyms.
 The various functional components of the TAG
architecture are:

• TAG Extractor: Parts of the Publications are

extracted from digital collection, for the construction
of Contexts and for indexing

• TAG Indexer: Publications are indexed based on the
context. Publications that match the particular
Context are mapped in the TAG-tree. Publications
are assigned the first level scoring

• TAG Suggester: Helps user to select right terms for
the query with the help of usage history

• TAG Retriever: Retrieves the relevant publications
based on each Context that are relevant to the given
query with the help of Thesaurus. Also next level
scoring is assigned to the publications

• TAG MRanker: Publication results of various
Contexts are merged. Finally based on the different
levels of scoring, publications are ranked, which in
turn passed to the users

 Note that the first two tools of TAG are independent
of query and pre-executed. The remaining tools need the
query as an input and executed at on-line. The overall
architecture of TAG is shown in the Fig. 1.
 Using the TAG Extractor, publications in the
database are pre-processed. Then Contexts are identified
from the publications using extraction. Then these
publications are mapped to the TAG-tree based on these
identified Contexts, by the TAG Indexer. TAG Suggester
parses the publications at offline. By this information at
background, TAG Suggester suggests the right terms for
constructing the query. Once the query is given by the
user, then TAG Retriever retrieves the relevant Contexts
from the TAG-tree, at the same time, relevant results are
retrieved from the previous search log. From these result
sets, publications are retrieved along with its scores.
Now using the TAG MRanker, both the result sets are
merged and ranked based on the scores of the
publications. These ranked list of publications, are then
returned to the user as the final result set.

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1605 Science Publications

JCS

Fig. 1. TAG architecture

Fig. 2. Workflow of TAG extractor

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1606 Science Publications

JCS

3.1. TAG Extractor

 This tool is used to extract Contexts from the digital
collection. Based on these Contexts, the publications are
categorized. The workflow of this TAG Extractor is
depicted in Fig. 2.
 It is advantageous to parse the two areas such as
publication title and abstract of publication: (a)
publication titles since (i) the number of tokens in a title
are an order of magnitude less in count than the tokens of
the full document and (ii) publication titles are
significantly less likely to have ambiguous tokens (like
impersonal pronouns) than the full document even
though, in rare occasions, authors choose for their
articles humorous, but irrelevant names. Such titles are
humorous and easy to be remembered by users and they
have great value in navigational queries in which the
user has a particular target. On the other hand, these titles
negatively affect the performance of informational
queries, in which the user is looking for sources that
provide background knowledge about the search topic
(Lee et al., 2005). To solve this approach, we also
suggest preprocessing (b) abstracts of publications in
addition to titles and keywords are also extracted.
 These extracted parts of the publications are then
tokenized. These tokens are cleaned, by the process such
as stop words removal. Terms from IEEE Thesaurus are
used as Contexts. In addition to that significant terms of
publications are also considered to best define the
Context (as in NCBS).
 Briefly, a Context is in a pattern form, which
consists of three tuples <prefix>, <context> and
<suffix>. Significant words are assigned to <context>
tuple, where as the words surrounding the significant
words are assigned to <prefix> and <suffix>.

3.2. TAG Indexer

 Contexts based on which the publications are
categorized, are constructed using TAG Extractor. Now
this section shows how the publications are assigned to
these Contexts. TAG-tree is a combination of B+-tree and
list as shown in Fig. 3. At first TAG-tree is constructed
and the Contexts created by the TAG Extractor are then
mapped to it. Finally the publications are assigned to its
relevant Contexts.
 The TAG-tree is organized based on the contexts
with its prefix and suffix terms. The leaf node has the
Context and a pointer to the relevant document. Every
leaf node of a B+-tree points to a synonyms list. The
synonyms list has the set of synonyms for the given
context. Each context is mapped into the TAG-tree as an
individual bucket element. In the internal nodes of the

