
Journal of Computer Science 9 (11): 1602-1617, 2013 
ISSN: 1549-3636 
© 2013 Science Publications 
doi:10.3844/jcssp.2013.1602.1617 Published Online 9 (11) 2013 (http://www.thescipub.com/jcs.toc) 

Corresponding Author: Muthuraman Thangaraj, Department of Computer Science, Madurai Kamaraj University, Madurai, India 
 

1602 Science Publications

 
JCS 

A CONTEXT-BASED TECHNIQUE USING 
TAG-TREE FOR AN EFFECTIVE RETRIEVAL 

FROM A DIGITAL LITERATURE COLLECTION 

Muthuraman Thangaraj and Vengatasubramanian Gayathri 
 

Department of Computer Science, Madurai Kamaraj University, Madurai, India 
 

Received 2013-08-07, Revised 2013-09-24; Accepted 2013-10-05 

ABSTRACT 

The increasing growth of information in online digital libraries causes an increasing need to develop 
techniques to retrieve. In the digital library, findability-finding the user required information is a hectic task 
than those of usability. The major issues in findability are (a) topic diffusion: results of a traditional 
keyword based search, often leads to multiple topic areas, some of which are not interested to user; (b) lack 
of scoring mechanism: at present, digital libraries lack effective and accurate publication rankings. Thus the 
users are forced to scan a large result set, which leads them to miss the important ones; providing accurate 
publication scores can help users in reducing the time spent in searching and (c) selecting search keywords: 
users spend more time to choose their search keywords, which will express their information need. This 
study proposes TAG, a new context based retrieval technique that controls the topic diversity and 
overcomes the above mentioned issues effectively. Using IEEE publications as the test bed and IEEE 
thesaurus terms as context, our experiments indicate that the proposed retrieval technique effectively 
produces output results and considerably reduces the resultant set. 
 
Keywords: Context-Based Search, Literature Collection, Topic Diffusion, Publications Ranking, TAG-

Tree, Information Retrieval 

1. INTRODUCTION 

 The digital library is an electronic library where the 
information is acquired, stored and retrieved in digital 
form. These libraries have diversified collection of 
information resources such as full texts of journals, 
conference papers, CD-ROM databases, thesis and 
dissertations, e-journals, e-books, examination papers, 
manuscripts and these are available to the users at any 
time. Many academic libraries, includes not only the 
familiar books and journals of the general collections, 
but many rare and unique materials. 
 Each year sees the introduction of new digital 
libraries promoted as valuable resources for education 
and other needs. Digital libraries offer diverse 
information resources in digital format. Traditionally, 
libraries have been warehouse of knowledge providing 
information services to the users. 

 Ranganathan (Abideen and Srivathsan, 2004), the 
father of library science has rightly mentioned’ Right 
information to the right user at the right time in the right 
form’. It is observed that the features of digital library 
seem to reflect the vision of Ranganathan. Yet 
systematic evaluation of the implementation and efficacy 
of these digital library systems is often lacking, due to 
the traditional keyword based search. 
 Digital libraries provide instant access to all 
information, for all sectors of society, from anywhere in 
the world. This is simply unrealistic. This concept comes 
from the early days when people were unaware of the 
complexities of building digital libraries. Instead, they 
mostly like a collection of disparate resources and 
disparate systems, catering to specific communities and 
user groups, created for specific purposes. They also will 
include, perhaps indefinitely, paper-based collections. 
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 Further, interoperability across digital libraries of 
technical architectures, metadata and document formats 
will also be possible only within relatively bounded 
systems developed for those specific purposes and 
communities. 
 On the one hand, there seem to have an explosion of 
information with journals and magazines piling high in 
the book shelves of libraries. On the other hand, either 
because of limited knowledge on how to retrieve 
information or there is an insufficient amount of 
information available, the number of clients asking 
librarians for information is steadily increasing. 
 Any given query may fetch huge number of results. 
It is obvious that very few results are relevant to the user 
needs out of the huge set of results even though they 
contain the keyword. Thus, we need an effective 
searching technique in digital collection, to produce the 
best result. The main problem here is, the relation 
between the terms in the given query (Lamberti et al., 
2009; Li et al., 2007) i.e., the meaning of the entire query 
is missing. Thus it is needed to consider the query as the 
contexts instead of considering just as keywords. Not 
only the keywords, but the synonym of it also plays an 
important role in the searching era. 
 These high growth rates introduced several challenges 
facing the information access capability of digital libraries. 
Some of the challenges that motivated the research work 
presented in this study are (a) large sizes and topic 
diversity of search output results; (b) lack of effective 
scoring functions for publications; (c) lack of effective 
scoring functions for search outputs (Bani-Ahmad, 2008); 
(d) supporting example-based search queries; and (e) 
scalable search-keyword suggestion to users. 
 The remainder of the study is organized as follows: 
Section 2 is devoted to the issues relevant to searching in 
the digital collection. In Section 3, we describe the 
working mechanism of TAG. Section 4 shows our 
performance evaluation result. Finally, Section 5 
presents conclusion. 

