
Journal of Computer Science 9 (11): 1534-1542, 2013
ISSN: 1549-3636
© 2013 Science Publications
doi:10.3844/jcssp.2013.1534.1542 Published Online 9 (11) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Dina EL-Gammal, Department of Computer Science, Faculty of Information Technology,
 MISR University for Science and Technology, Egypt

1534 Science Publications

JCS

NEW BINARY PARTICLE SWARM OPTIMIZATION
WITH IMMUNITY-CLONAL ALGORITHM

1Dina EL-Gammal, 2Amr Badr and 3Mostafa Abd El Azeim

1Department of Computer Science, Faculty of Information Technology,
MISR University for Science and Technology, Egypt

2Department of Computer Science,
Faculty of Computers and Information, Cairo University, Giza, Egypt

3Department of Software Engineeering, Faculty of Computing and Information Technology,
Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt

Received 2013-09-16, Revised 2013-09-21; Accepted 2013-09-30

ABSTRACT

Particle Swarm Optimization used to solve a continuous problem and has been shown to perform well
however, binary version still has some problems. In order to solve these problems a new technique called
New Binary Particle Swarm Optimization using Immunity-Clonal Algorithm (NPSOCLA) is proposed This
Algorithm proposes a new updating strategy to update the position vector in Binary Particle Swarm
Optimization (BPSO), which further combined with Immunity-Clonal Algorithm to improve the
optimization ability. To investigate the performance of the new algorithm, the multidimensional 0/1
knapsack problems are used as a test benchmarks. The experiment results demonstrate that the New Binary
Particle Swarm Optimization with Immunity Clonal Algorithm, found the optimum solution for 53 of the 58
multidimensional 0/1knapsack problems.

Keywords: Immunity-Clonal Algorithm, Particle Swarm Optimization, Binary Particle Swarm Optimization

1. INTRODUCTION

This James Kennedy and Russell Eberhart introduced
a Particle Swarm Optimization (PSO) in 1995 (Eberhart
and Kennedy, 1995; Kennedy et al., 2001) by simulate a
bird swarm. PSO depending on three steps which are
repeated until some stopping condition is met, the first
step is to Evaluate the fitness of each particle then
specify the individual best position and global position
ending with update velocity and position of each particle
using the following equations:

() () () ()()
() ()()

i i 1 1 i i

2 2 i i

v t 1 v t c r pbest t - p t

c r gbest t - p t ,

+ = ω +
+

 (1)

() () ()i i ip t +1 = p t + v t +1 (2)

where, (i) is the index of the particle and (t) is the time.
In Equation (1), the velocity (v) of particle (i) at a time (t
+ l) is calculated by using three terms.

The first term (ωvi(t)) called inertia effect which is
responsible for keeping the particle to fly in the same
direction, where (ω) is the inertia factor usually
decreases linearly during run (Shi and Eberhart, 1998),
the higher value of (ω) encourages the exploration while
the lower value encourages the exploitation. vi(y) is the
velocity of particle (i) at time (t).

The second term (c1r1(pbesti(t)-pi(t))) called cognitive
effect. It allows the particle to return to the best position
achieved by itself by calculating the distance between the
current position (Pi(t)) and the best position pbesti (t)
where, (c1) is a cognitive coefficient that usually close to
2 and affects the size of step the particle takes toward the
(pbest) and (r1) is a random value between 0 and 1 cause
the particle to move in semi direction toward (pbest)
(Eberhart and Kennedy, 1995; Kennedy et al., 2001).

Dina EL-Gammal et al. / Journal of Computer Science 9 (11): 1534-1542, 2013

1535 Science Publications

JCS

The third term (c2r2(Gbesti(t)-pi(t))) called social
effect; it is responsible for allowing the particle to follow
(Gbest) the best position the swarm has found so far
where (c2) is a social coefficient that usually close to 2
and affects the size of step the particle takes toward
(Gbest) and (r2) is a random value between 0 and 1 cause
the particle to move in semi direction toward (Gbest)
once the velocity is calculated, the position updated by
Equation (2).