TAG-tree, it has only the Context, that is, pattern with the
three tuples <prefix><context><suffix>. But, the leaf node
has Context, its Cluster information and a pointer to a list
that holds synonyms (refer NCBS for more information).
 The Context taken in this study is nothing but
thesaurus terms. It is better to find a way to determine a
relationship between the term and each publication and
decide whether the publication should be categorized to
the term. Expert intervention is needed for the
effectiveness categorization when the number of
publications and contexts are small. However, the number
of contexts and publications are very large. Manual
assignment is not practical and also very time-consuming.
 To automatically assign publications to Contexts, the
existence of the Contexts are verified in the publications.
First, the context terms in the publications are highlighted.
Then all the synonyms of the Contexts are also highlighted,
by refining once again, now the publications containing the
Context patterns are added to the respective publication
cluster called P-Cluster. Publications of the P-Clusters are
assigned scores based on the relevance between the
publications and their respective context.

3.3. TAG Suggester

 Studies show that users spend considerable amounts
of time in search sessions to properly select keywords and
to modify their search keywords in order to successfully
locate publications. A search-keyword suggester may help
users choose keywords properly and thus, users are less
likely to face unsuccessful search attempts.
 TAG Suggester is based on the prior analysis of the
publication collection at hand. The working mechanism
of TAG Suggester is depicted in Fig. 4. Initially
publications are parsed using the Link Grammar Parser
(LGP), is a syntactic parser of English. As stated in the
previous section, the three important parts of the
publications are used for parsing. The linkages between
the tokens of the publications are stored in the LGP
Database along with the parsed tokens. Parsing is pre-
executed and not dependent on queries.
 When the user starts typing the Context keyword,
Token Predictor (TP) is called to make suggestions on
the first few letters given by the user. But the suggestion
scope of TP is reduced based on the terms fed already in
the current session. When the user starts typing, TP
fetches the LGP database for the tokens which starts with
the given keyword letters. In addition, it fetches the
usage history for the tokens. If this is not the first call to
TP for the current session, then TAG-tree is also
searched with the already completed Context keyword.

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1607 Science Publications

JCS

Fig. 3. TAG-tree an overview

Fig. 4. Work flow of TAG suggester

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1608 Science Publications

JCS

Fig. 5. Workflow of TAG retriever

In all these fetches, scores are allotted to the results
based on their relevancy/importance. Finally TP will
pass all these results to ranking module, which will
arrange and select the most appropriate (limited)
suggestions for the search keyword.

3.4. TAG Retriever

 This tool is mainly for retrieving the publications
that are relevant to the given query. When the user
successfully chooses his query Context with the help of
TAG Suggester, then the TAG Retriever is invoked by
passing the query Context as input. The workflow of
TAG Retriever is shown in Fig. 5.
 The TAG-tree is searched against the given query
Context. Initially, the prefix tuple is searched: If it is
available, then the subsequent tuples are searched in
its sub tree; otherwise, searching is performed with
the next tuple. Similarly each tuple is considered for
searching, when it is found, then the further searching
is done at its sub tree; otherwise searching continues
with the next tuple.
 When a query tuple is searched in the tree, it may
appear at the <prefix> tuple or at the <context> tuple of the
node in the tree. Mostly it appears at the <context> tuple.
 Thus searching starts with the <context> tuple of the
node, if it matches with the query tuple, then the
subsequent tuples are searched in its sub tree (Fig. 6). In
contrast, if the query tuple doesn’t match with <context>
tuple, then it is compared with the <prefix> tuple of the
same node (Fig. 7). Suppose, the query tuple matched
with the <prefix>, then the searching for the next tuple is
done with the <context> tuple of the same node. Then,

the searching mechanism repeats the searching in the
same fashion to retrieve the required information.
 When searching is stopped without getting the exact
context as in the query, then the Context, up to which the
search mechanism found its match with the query
context, is returned as a result. When there is no match
occurs, then the Contexts in the root of the Context tree
are returned as a suggestion for the user’s reference.
Instead of getting out with empty result set, the user can
get some information to make improvement in their
searching query task.
 Once the relevant Context is found, then its P-cluster
is retrieved from the digital collection repository. These
publications are added to the result set along with its
score (which is assigned during indexing). Then the
thesaurus is fetched for the synonyms/Relevant Terms
(RT) for the given query Context. These synonyms are
then searched in TAG-tree. P-clusters of the synonyms’
Contexts are also be added to the result set along with its
score. Now second level scoring is assigned based on the
relevance between the selected context and the query
context. Finally TAG Retriever returns the publications
along with its two levels of scoring.