2. RELATED WORK 

 As the fabulous growth of the digital library in each 
year, the problems with indexing and searching a digital 
library is increased in a high rate. There are many digital 
literature systems that produce results based on the 
importance of the query keyword. These systems do not 
use contexts to organize search results. 
 In contextual web search approach, e.g., Y!Q 
Contextual Search (Kraft et al., 2006) and IntelliZap 
(Finkelstein et al., 2004), a context is captured around 

the user-highlighted text, from which queries are created. 
The users can specify contexts of interests before 
viewing search results and no structural and hierarchical 
information are used. Sometimes user need not give 
keyword to initiate the search, e.g., in (Coppola et al., 
2010), according to the environment variables, contexts 
are selected automatically. Results are retrieved for the 
set of predefined query based on the corresponding 
context. The user can select from the list of results that 
are generated automatically. 
 A variety of categorization techniques, classification 
and clustering are proposed that will make the results 
more understandable. Scatter/Gather (Hearst and 
Pedersen, 1996) was one of the first clustering systems 
on top of the Information Retrieval engine, in which it 
groups documents based on the similarities in their 
contents. Grouper (Zamir and Etzioni, 1999) uses Suffix 
Tree Clustering (STC) that identifies sets of documents 
sharing common phrases. Lingo (Osinski and Weiss, 
2004) uses Singular Value Decomposition (SVD) to find 
meaningful labels for the clusters. Findex (Kaki, 2005) 
seeks frequent words from the results to classify them. 
SemreX (Jin and Chen, 2008), a semantic overlay for 
desktop literature/document retrieval in peer-to-peer 
networks. Similarly other techniques like fuzzy systems, 
support vector machine are also used to cluster documents 
(You and Hwang, 2008; Saracoglu et al., 2007). 
 Similarly to improve search experience some 
systems use classifications of documents. In 
(Campbell et al., 2007), documents are classified 
based on the user’s background information. Similarly 
in (Isa et al., 2008) Bayes formula is used to identify to 
which predefined group, this document belongs to. But if 
a single keyword represents multiple contexts, then this 
system will produce highly inaccurate results. 
 If these categorizations are done in online, then the 
most relevant document may not appear in the top of the 
result set, also partially relevant documents may be 
scattered around the list. Mostly search systems are 
based on the importance of the papers and/or the 
existence of the keywords. They do not give much 
importance for the context. 
 For checking the existence of the keyword, similarity 
techniques like Text-based (Chen and Chiu, 2010), 
Google based (Cilibrasi and Vitanyi, 2007; Aliguliyev, 
2009) similarity is used. Even though there are many 
techniques are available, still the end users are struggling 
to get the desired information. Because, in a keyword - 
based search, the main ambiguity is that, a single word 
may have different meanings, where as different words 
may also refer to the same thing. Thus we need to search 
by considering the context of the given query. 
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 In Context Based Search (CBS) (Ratprasartporn et al., 
2009), during pre-querying, publications are assigned 
into pre-specified ontology-based contexts and query-
independent context scores are attached to papers with 
respect to the assigned contexts. When a query is 
posed, relevant contexts are selected, search is 
performed within the selected contexts, context scores 
of publications are revised into relevancy scores with 
respect to the query at hand and the context that they 
are in and query outputs are ranked within each 
relevant context. The major drawback in this system is 
that for searching within each selected context, all the 
publications in the database are verified linearly. Thus 
it takes more number of comparisons and which in turn 
increases the retrieval time. 
 As an alternate Search-and-Distribute-to-Contexts 
(SDC) approach is also handled here in order to utilize 
the context information. In SDC, the same strategy is 
followed as in CBS, to assign papers to Contexts and to 
compute the context scores of each paper. When a query 
is given, unlike CBS, it first performs a keyword-based 
search, across all the publications from which it finds the 
contexts and publications that falls in. Then re-ranks the 
publications within each located contexts. Since the 
query is matched against the whole database, increases 
the computation overhead. The meaning of the query is 
not conveyed, because of the keyword-based search. 
 To overcome these issues New Context-Based 
Search (NCBS) (Thangaraj and Gayathri, 2011a) uses its 
searching structure to hold the contexts and its synonyms 
along with its publications. The searching structure is a 
combination of B+-tree and inverted list. Contexts are 
extracted from the documents in the corpus using pattern 
extraction based techniques. All the documents in the 
corpus are classified based on the context regardless of 
the query and are mapped into the NCBS structure, has a 
combination of B+-tree and Inverted List. 
 When a query is given, the relevant context is 
identified and returned with its synonym as well as the 
appropriate document of the context. The main drawback 
of this method is it can search only with the context, 
not with its synonyms. It will just return the list of 
synonyms. Thus improved version NCOSBS 
(Thangaraj and Gayathri, 2011b) will search both in 
Context and its synonyms. The data structures used are 
B+-tree and hash table. Here it searches contexts first in 
the context tree; if available then proceeds searching to 
its publications and finally its related synonyms are 
returned. If it is not available then, the relevant hash 
table’s look up is done; find its relevant synonyms tree, it 
is where the given query is searched against synonyms. 