1.1 Related Work

PSO was designed for continuous problem, but can’t
deal with discrete problems. A new version of PSO
Called Binary Particle Swarm Optimization is introduced
by Kennedy and Eberhart (1997) to be applied to discrete
Binary Variables, because there are many optimization
problems occur in a space featuring discrete. The
Position in BPSO is represented as a binary vector and
the velocity is still floating-point vector however;
velocity is used to determine the probability to change
from 0 to 1 or from 1 to 0 when updating the position of
particle.

There are some differences between PSO and BPSO,
which may lead to the following problems.

 Firstly, the behavior of velocity clamping in BPSO
differ from it in PSO. The velocity in PSO is responsible
for exploration where the velocity in BPSO encourages
the exploitation (Engelbrecht, 2005). This problem lead to
the phenomenon of premature convergence in which the
search process will likely trapped in region containing a
non-global optimum simply its mean loss of diversity.

Secondly, the value of (ω) in PSO usually decreases
linearly however; In BPSO there are some difficulties to
choose a proper value for (ω) to control the exploration
and exploitation as discuss in (Engelbrecht, 2005).

Thirdly, the position in BPSO is updated using
velocity, so the new position seems to be independent
from current position but the position in PSO is updated
using current position and the velocity determines only
the movement of particle in the space (Khanesar et al.,
2007). Because of these difficulties, many researches have
been devoted to solve these problems (Khanesar et al.,
2007; Mohamad et al., 2011; Gherboudj et al., 2012;
Gherboudj and Chikhi, 2011).

Ye et al. (2006) introduced a new technique of binary
Particle Swarm Optimization in (Ye et al., 2006) by
introducing some new operators to be used in updating
velocity and position equations.

In this technique, each potential solution (particle) is
represented with position and velocity of n-bit binary
string and updating according to the following equations:

() () () ()()
() ()()

i i i i

i i

v t +1 = wv t or pbest t xor p t

or β gbest t xor p t

α
 (3)

() () ()i i ip t +1 = p t xor v t +1 (4)

A particle moves to nearer or farther corners of

hypercube Depending on the perspective of flipping bits
in the position vector. The cognitive term in Equation (1)
is exchanged by (pbesti(t) xor pi(t)) where (xor) operator
is used to set 1 when the bits in (pi) and (pbesti) are
different otherwise set to 0; for example if pi = 10011
and pbesti = 00011 the distance between (pi) and (pbesti)
will look like that 10000. The social term in velocity
equation and the equation of updating position are
calculated in the same way. In Equation (3), the three
terms: inertia term, cognitive term and social term are
combined together using or operator to be united in one
vector and the parameters (α) and (β) are used to control
the convergence speed of the algorithm.

In this approach the velocity and position for each
particle are generated randomly at first iteration as n-bit
binary string then the best position of each particle and
the global best position are obtained by evaluating the
fitness of each one, after that the particle velocity and
position update using Equation (3) and (4). As it is obvious
it does not clear how (ω), (α) and (β) in Equation (3)
actually work as they represented in (Ye et al., 2006) as a
parameters where the value of (ω) is generally set to less
than 1.0 and the value of α equal the value of (β) equal 1.94.

As mentioned above the (or) operator is used to
combine the three terms of Equation (3) in one vector.
One of these term is the inertia effect which
essentially depending on the value of the velocity. For
example if the velocity value at iteration (t) has ones
more than zeros it may lead to make the new value of
velocity has only ones and thus make the velocity has
a constant value in all coming iteration and has no
effect. For example:

Let v = a+b+c, a = 1110, b = 1010 and c = 1001
Then v(t + l) = 1111
Also, let p(t) = 0001
Then p(t+l) = 0001 xor 1111 = 1110

When calculating v(t + 2) it remains equal to 1111
because of (or) operator, So p(t + 2) = 1110 xor 1111 =
0001 that is mean the new value of the new position has
two choices only if to be 0001 or to be 1110 simply it

Dina EL-Gammal et al. / Journal of Computer Science 9 (11): 1534-1542, 2013

1536 Science Publications

JCS

means loss of diversity and the new position doesn’t
actually depending on all terms in the velocity equation.