3.5. TAG MRanker

 TAG Merge Ranker (TAG MRanker) is used for
merging all the result sets of publications and ranks it
based on their score. Different levels of scoring are
assigned to the publications. Finally all these result sets
(at different levels) are merged. Based on the scores,
publications are ranked and returned to the user.

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1609 Science Publications

JCS

Fig. 6. Searching against the contexts of the contexts

Fig. 7. Searching against the prefixes of the contexts

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1610 Science Publications

JCS

 While constructing P-clusters, TAG Indexer assigns
level 1 score to the publication. This score is based on the
relevance between the Context and the publication. Level 2
scoring is assigned by the TAG Retriever. The publications
of the real query Context is assigned score more than the
publications that belong to the synonyms Contexts. Thus
the relevance between the given query Context and the
identified Context are considered. Hit ratios of the
publications are used to assign level 3 scoring.
 The user may utilize the suggestions made by TAG
Suggester. Since the suggestions are made from the
available digital collection repository, the suggestions
are clearly right Contexts. Level 4 scoring is assigned to
the publications based on the selection of the query. If
the user has selected the query from the suggestions
made by the TAG Suggester, then the chosen context’s
P-cluster are assigned higher scores than the others. All
these scores of the publications are summed up to
produce the overall score of the publications. Thus
publications of the various result sets are merged. Based
on the overall scores, publications are ranked, which in
turn passed to the users.

3.6. TAG Algorithms

 This section presents the various algorithms used in
TAG technique. The algorithm for constructing P-
clusters of each Context is given below:

Algorithm : Paper-Context Mapping
Data Structure : See Fig. TAG Structure
Input : t – threshold
 Context ctxt[] – set of Contexts
Output : Pset[] – An array of mapped Context-papers

i: 1 ≤ i ≤ m (m – Total number of Contexts)
j: 1 ≤ j ≤ n (n – Total number of Papers in the database)

for each Context ctxti
 for each Paper pj in the database
 if pj contains ctxti
 {
 pj.score = SimScore (ctxti, pj)
 if pj.score ≥ t
 add pj to Pset[i]
 }

 Publications in the digital collection repository are
searched for the Context. If the publication contains the
pattern of the particular Context, then the similarity
between the Context and the publication are computed,

which is assigned with the score of it. In the same way,
scores for all publications are computed for a particular
Context. If the score is greater than or equal to the
threshold value, then the publication is added to the P-
cluster of the specific Context. In this way, for all
Contexts, P-clusters are constructed.
 The algorithm used for locating the Contexts is
explored in the following. If a query is given, then it is
searched against the TAG-tree. The resultant Context’s
P-cluster along with its score is added to the Result Set.
Now synonyms of the identified Context (si) are found:

Algorithm : Retrieval
Data Structure : See Fig. TAG Structure
Input : Query q, Node nodepointer
Output : RPset – Resultant Publications
Let RPset-Resultant publications id with its scores
 result-node of Context Tree
 Syn-node of Context Tree
find(q,head)-Context Identification function

ConSynRet(Query q, Node nodepointer)
{
 result = find(q, head);
 add Pids, scores of result to RPset; //Level1 Score
 //Insert Pid and level 1 score alone,
 // keep other scores as 0
 for each synonym si of result
 {
 syn = find(si, head);
 add Pids, scores of result to RPset; //Level2
Score
 //if Pid already exists, only update level2 score
 //else insert Pid and level2 score alone &
 //keep other scores as 0
 }
 }