The major drawback of this system is to search either 
context or synonyms and not in a combined form. 

3. TAG ARCHITECTURE 

 A new architecture called as TAG is formulated to 
address these issues. TAG uses Context-Based Search, in 
which the query can be done using the keywords and its 
synonyms.  
 The various functional components of the TAG 
architecture are: 
 
• TAG Extractor: Parts of the Publications are 

extracted from digital collection, for the construction 
of Contexts and for indexing 

• TAG Indexer: Publications are indexed based on the 
context. Publications that match the particular 
Context are mapped in the TAG-tree. Publications 
are assigned the first level scoring 

• TAG Suggester: Helps user to select right terms for 
the query with the help of usage history 

• TAG Retriever: Retrieves the relevant publications 
based on each Context that are relevant to the given 
query with the help of Thesaurus. Also next level 
scoring is assigned to the publications 

• TAG MRanker: Publication results of various 
Contexts are merged. Finally based on the different 
levels of scoring, publications are ranked, which in 
turn passed to the users 

 
 Note that the first two tools of TAG are independent 
of query and pre-executed. The remaining tools need the 
query as an input and executed at on-line. The overall 
architecture of TAG is shown in the Fig. 1. 
 Using the TAG Extractor, publications in the 
database are pre-processed. Then Contexts are identified 
from the publications using extraction. Then these 
publications are mapped to the TAG-tree based on these 
identified Contexts, by the TAG Indexer. TAG Suggester 
parses the publications at offline. By this information at 
background, TAG Suggester suggests the right terms for 
constructing the query. Once the query is given by the 
user, then TAG Retriever retrieves the relevant Contexts 
from the TAG-tree, at the same time, relevant results are 
retrieved from the previous search log. From these result 
sets, publications are retrieved along with its scores. 
Now using the TAG MRanker, both the result sets are 
merged and ranked based on the scores of the 
publications. These ranked list of publications, are then 
returned to the user as the final result set. 
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Fig. 1. TAG architecture 
 

 
 

Fig. 2. Workflow of TAG extractor 
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3.1. TAG Extractor 

 This tool is used to extract Contexts from the digital 
collection. Based on these Contexts, the publications are 
categorized. The workflow of this TAG Extractor is 
depicted in Fig. 2. 
 It is advantageous to parse the two areas such as 
publication title and abstract of publication: (a) 
publication titles since (i) the number of tokens in a title 
are an order of magnitude less in count than the tokens of 
the full document and (ii) publication titles are 
significantly less likely to have ambiguous tokens (like 
impersonal pronouns) than the full document even 
though, in rare occasions, authors choose for their 
articles humorous, but irrelevant names. Such titles are 
humorous and easy to be remembered by users and they 
have great value in navigational queries in which the 
user has a particular target. On the other hand, these titles 
negatively affect the performance of informational 
queries, in which the user is looking for sources that 
provide background knowledge about the search topic 
(Lee et al., 2005). To solve this approach, we also 
suggest preprocessing (b) abstracts of publications in 
addition to titles and keywords are also extracted. 
 These extracted parts of the publications are then 
tokenized. These tokens are cleaned, by the process such 
as stop words removal. Terms from IEEE Thesaurus are 
used as Contexts. In addition to that significant terms of 
publications are also considered to best define the 
Context (as in NCBS). 
 Briefly, a Context is in a pattern form, which 
consists of three tuples <prefix>, <context> and 
<suffix>. Significant words are assigned to <context> 
tuple, where as the words surrounding the significant 
words are assigned to <prefix> and <suffix>.  