1.2 Immune Clonal Selection

Artificial Immune System inspired by natural immune
system in which the human beings and animals are
protected (using antibodies) from intrusions by substance
(antigens). Clonal Selection is a type of adaptive immune
system which is directed against specific antigen and
consists of two major types of lymphocytes; B-cells (white
blood cells which are responsible for producing
antibodies) and T-cells (white blood cells also called cells-
receptors, they are responsible for detecting antigens)
which are involved in process of identify and removing
antigen. The basic idea of Clonal Selection as shown in
Fig. (1) (De Castro and Timmis, 2002) based on the
proliferation of activated B-cells that have better matching
with specific antigen. Those B-cells can be changed in
order to achieve a better matching. Clonal selection
algorithm take into consideration, the memory set
maintenance, death of cells that can’t recognize antigen or
have a bad matching and the ratio between re-selection of
the clones and their affinity. The main features of the
Clonal Selection theory are (Burnet, 1978):

• The new cells are copies of their parents exposed to

a mutation mechanism of high rates
• Newly differentiated lymphocytes which carry self-

reactive receptors are selected
• When the mature cells contact with antigens,

Proliferation and differentiation occurs

Fig. 1. The clonal selection principle (De Castro and Timmis, 2002)

2. NEW PARTICLE SWARM
OPTIMIZATION WITH IMMUNITY

CLONAL SELECTION ALGORITHM

This section presents the new Binary Particle Swarm
Optimization with immunity Clonal Algorithm
(NPSOCLA). The algorithm combines a modified
Binary Particle Swarm Optimization algorithm, the
clonal selection algorithm and subset of random
population in the aim to achieve a balance between
exploration and exploitation. The proposed algorithm is
explained in two parts as follows.

2.1. New Binary Particle Swarm Optimization
(NBPSO)

In the NBPSO, the Position is updated without using
the velocity. The particle’s step size toward the best
position and the global best position is controlled by
using logical operators. The NBPSO works as follows.

2.2. Representation

The population is initialized randomly where each
particle (pi) in it represented as a binary position vector.

2.3. Position Update Equation

Particle’s position is updating by following equation:

() () ()i 1 1 2 2p t +1 = c r diff1 or / and c r diff2 (5)

Where:
diff1(pbesti xor pi) = The different bits between

the particle’s best position
and particle’s position that
obtained by xor operator.

diff1(gbesti xor pi) = The different bits between
the global best position
and particle’s position that
obtained by xor operator.

r1 = A random number generated
between zero and one. r1 is
used to apply a single point
mutation to diff1.

r2 = a random number
generated between zero
and one. r2 is used to apply
a single point mutation to
diff2

c1 (No of ones in diff1/n1) = The step size the particle
takes toward its best
position. n1 is the number
between zero and no of
ones in diff1.

Dina EL-Gammal et al. / Journal of Computer Science 9 (11): 1534-1542, 2013

1537 Science Publications

JCS

c2 (No of ones in diff2/n2) = The step size the particle
takes toward its best
position. n2 is the number
between zero and no of
ones in diff2.

or/and = A logical operator used to
combine the two terms of
Equation (5) in one binary
vector (new position)
Choosing between use (or)
or (and) depends on the
type of the problem.

 Pseudo Code of new binary particle swarm
algorithm:

1. Initialize the position for each particle in the swarm
2. While stopping criteria not met do
3. {
4. For i=1 to n
5. {
6. Calculate fitness value
7. If ((i - particle) fitness > best position)
8. {
9. best position=i-particle
10. }
11. }
12. Choose the best of all best positions as gbest
13. For i=1 to n
14. {
15. Update particle position according to Equation 5 as

follows:
16. Set temp position1 to position
17. Set diff1 to the result of (position xor Pbest)
18. Set c1 to the result of dividing the number of ones

in diff1 by n1
19. For j=0 to C1
20. {
21. If (diff1 current bit==1 and tempposition1 current

bit==0)
22. {
23. Set temp position current bit to 1
24. Set c1 to c1-1
25. }
26. }
27. If (r1>0.5)
28. {
29. Flip the value of temp position1 [random bit index]
30. }