 Each synonym is searched against the TAG-tree and
its P-clusters are also added to the Result Set with its
scores. The algorithm for searching against the TAG-tree
for the given input is shown below:

Algorithm : Context Identification
Data Structure : See Fig. TAG Structure
Input : Query q, Node nodepointer
Output : Context with its document as well as related
synonyms

Let i, 0 ≤ i < degree of the Context Tree;
j, 0 ≤ j ≤ 2 (j – each tuple in the query);

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1611 Science Publications

JCS

x – node of Context Tree;
docs-id– Ids of relevant publications of the Context;
<Pi>-Prefix tuple of the ith node segment of the
nodepointer;
<Ci>-Context tuple of the ith node segment of the
nodepointer;
<Si>-Suffix tuple of the ith node segment of the
nodepointer;

find (Query q, Node nodepointer)
{
 if (nodepointer is NULL) return (NULL);
 if (nodepointer is a leaf)
 {
 x = find (q, nodepointer);
 return(x, docs-id, Synonyms);\\x is the context
 }
 else
 {
 for each tuple <qj> in the query context
 for i = 0 to degree-1
 {
 if (<qj> = <Ci>)
 {
 x = find (qj+1, nodepointer -> childi);
 if (x = NULL)
 return (current Context from Tree Leaf);
 return (x);
 }
 else if (<qj> = <Pi>)
 return (find (<qj+1>, nodepointer));
 }
 \\ if qj is not available in any of the node
 \\ segments in nodepointer, then, search for it
 \\ in the last subtree
 x = find(<qj>, nodepointer -> childj);
 if (x!=NULL) return (x);
 }
 return headnode;
 }

 Each tuple in the query Context is searched
against the TAG-tree. First the <prefix> tuple is
searched, if it is found, then its sub tree is searched for
the remaining tuples. If a tuple is not found in the
buckets of the TAG-tree node, then it is searched in its
last sub tree. In case, the current tuple is not found
even there, then the next tuple is searched for. In this
way, the TAG-tree is searched for the given query
tuple. In worst case, if any of the query tuple is not
found, at last the head node of the TAG-tree is

returned as the suggestions to the user to refine his
query. This may be encountered, if the user doesn’t
consider the suggestions made by the TAG Suggester.
 The algorithm of TAG-Suggester is depicted in the
following. When the user starts entering the query
keyword, TAG Suggester has to give appropriate
suggestions to complete the query. User entered input
(W) is parsed; the completed (CSK) and Uncompleted
(USK) keywords are identified first. If the completed
keywords are not available i.e., this is the first trial of the
current session, then LGP database is searched to find
the tokens that starts with USK; as well as previous
query Contexts are also be searched. Then the results of
both of these are merged; based on the importance,
suggestions are ranked and the top-k suggestions were
presented to the user:

Algorithm : TAG Query Suggestor
Data Structure : See Fig. TAG Structure
Input : String W-Current Search Terms
 Node head-Pointer to the root of TAG-tree
Output : Suggestions[] - An array of Suggestions

Let SK1, SK2, SK3 are suggestions
find_suggestion(StringW, Node head)
{
 CSK = Completed Search Keyword in W
 USK = Uncompleted Search Keyword in W

 if(CSK = ““ && USK !=“ “)
 {
 SK1 = findLGP(USK, All)
 SK2 = findLoG(USK)
 W’ = SK1 U SK2
 }
 else if(CSK != ““ && USK = ““)
 {
 SK1 = findTAGtree(CSK, head)
 SK2 = FindLoG(CSK)
 SK3 = FindLGP(CSK)
 W’ = SK1 U SK2 U SK3
 }
 else if(CSK != ““ && USK != ““)
 {
 SK1 = findLGP(USK)
 SK2 = findTAGtree((CSK + USK), head)
 SK3 = FindLoG(CSK, USK)
 W’ = SK1 U SK2 U SK3
 }
 return W’
 }