3.2. TAG Indexer 

 Contexts based on which the publications are 
categorized, are constructed using TAG Extractor. Now 
this section shows how the publications are assigned to 
these Contexts. TAG-tree is a combination of B+-tree and 
list as shown in Fig. 3. At first TAG-tree is constructed 
and the Contexts created by the TAG Extractor are then 
mapped to it. Finally the publications are assigned to its 
relevant Contexts. 
 The TAG-tree is organized based on the contexts 
with its prefix and suffix terms. The leaf node has the 
Context and a pointer to the relevant document. Every 
leaf node of a B+-tree points to a synonyms list. The 
synonyms list has the set of synonyms for the given 
context. Each context is mapped into the TAG-tree as an 
individual bucket element. In the internal nodes of the 

TAG-tree, it has only the Context, that is, pattern with the 
three tuples <prefix><context><suffix>. But, the leaf node 
has Context, its Cluster information and a pointer to a list 
that holds synonyms (refer NCBS for more information). 
 The Context taken in this study is nothing but 
thesaurus terms. It is better to find a way to determine a 
relationship between the term and each publication and 
decide whether the publication should be categorized to 
the term. Expert intervention is needed for the 
effectiveness categorization when the number of 
publications and contexts are small. However, the number 
of contexts and publications are very large. Manual 
assignment is not practical and also very time-consuming. 
 To automatically assign publications to Contexts, the 
existence of the Contexts are verified in the publications. 
First, the context terms in the publications are highlighted. 
Then all the synonyms of the Contexts are also highlighted, 
by refining once again, now the publications containing the 
Context patterns are added to the respective publication 
cluster called P-Cluster. Publications of the P-Clusters are 
assigned scores based on the relevance between the 
publications and their respective context. 

3.3. TAG Suggester 

 Studies show that users spend considerable amounts 
of time in search sessions to properly select keywords and 
to modify their search keywords in order to successfully 
locate publications. A search-keyword suggester may help 
users choose keywords properly and thus, users are less 
likely to face unsuccessful search attempts.  
 TAG Suggester is based on the prior analysis of the 
publication collection at hand. The working mechanism 
of TAG Suggester is depicted in Fig. 4. Initially 
publications are parsed using the Link Grammar Parser 
(LGP), is a syntactic parser of English. As stated in the 
previous section, the three important parts of the 
publications are used for parsing. The linkages between 
the tokens of the publications are stored in the LGP 
Database along with the parsed tokens. Parsing is pre-
executed and not dependent on queries. 
 When the user starts typing the Context keyword, 
Token Predictor (TP) is called to make suggestions on 
the first few letters given by the user. But the suggestion 
scope of TP is reduced based on the terms fed already in 
the current session. When the user starts typing, TP 
fetches the LGP database for the tokens which starts with 
the given keyword letters. In addition, it fetches the 
usage history for the tokens. If this is not the first call to 
TP for the current session, then TAG-tree is also 
searched with the already completed Context keyword.  
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Fig. 3. TAG-tree an overview 
 

 
 

Fig. 4. Work flow of TAG suggester 
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Fig. 5. Workflow of TAG retriever 
 
In all these fetches, scores are allotted to the results 
based on their relevancy/importance. Finally TP will 
pass all these results to ranking module, which will 
arrange and select the most appropriate (limited) 
suggestions for the search keyword. 

3.4. TAG Retriever 

 This tool is mainly for retrieving the publications 
that are relevant to the given query. When the user 
successfully chooses his query Context with the help of 
TAG Suggester, then the TAG Retriever is invoked by 
passing the query Context as input. The workflow of 
TAG Retriever is shown in Fig. 5. 
 The TAG-tree is searched against the given query 
Context. Initially, the prefix tuple is searched: If it is 
available, then the subsequent tuples are searched in 
its sub tree; otherwise, searching is performed with 
the next tuple. Similarly each tuple is considered for 
searching, when it is found, then the further searching 
is done at its sub tree; otherwise searching continues 
with the next tuple. 
 When a query tuple is searched in the tree, it may 
appear at the <prefix> tuple or at the <context> tuple of the 
node in the tree. Mostly it appears at the <context> tuple. 
 Thus searching starts with the <context> tuple of the 
node, if it matches with the query tuple, then the 
subsequent tuples are searched in its sub tree (Fig. 6). In 
contrast, if the query tuple doesn’t match with <context> 
tuple, then it is compared with the <prefix> tuple of the 
same node (Fig. 7). Suppose, the query tuple matched 
with the <prefix>, then the searching for the next tuple is 
done with the <context> tuple of the same node. Then, 

the searching mechanism repeats the searching in the 
same fashion to retrieve the required information. 
 When searching is stopped without getting the exact 
context as in the query, then the Context, up to which the 
search mechanism found its match with the query 
context, is returned as a result. When there is no match 
occurs, then the Contexts in the root of the Context tree 
are returned as a suggestion for the user’s reference. 
Instead of getting out with empty result set, the user can 
get some information to make improvement in their 
searching query task. 
 Once the relevant Context is found, then its P-cluster 
is retrieved from the digital collection repository. These 
publications are added to the result set along with its 
score (which is assigned during indexing). Then the 
thesaurus is fetched for the synonyms/Relevant Terms 
(RT) for the given query Context. These synonyms are 
then searched in TAG-tree. P-clusters of the synonyms’ 
Contexts are also be added to the result set along with its 
score. Now second level scoring is assigned based on the 
relevance between the selected context and the query 
context. Finally TAG Retriever returns the publications 
along with its two levels of scoring. 