31. Repeat the same steps from 17 to 29 with diff2 by
set temp position 2 to position

32. Set new position to the result of (tempposition1
xor tempposition2)

33. }
34. }

2.4. Clonal Selection Algorithms

In the new proposed Binary Particle Swarm
Optimization with immunity Clonal Algorithm in this
study, Clonal Selection Algorithm (CSA) is applied on
the best-fit particles when the global best position does
not change for (m) times. If the initial population size is
P then CSA is applied on N = 10*p/100 best fit particles
(Pbests). The number of clones generated is given by the
following Equation (6):

()CN floor *= α β (6)

Where:
NC = Total number of particles to be cloned from the

current particle
α = Fitness ratio of each particle
β = Cloning index

 By varying this parameter, number of Clones can be
regulated.

The new set C of NC number of cloned particles are
then put through a mutation process in such a way that
the best fit clone will have least mutation. This is done
by the following Equation (7):

()M = floor 1-α *C (7)

Where:
M = Number of bits to be flipped in the cloned particle
α = Fitness ratio of each particle
C = Mutating index.

 By varying this parameter, number of Mutates can
be regulated.

The cloning and mutation applied on the best-fit
particles of NBPSO to increase the exploration potential
of the algorithm near the vicinity of the fittest particles
and distant regions from the less fit particles in the
search space.

Pseudo Code of Clonal Selection Algorithm:

Dina EL-Gammal et al. / Journal of Computer Science 9 (11): 1534-1542, 2013

1538 Science Publications

JCS

1. Create a population of the best pbests (best
particles) in the swarm population.

2. Create n clones from each particle, where n is
proportional to the fitness of the particle.

3. Mutate each clone inversely proportionally to its
fitness.

4. Calculate the fitness of the cloned particles.
5. Sort.
6. Pick the best of them to be nominated in the next

generation without redundancy.

2.5. New Particle Swarm Optimization with

Clonal Selection Algorithm Outline
(NPSOCLA)

This section shows how new particle swarm
optimization, clonal selection algorithm and a subset of
new random population are combined together.

Pseudo Code of NPSOCLA:

1. Initialize each particle with random position

(Initialize population of P size)
2. Initialize max-n iterations
3. While n<max-n iterations
4. {
5. For i=1: population size
6. {
7. Calculate fitness value
8. }
9. Obtain pbests and gbest
10. If gbest doesn’t change for n times
11. {
12. Go to clonal selection algorithm with the best pbests

in the swarm population without redundancy
13. New population(P size) = select the best individuals

from (swarm population + New random generating
population + the clonal selection population)

14. Go to the new binary particle swarm algorithm
15. }
16. Else
17. Updating each particle position according to equation

(5)
18. }

3. EXPERIMENTAL RESULTS

To validate the feasibility and effectiveness of the
proposed approach, the proposed algorithm was applied
on several instances of 0/1 Multidimensional Knapsack

Problem (0/1MKP) found in (Beasley, 2012). The 0/1
Multidimensional Knapsack Problem is an NP-Hard
problem (Garey and Johnson, 1979). It can be defined as
follows: there are m knapsacks with maximum Cm
capacities. All Knapsacks have to be filled with the same
x objects. Each object has P profit and w weight. The
weight of the object differs from one knapsack to
another. The goal is to maximize the profit without
violating constraints. The 0/1 MKP can be formulated as
Equation (8 and 9):

n

i i
i 0

Maxi xmiz pe
=
∑ (8)

{ }
n

ij i j i
i 0

 w x C , j 1 .m, Subje x 0,1ct
=

≤ = … ∈∑ (9)

The solutions to the 0/1 MKP that are represented

as binary vectors may be infeasible because one of the
knapsack constraints may be violated in the following
two cases:

• When initializing the population with random

solutions (Random positions)
• When updating the solutions with Equation (5)

So, each solution must verify the m constrained of the
knapsack to be accepted as a feasible solution. In our
new algorithm, the following technique is used to
convert the infeasible solution to feasible solution based
on some ideas from greedy algorithm (Kohli et al., 2004)
and Check and Repair Operator (CRO) (Labed et al.,
2011) as follows:

1. Calculate the profit ratio Rij = Pi/Wij for every item

in every knapsack.
2. Compute the max value of the profit ratio Ri = max

{Pj/Wij} for every item.
3. Sort items according to the ascending order of Ri
4. Remove the corresponding item with lowest values

of Ri from the item set. (i.e., the value of
corresponding bit which is 1 becomes 0).