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1612 Science Publications

JCS

 If CSK is filled by already fed terms, then TAG-tree
is searched against the CSK to produce the suggestions
to complete the current query. At the same time, both
LGP database as well as the previous history is also be
searched. In the LGP database, it finds the possible
linkages for the CSK, based on which suggestions from
it are made. Finally all these results are merged and
ranked to provide top-k suggestions.
 If both CSK and USK is available for the current
session, then TAG-tree is searched for the Contexts that
has tuples like CSK, followed by the tuple starts with
USK. In LGP, tokens which start with USK in the possible
list of tokens that satisfies the possible linkages of CSK
are searched for. Similarly in previous history query
Contexts that has CSK followed by the token that starts
with USK is searched for. At last all these results are
merged and ranked to equip user with top-k suggestions.

4. PERFORMANCE ANALYSIS

 This section shows the efficiency of the TAG
technique by discussing various experiments. For this
study we have conducted many experiments, but
presented only vital results. TAG technique is compared
with the earlier models such as CBS and SDC in order to
explore the strength of TAG. These three techniques
were implemented in JAVA. All experiments reported in
this section were conducted on Processor Intel Core i7 @
2.30GHz with 8 GB RAM and 1 TB hard disk, running
Windows 7. As a test bed, in our digital collection, 2
Lakhs full text articles were downloaded from IEEE
Journals in the field of Computer Science and various
Contexts were queried to find the performance.
 The objectives of the experiments were categorized
as follows:

• Prime purpose is to assess the retrieval performance

of the indexing structure
• Study the impact of topic diffusion with large digital

collection

4.1. Parameters and Assumptions

 In this section, the parameters used in the analysis
and the basic assumptions of the study are given in
Table 1.
 Some assumptions made to facilitate our
experiments study on this retrieval structure as:

• The searching value should be uniformly distributed
• All the clusters are with adequate information
• Each query should be supported with context for the

effectiveness of the retrieval

Table 1. Parameters used in the analysis
Parameter Meaning
H Height of the TAG-tree
r Number of papers with query relevance
s Stop words
Q Query
P Prefix word
C Context word
S Suffix word
T Number of Contexts
L Key Length
As Average size of the paper
R Number of clusters
D Database size
U Cluster size
NPi Number of publications in the ith cluster
At Number of publications that satisfies the
 pattern ‘t’
Ec Number of patterns for a specific Context ‘c’
z The maximum number of synonyms of a Context

 These assumptions are commonly found in all the
analytical model for accessing literature collection and
they do not affect the relative merits of this search
structure.

4.2. Storage Cost

 Normally, the storage cost of an index can be
expressed as the number of clusters used by the index,
divided by the number of clusters that are absolutely
necessary to store the instances Equation 1:

ci ptCC m PT P= × × (1)

Where:
m = The number of contexts
PTci = The number of patterns for each contextci
 where: ci = 1≤ci≤m
Ppt = the publications that satisfies the pattern pt
 where, pt lies in 1≤pt≤t.

 In all experiments performed, we have obtained that
TAG technique have lowest storage cost. However, the
storage cost is negligibly small, since large capacity of
storage devices are widely available today for lower cost.
Therefore, it may be preferable to design models that
provide good performance, even if they have a large
storage requirements.

4.3. Retrieval Cost

 The following is the retrieval cost (RR) for retrieving
the result set from TAG-tree Equation (2 and 3):

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1613 Science Publications

JCS

i

i

h NP if Q B
CR

2h NP otherwise

 + ∈= 
+

 (2)

()()ns

j 1id jRR CR S CR cn
=

= + + +∑ (3)

Where:
CR = The cost of retrieving a Context from TAG-tree
B = The buckets of the TAG-tree
Sid = The cost for identifying the synonyms
Ns = The number of synonyms of a particular

context, which is 0≤ns≤z
CRj = jth context retrieving cost
c = The cost for clustering the publications