3.5. TAG MRanker 

 TAG Merge Ranker (TAG MRanker) is used for 
merging all the result sets of publications and ranks it 
based on their score. Different levels of scoring are 
assigned to the publications. Finally all these result sets 
(at different levels) are merged. Based on the scores, 
publications are ranked and returned to the user. 
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Fig. 6. Searching against the contexts of the contexts 
 

 
 

Fig. 7. Searching against the prefixes of the contexts 



Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013 

 
1610 Science Publications

 
JCS 

 While constructing P-clusters, TAG Indexer assigns 
level 1 score to the publication. This score is based on the 
relevance between the Context and the publication. Level 2 
scoring is assigned by the TAG Retriever. The publications 
of the real query Context is assigned score more than the 
publications that belong to the synonyms Contexts. Thus 
the relevance between the given query Context and the 
identified Context are considered. Hit ratios of the 
publications are used to assign level 3 scoring. 
 The user may utilize the suggestions made by TAG 
Suggester. Since the suggestions are made from the 
available digital collection repository, the suggestions 
are clearly right Contexts. Level 4 scoring is assigned to 
the publications based on the selection of the query. If 
the user has selected the query from the suggestions 
made by the TAG Suggester, then the chosen context’s 
P-cluster are assigned higher scores than the others. All 
these scores of the publications are summed up to 
produce the overall score of the publications. Thus 
publications of the various result sets are merged. Based 
on the overall scores, publications are ranked, which in 
turn passed to the users. 

3.6. TAG Algorithms 

 This section presents the various algorithms used in 
TAG technique. The algorithm for constructing P-
clusters of each Context is given below: 
 
Algorithm  : Paper-Context Mapping 
Data Structure  : See Fig. TAG Structure 
Input : t – threshold 
 Context ctxt[] – set of Contexts 
Output : Pset[] – An array of mapped Context-papers 
 
i: 1 ≤ i ≤ m (m – Total number of Contexts) 
j: 1 ≤ j ≤ n (n – Total number of Papers in the database) 
 
for each Context ctxti 
 for each Paper pj in the database 
 if pj contains ctxti 
 { 
 pj.score = SimScore (ctxti, pj) 
 if pj.score ≥ t 
 add pj to Pset[i] 
  } 
 
 Publications in the digital collection repository are 
searched for the Context. If the publication contains the 
pattern of the particular Context, then the similarity 
between the Context and the publication are computed, 

which is assigned with the score of it. In the same way, 
scores for all publications are computed for a particular 
Context. If the score is greater than or equal to the 
threshold value, then the publication is added to the P-
cluster of the specific Context. In this way, for all 
Contexts, P-clusters are constructed. 
 The algorithm used for locating the Contexts is 
explored in the following. If a query is given, then it is 
searched against the TAG-tree. The resultant Context’s 
P-cluster along with its score is added to the Result Set. 
Now synonyms of the identified Context (si) are found: 
 
Algorithm : Retrieval 
Data Structure : See Fig. TAG Structure 
Input  : Query q, Node nodepointer 
Output  : RPset – Resultant Publications 
Let RPset-Resultant publications id with its scores 
 result-node of Context Tree 
 Syn-node of Context Tree 
find(q,head)-Context Identification function 
 
ConSynRet(Query q, Node nodepointer) 
{ 
 result = find(q, head); 
 add Pids, scores of result to RPset; //Level1 Score 
 //Insert Pid and level 1 score alone, 
 // keep other scores as 0 
 for each synonym si of result 
 { 
 syn = find(si, head); 
 add Pids, scores of result to RPset; //Level2 
Score 
 //if Pid already exists, only update level2 score 
 //else insert Pid and level2 score alone & 
 //keep other scores as 0 
 } 
 } 
 
 Each synonym is searched against the TAG-tree and 
its P-clusters are also added to the Result Set with its 
scores. The algorithm for searching against the TAG-tree 
for the given input is shown below: 
 
Algorithm : Context Identification 
Data Structure : See Fig. TAG Structure 
Input : Query q, Node nodepointer 
Output : Context with its document as well as related 
synonyms 
 