4.4. Preprocessing and Cluster formation

 In section 3.1 and 3.2 Preprocessing and P-cluster
formation are discussed. Usually text document contains
30% of usual, generic terms like an, the, where. While
indexing if we include all these terms as such, will
increase the overhead of manipulating it. The removal of
those words will not make any impact on the meaning of
the pattern. To avoid computational overhead, various
unique stop words are identified and removed from the
parsed digital collection.
 Many unique patterns can be generated with a
different combination of words. Fig. 8 shows the growth
of P-clusters, when the size of the database get increased.
The figure depicts that the CBS approach uses more
number of clusters when compared to the TAG. Normally,
the increase in number of clusters will degrade the search
performance. It is inferred that the proposed method
performs well compared to the other methods.
 The time taken to construct a P-cluster by varying
the size of the digital collection is presented in Fig. 9.
The objective of this experiment is to observe the time
variations with respect to change in data size. CBS and
TAG methods use pattern-based approaches.
 CBS construct more number of clusters based on
minimum relevance and scores. As the resultant set of
the minimum relevance are high, it takes maximum time
to construct P-clusters. In contrast, TAG construct
clusters based on exact relevance with score that
minimizes the construction time. The SDC method is not
taken for the study because the cluster formation is done
only after the retrieval. The results show that the
proposed method outperforms the CBS.

 Thus, the number of tokens that matches the
minimum relevance are high, which in turn computation
of their scores and further operations are also takes a
considerable amount of time. But in case of TAG, only
the papers that are exactly relevant are under
computation for their relevance score and further
operations. Thus the time taken for TAG to construct P-
clusters is minimum over CBS. In SDC, clustering is
done at the end of the retrieval, not in the preprocessing.
Thus clustering phases of CBS and TAG cannot be
compared to SDC.

4.5. Retrieval

 The retrieval efficiency is a major challenge when
the size of the digital collections increases. This study
shows the retrieval performance of the different methods.
The Fig. 10 discusses the measuring of retrieval time for
different context. For this study, Ten different Context
were randomly chosen and size of the digital collection
is fixed as 2 lakhs publications.
 The graph shows that the TAG retrieval is better
than other method, since TAG uses a tree based search
where as other method use linear search. TAG uses
topic-based minimal search space which is created using
<prefix> and <suffix>, is a main reason for effectiveness
of the searching.
 Though CBS uses pattern-based approaches, i.e.,
information from <prefix> and <suffix> are used, it
performs linear searching. Thus TAG outperforms CBS
even both uses pattern-based approaches. CBS finds
directly the contexts that are relevant to the query
context, where as SDC searches the digital collection as
a whole for the query by considering it just as a keyword.
Once the result set is generated, then it is distributed to
different clusters depending upon the topic to which it
belongs. Finally it retrieves the result set for the specific
Context from it. Thus searching the whole digital
collection and clustering the results, at last extracting the
specific topic, takes more time compared to CBS. In this
way, CBS outperforms than SDC.

4.6. Accuracy

 The performance of accuracy depends on finding
exact match for the given Context. To study the
performance of accuracy, we have taken 2 lakhs papers
with 11 randomly selected Contexts. The relevance of
the papers for each selected Context were identified and
evaluated. Fig. 11 shows the accuracy of search in terms
of various selected Context.

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1614 Science Publications

JCS

Fig. 8. Growth of Pclusters against the growth of digital

Fig. 9. Time taken for construction of Pclusters

Fig. 10. Time taken to retrieve the result set

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1615 Science Publications

JCS

Fig. 11. Accuracy of the retrieved results (direct evaluation)

Fig. 12. Diffusion rate of the result set

 SDC finds whether the given query terms appears in
the article. The query terms may not be available in the
article as given in the query. For example, the query
context “process scheduling algorithms” is queried, the
result set includes the articles of processor design, disk
scheduling, deadlock avoidance algorithms.
 It just performs AND operation between the results
of the individual query terms. Thus results are not that
much accurate and size of the result set is very large. In
CBS, even the occurrence of the pattern is considered,
because of the stemming algorithm used (Porter
Stemmer), domain words are not differentiated from the
generic words. Thus CBS also not produces accurate
results. TAG outperforms than these two earlier

techniques, because of the features of TAG-tree, which
narrows down the searching area, which brings the
relationship that exist between the query terms.