Let i, 0 ≤ i < degree of the Context Tree; 
j, 0 ≤ j ≤ 2 (j – each tuple in the query); 
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x – node of Context Tree; 
docs-id– Ids of relevant publications of the Context; 
<Pi>-Prefix tuple of the ith node segment of the 
nodepointer; 
<Ci>-Context tuple of the ith node segment of the 
nodepointer; 
<Si>-Suffix tuple of the ith node segment of the 
nodepointer; 
 
find (Query q, Node nodepointer) 
{ 
 if (nodepointer is NULL) return (NULL); 
 if (nodepointer is a leaf) 
  { 
  x = find (q, nodepointer); 
  return(x, docs-id, Synonyms );\\x is the context 
  } 
 else  
  { 
 for each tuple <qj> in the query context 
  for i = 0 to degree-1 
  { 
  if (<qj> = <Ci>) 
  { 
  x = find (qj+1, nodepointer -> childi); 
  if (x = NULL) 
  return (current Context from Tree Leaf); 
  return (x); 
  } 
  else if (<qj> = <Pi>) 
  return (find (<qj+1>, nodepointer)); 
  } 
  \\ if qj is not available in any of the node 
  \\ segments in nodepointer, then, search for it 
  \\ in the last subtree 
  x = find(<qj>, nodepointer -> childj); 
  if (x!=NULL) return (x); 
  } 
 return headnode; 
 } 
 
 Each tuple in the query Context is searched 
against the TAG-tree. First the <prefix> tuple is 
searched, if it is found, then its sub tree is searched for 
the remaining tuples. If a tuple is not found in the 
buckets of the TAG-tree node, then it is searched in its 
last sub tree. In case, the current tuple is not found 
even there, then the next tuple is searched for. In this 
way, the TAG-tree is searched for the given query 
tuple. In worst case, if any of the query tuple is not 
found, at last the head node of the TAG-tree is 

returned as the suggestions to the user to refine his 
query. This may be encountered, if the user doesn’t 
consider the suggestions made by the TAG Suggester. 
 The algorithm of TAG-Suggester is depicted in the 
following. When the user starts entering the query 
keyword, TAG Suggester has to give appropriate 
suggestions to complete the query. User entered input 
(W) is parsed; the completed (CSK) and Uncompleted 
(USK) keywords are identified first. If the completed 
keywords are not available i.e., this is the first trial of the 
current session, then LGP database is searched to find 
the tokens that starts with USK; as well as previous 
query Contexts are also be searched. Then the results of 
both of these are merged; based on the importance, 
suggestions are ranked and the top-k suggestions were 
presented to the user: 
 
Algorithm : TAG Query Suggestor 
Data Structure : See Fig. TAG Structure 
Input : String W-Current Search Terms 
  Node head-Pointer to the root of TAG-tree 
Output : Suggestions[] - An array of Suggestions 
 
Let SK1, SK2, SK3 are suggestions 
find_suggestion(StringW, Node head) 
{ 
 CSK = Completed Search Keyword in W 
 USK = Uncompleted Search Keyword in W 
  
 if(CSK = ““ && USK !=“ “) 
 { 
  SK1 = findLGP(USK, All) 
  SK2 = findLoG(USK) 
  W’ = SK1 U SK2 
  } 
 else if(CSK != ““ && USK = ““) 
 { 
  SK1 = findTAGtree(CSK, head) 
  SK2 = FindLoG(CSK) 
  SK3 = FindLGP(CSK) 
  W’ = SK1 U SK2 U SK3 
  } 
 else if(CSK != ““ && USK != ““) 
 { 
  SK1 = findLGP(USK) 
  SK2 = findTAGtree((CSK + USK), head) 
  SK3 = FindLoG(CSK, USK) 
  W’ = SK1 U SK2 U SK3 
  } 
 return W’ 
 } 
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 If CSK is filled by already fed terms, then TAG-tree 
is searched against the CSK to produce the suggestions 
to complete the current query. At the same time, both 
LGP database as well as the previous history is also be 
searched. In the LGP database, it finds the possible 
linkages for the CSK, based on which suggestions from 
it are made. Finally all these results are merged and 
ranked to provide top-k suggestions. 
 If both CSK and USK is available for the current 
session, then TAG-tree is searched for the Contexts that 
has tuples like CSK, followed by the tuple starts with 
USK. In LGP, tokens which start with USK in the possible 
list of tokens that satisfies the possible linkages of CSK 
are searched for. Similarly in previous history query 
Contexts that has CSK followed by the token that starts 
with USK is searched for. At last all these results are 
merged and ranked to equip user with top-k suggestions. 

4. PERFORMANCE ANALYSIS 

 This section shows the efficiency of the TAG 
technique by discussing various experiments. For this 
study we have conducted many experiments, but 
presented only vital results. TAG technique is compared 
with the earlier models such as CBS and SDC in order to 
explore the strength of TAG. These three techniques 
were implemented in JAVA. All experiments reported in 
this section were conducted on Processor Intel Core i7 @ 
2.30GHz with 8 GB RAM and 1 TB hard disk, running 
Windows 7. As a test bed, in our digital collection, 2 
Lakhs full text articles were downloaded from IEEE 
Journals in the field of Computer Science and various 
Contexts were queried to find the performance. 
 The objectives of the experiments were categorized 
as follows: 
 
• Prime purpose is to assess the retrieval performance 

of the indexing structure 
• Study the impact of topic diffusion with large digital 

collection 
 
4.1. Parameters and Assumptions 

 In this section, the parameters used in the analysis 
and the basic assumptions of the study are given in 
Table 1. 
 Some assumptions made to facilitate our 
experiments study on this retrieval structure as: 
 
• The searching value should be uniformly distributed 
• All the clusters are with adequate information 
• Each query should be supported with context for the 

effectiveness of the retrieval 

Table 1. Parameters used in the analysis 
Parameter Meaning 
H Height of the TAG-tree 
r Number of papers with query relevance 
s Stop words 
Q Query 
P Prefix word 
C Context word 
S Suffix word 
T Number of Contexts 
L Key Length 
As Average size of the paper 
R Number of clusters 
D Database size 
U Cluster size 
NPi Number of publications in the ith cluster 
At Number of publications that satisfies the  
 pattern ‘t’ 
Ec Number of patterns for a specific Context ‘c’ 
z The maximum number of synonyms of a Context 
 
 These assumptions are commonly found in all the 
analytical model for accessing literature collection and 
they do not affect the relative merits of this search 
structure. 

4.2. Storage Cost 

 Normally, the storage cost of an index can be 
expressed as the number of clusters used by the index, 
divided by the number of clusters that are absolutely 
necessary to store the instances Equation 1:  
 

ci ptCC m PT P= × ×   (1) 

 
Where: 
m = The number of contexts 
PTci = The number of patterns for each contextci 
  where: ci = 1≤ci≤m 
Ppt = the publications that satisfies the pattern pt 
  where, pt lies in 1≤pt≤t. 
 
 In all experiments performed, we have obtained that 
TAG technique have lowest storage cost. However, the 
storage cost is negligibly small, since large capacity of 
storage devices are widely available today for lower cost. 
Therefore, it may be preferable to design models that 
provide good performance, even if they have a large 
storage requirements. 

4.3. Retrieval Cost 

 The following is the retrieval cost (RR) for retrieving 
the result set from TAG-tree Equation (2 and 3): 
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Where: 
CR = The cost of retrieving a Context from TAG-tree 
B = The buckets of the TAG-tree 
Sid = The cost for identifying the synonyms 
Ns = The number of synonyms of a particular 

context, which is 0≤ns≤z 
CRj = jth context retrieving cost 
c = The cost for clustering the publications 
 
4.4. Preprocessing and Cluster formation 

 In section 3.1 and 3.2 Preprocessing and P-cluster 
formation are discussed. Usually text document contains 
30% of usual, generic terms like an, the, where. While 
indexing if we include all these terms as such, will 
increase the overhead of manipulating it. The removal of 
those words will not make any impact on the meaning of 
the pattern. To avoid computational overhead, various 
unique stop words are identified and removed from the 
parsed digital collection. 
 Many unique patterns can be generated with a 
different combination of words. Fig. 8 shows the growth 
of P-clusters, when the size of the database get increased. 
The figure depicts that the CBS approach uses more 
number of clusters when compared to the TAG. Normally, 
the increase in number of clusters will degrade the search 
performance. It is inferred that the proposed method 
performs well compared to the other methods. 
 The time taken to construct a P-cluster by varying 
the size of the digital collection is presented in Fig. 9. 
The objective of this experiment is to observe the time 
variations with respect to change in data size. CBS and 
TAG methods use pattern-based approaches. 
 CBS construct more number of clusters based on 
minimum relevance and scores. As the resultant set of 
the minimum relevance are high, it takes maximum time 
to construct P-clusters. In contrast, TAG construct 
clusters based on exact relevance with score that 
minimizes the construction time. The SDC method is not 
taken for the study because the cluster formation is done 
only after the retrieval. The results show that the 
proposed method outperforms the CBS.  