4.7. Diffusion

 This study focuses on the key issue of information
retrieval, Topic diffusion. Some Contexts were selected
randomly to find the publications in the particular Context.
 Fig. 12 shows the diffusion rate of the contexts.
Since CBS and SDC uses approximate matching. As
described earlier, SDC is purely text-oriented, i.e., the
relation between the query terms are not considered; in
CBS, the stemming algorithm used is not enough to
differentiate the domain specific terms from the generic

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1616 Science Publications

JCS

terms; so, both diffuses from the topic of the query. TAG
outperforms these earlier techniques, since the searching
area is narrowed down and the relationship between the
query terms is considered, as well as the query is
considered as Context, i.e., the keywords along with their
synonyms, also more information about the topic in the
form of <prefix> and <suffix>.

4.8. Observation

• The size of the resultant set is reduced about 60%
• Diffusion rate is minimized due to pattern based

approach; exact matching and effective cluster
formation

• Suggester with maximum specificity makes the
relevant query

• The retrieval efficiency of TAG is about 84% as
compared to previous searching technique

5. CONCLUSION

 This study presented architecture for Context-based
retrieval in a digital collection. This study was
implemented and compared with the existing
methodologies. The performance analysis of these
methods shows the effectiveness of the new architecture
by controlling topic diffusion problem.
 This study can further be extended towards tuning of
indexing method, ontology based retrieval and similarity
enhancement.

6. ACKNOWLEDGEMENT

 This study is a part of Major Research Project (41-
642/2012(SR)) funded by UGC, India.

7. REFERENCES

Abideen, S. and Srivathsan, 2004. Convergence of
digital libraries with knowledgement. Proceedings
of the International Conference on Digital Libraries,
Feb. 24-27, TERI India, India, pp: 569-575.

Aliguliyev, R.M., 2009. A new sentence similarity
measure and sentence based extractive technique
for automatic text summarization. Expert Syst.
Applic., 36: 7764-7772. DOI:
10.1016/j.eswa.2008.11.022

Bani-Ahmad, S., 2008. Research-pyramid based search
tools for online digital libraries. PhD Thesis, Case
Western Reserve University.

Campbell, D.R., S.J. Culley, C.A. McMahon and F.
Sellini, 2007. An approach for the capture of
context-dependent document relationships
extracted from Bayesian analysis of users’
interactions with information. Inform. Retrieval,
10: 115-141. DOI: 10.1007/s10791-006-9016-2

Chen, Y.L. and Y.T. Chiu, 2010. An IPC-based vector
space model for patent retrieval. Inform. Process.
Manage., 47: 309-322. DOI:
10.1016/j.ipm.2010.06.001

Cilibrasi, R.L. and P.M.B. Vitanyi, 2007. The google
similarity distance. IEEE Trans. Knowl. Data Eng.,
19: 370-383. DOI: 10.1109/TKDE.2007.48

Coppola, P., V.D. Mea, L.D. Gaspero, D. Menegon and
D. Mischis et al., 2010. The context-aware browser.
IEEE Intell. Syst., 25: 38-47. DOI:
10.1109/MIS.2010.26

Finkelstein, L., E. Gabrilovich, Y. Matias, E. Rivlin and
Z. Solan et al., 2004. Placing search in context: The
concept revisited. Proceedings of the World Wide
Web Conference, (WWWC’ 04), Hong Kong,
China.