 Thus, the number of tokens that matches the 
minimum relevance are high, which in turn computation 
of their scores and further operations are also takes a 
considerable amount of time. But in case of TAG, only 
the papers that are exactly relevant are under 
computation for their relevance score and further 
operations. Thus the time taken for TAG to construct P-
clusters is minimum over CBS. In SDC, clustering is 
done at the end of the retrieval, not in the preprocessing. 
Thus clustering phases of CBS and TAG cannot be 
compared to SDC. 

4.5. Retrieval 

 The retrieval efficiency is a major challenge when 
the size of the digital collections increases. This study 
shows the retrieval performance of the different methods. 
The Fig. 10 discusses the measuring of retrieval time for 
different context. For this study, Ten different Context 
were randomly chosen and size of the digital collection 
is fixed as 2 lakhs publications. 
 The graph shows that the TAG retrieval is better 
than other method, since TAG uses a tree based search 
where as other method use linear search. TAG uses 
topic-based minimal search space which is created using 
<prefix> and <suffix>, is a main reason for effectiveness 
of the searching. 
 Though CBS uses pattern-based approaches, i.e., 
information from <prefix> and <suffix> are used, it 
performs linear searching. Thus TAG outperforms CBS 
even both uses pattern-based approaches. CBS finds 
directly the contexts that are relevant to the query 
context, where as SDC searches the digital collection as 
a whole for the query by considering it just as a keyword. 
Once the result set is generated, then it is distributed to 
different clusters depending upon the topic to which it 
belongs. Finally it retrieves the result set for the specific 
Context from it. Thus searching the whole digital 
collection and clustering the results, at last extracting the 
specific topic, takes more time compared to CBS. In this 
way, CBS outperforms than SDC. 

4.6. Accuracy 

 The performance of accuracy depends on finding 
exact match for the given Context. To study the 
performance of accuracy, we have taken 2 lakhs papers 
with 11 randomly selected Contexts. The relevance of 
the papers for each selected Context were identified and 
evaluated. Fig. 11 shows the accuracy of search in terms 
of various selected Context. 



Muthuraman Thangaraj and Vengatasubramanian Gayathri / Journal of Computer Science 9 (11): 1602-1617, 2013 

 
1614 Science Publications

 
JCS 

 
 

Fig. 8. Growth of Pclusters against the growth of digital 
 

 
 

Fig. 9. Time taken for construction of Pclusters 
 

 
 

Fig. 10. Time taken to retrieve the result set 
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Fig. 11. Accuracy of the retrieved results (direct evaluation) 
 

 
 

Fig. 12. Diffusion rate of the result set 
 
 SDC finds whether the given query terms appears in 
the article. The query terms may not be available in the 
article as given in the query. For example, the query 
context “process scheduling algorithms” is queried, the 
result set includes the articles of processor design, disk 
scheduling, deadlock avoidance algorithms. 
 It just performs AND operation between the results 
of the individual query terms. Thus results are not that 
much accurate and size of the result set is very large. In 
CBS, even the occurrence of the pattern is considered, 
because of the stemming algorithm used (Porter 
Stemmer), domain words are not differentiated from the 
generic words. Thus CBS also not produces accurate 
results. TAG outperforms than these two earlier 

techniques, because of the features of TAG-tree, which 
narrows down the searching area, which brings the 
relationship that exist between the query terms. 

4.7. Diffusion 

 This study focuses on the key issue of information 
retrieval, Topic diffusion. Some Contexts were selected 
randomly to find the publications in the particular Context. 
 Fig. 12 shows the diffusion rate of the contexts. 
Since CBS and SDC uses approximate matching. As 
described earlier, SDC is purely text-oriented, i.e., the 
relation between the query terms are not considered; in 
CBS, the stemming algorithm used is not enough to 
differentiate the domain specific terms from the generic 
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terms; so, both diffuses from the topic of the query. TAG 
outperforms these earlier techniques, since the searching 
area is narrowed down and the relationship between the 
query terms is considered, as well as the query is 
considered as Context, i.e., the keywords along with their 
synonyms, also more information about the topic in the 
form of <prefix> and <suffix>. 

4.8. Observation 
 
• The size of the resultant set is reduced about 60% 
• Diffusion rate is minimized due to pattern based 

approach; exact matching and effective cluster 
formation 

• Suggester with maximum specificity makes the 
relevant query 

• The retrieval efficiency of TAG is about 84% as 
compared to previous searching technique 

 
5. CONCLUSION 

 This study presented architecture for Context-based 
retrieval in a digital collection. This study was 
implemented and compared with the existing 
methodologies. The performance analysis of these 
methods shows the effectiveness of the new architecture 
by controlling topic diffusion problem. 
 This study can further be extended towards tuning of 
indexing method, ontology based retrieval and similarity 
enhancement. 
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