Hearst, M.A. and J.O. Pedersen, 1996. Reexamining
the cluster hypothesis: Scatter/gather on retrieval
results. Proceedings of the 19th Annual
International ACM Special Interest Group on
Information Retrieval, ACM Press, USA, Zurich,
Switzerland, pp: 76-84. DOI:
10.1145/243199.243216

Isa, D., L.H. Lee, V. Kallimani and R. RajKumar, 2008.
Text document preprocessing with the bayes
formula for classification using the support vector
machine. IEEE Trans. Knowl. Data Eng., 20: 1264-
1272. DOI: 10.1109/TKDE.2008.76

Jin, H. and H. Chen, 2008. SemreX: Efficient search in a
semantic overlay for literature retrieval. Future
Generat. Comput. Syst., 24: 475-488. DOI:
10.1016/j.future.2007.07.008

Kaki, M., 2005. Findex: Search results categories help
users when document ranking fails. Proceedings of
the ACM SIGCHI Conference on Human Factors in
Computing Systems, Apr. 2-7, ACM Press, USA.,
pp: 131-140. DOI: 10.1145/1054972.1054991

Kraft, R., C.C Chang, F. Maghoul and R. Kumar, 2006.
Searching with context. Proceedings of the 15th
International Conference on World Wide Web, May
22-26, ACM Press, Edinburgh, Scotland, UK., pp:
477-486. DOI: 10.1145/1135777.1135847.

Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013

1617 Science Publications

JCS

Lamberti, F., A. Sanna and C. Demartini, 2009. A
relation-based page rank algorithm for semantic web
search engines. IEEE Trans. Knowl. Data Eng., 21:
123-136. DOI: 10.1109/TKDE.2008.113

Lee, U., Z. Liu and J. Cho, 2005. Automatic
identification of user goals in web search.
Proceedings of the 14th International Conference on
World Wide Web, (WWW’ 05), ACM Press, USA.,
pp: 391-400. DOI: 10.1145/1060745.1060804.

Li, Y., Y. Wang and X. Huang, 2007. A relation-based
search engine in semantic web. IEEE Trans. Knowl.
Data Eng., 19: 273-282. DOI:
10.1109/TKDE.2007.18

Osinski, S. and D. Weiss, 2004. Conceptual clustering
using lingo algorithm: Evaluation on open
directory project data. Proceedings of the
International Conference IIS: Intelligent
Information Processing and Web Mining, May
17-20, Springer Berlin Heidelberg, Zakopane,
Poland, pp: 359-368. DOI: 10.1007/978-3-540-
39985-8_38

Ratprasartporn, N., J. Po, A. Cakmak, S. Bani-Ahmad
and G. Ozsoyoglu, 2009. Context-based literature
digital collection search. VLDB J., 18: 277-301.
DOI: 10.1007/s00778-008-0099-9

Saracoglu, R., K. Tutuncu and N. Allahverdi, 2007. A
fuzzy clustering approach for finding similar
documents using a novel similarity measure. Expert
Syst. Applic., 33: 600-605. DOI:
10.1016/j.eswa.2006.06.002

Thangaraj, M. and V. Gayathri, 2011a. An effective
technique for context-based digital collection search.
Int. J. Mach. Learn. Comput., 3: 372-375. DOI:
10.7763/IJMLC.2013.V3.341

Thangaraj, M. and V. Gayathri, 2011b. A new context
oriented synonym based searching technique for
digital collection. Int. J. Mach. Learn. Comput., 1:
100-103. DOI: 10.7763/IJMLC.2011.V1.15

You, G.W. and S.W. Hwang, 2008. Search structures
and algorithms for personalized ranking. Inform.
Sci., 178: 3925-3942. DOI:
10.1016/j.ins.2008.06.009

Zamir, O. and O. Etzioni, 1999. Grouper: A dynamic
clustering interface to web search results.
Proceedings of the 8th International Conference on
World Wide Web, (WWW’ 99), Elsevier North-
Holland, Inc., Toronto, Canada, pp: 1361-1374.
DOI: 10.1016/S1389-1286(99)00054-7