5. Repeat Step 4 until a feasible solution is achieved.

The Proposed algorithm was implemented using
Visual studio 2010 (.NET4) with the following
parameters: 100 particles, 100 iterations, n1 = n2 = 2,
cloning index (β) is equal to either 55 or 22 and
Mutating index (C) is equal to either 22 or 7 respectively
with the values of (β).

Dina EL-Gammal et al. / Journal of Computer Science 9 (11): 1534-1542, 2013

1539 Science Publications

JCS

Table 1. Comparison of results obtained by proposed algorithm and the optimal known solution-using or operator
Problem M N Optimal NPSOCLA Optimal% AVG
pet2 10 10 87061 87061 100 87061.00
weing1 2 28 141278 141278 100 141278.00
weish01 5 30 4554 4554 100 4554.00
weish04 5 30 4561 4561 100 4561.00
weish05 5 30 4514 4514 100 4514.00
weish07 5 40 5567 5567 100 5567.00
Knap15 10 15 4015 4015 96 4013.70
pet3 10 15 4015 4015 92 4014.20
weish03 5 30 4115 4115 80 4105.52
weing2 2 28 130883 130883 79 130849.40
weing4 2 28 119337 119337 79 119010.19
weish09 5 40 5246 5246 72 5232.21
Knap20 10 20 6120 6120 72 6105.95
pet5 10 28 12400 12400 71 12365.20
weish02 5 30 4536 4536 69 4531.75
weing5 2 28 98796 98796 66 97901.44
pet4 10 20 6120 6120 65 6110.00
Knap28 10 28 12400 12400 63 12384.65
weish13 5 50 6159 6159 55 6123.25
weish21 5 70 9074 9074 52 9048.30
weing6 2 28 130623 130623 38 130381.20
weish11 5 50 5643 5643 35 5574.83
weish27 5 90 9819 9819 32 9681.06
weish10 5 50 6339 6339 24 6305.34
weish12 5 50 6339 6339 21 6297.97
weish17 5 60 8633 8633 20 8609.03
weish16 5 60 7289 7289 19 7273.01
weish14 5 60 6954 6954 19 6892.65
weish06 5 40 5557 5557 17 5538.36
hp1 4 28 3418 3418 16 3382.82
weing3 2 28 95677 95677 16 95535.66
weish08 5 40 5605 5605 15 5602.51
pb1 4 27 3090 3090 13 3055.44
weish15 5 60 7486 7486 12 7446.30
Sento1 30 60 7772 7772 12 7731.14
pb6 30 40 776 776 12 734.01
pb7 30 37 1035 1035 10 1016.35
pb4 2 29 95168 95168 10 92635.55
pb2 10 10 3186 3186 9 3111.90
weish29 5 90 9410 9410 9 9272.05
weish19 5 70 7698 7698 8 7602.98
weish26 5 90 9584 9584 7 9470.67
weish28 5 90 9492 9492 7 9348.21
pb5 10 20 2139 2139 6 2079.53
Flei 10 20 2139 2139 4 2080.19
weish24 5 80 10220 10220 4 10160.70
hp2 4 35 3186 3186 4 3104.05
weish18 5 70 9580 9580 2 9539.78
weish25 5 80 9939 9939 2 9865.51
weish20 5 70 9450 9450 1 9404.53
weish30 5 90 11191 11173 0 11118.81
weish23 5 80 8344 8341 0 8227.13
Sento2 30 60 8722 8721 0 8615.91
weing7 2 105 1095445 1094917 0 1091330.72
Knap50 5 50 16537 16524 0 16410.78
Knap39 5 39 10618 10605 0 10480.46
weish22 5 80 8947 8929 0 8853.98
weing8 2 105 624319 616345 0 553836.44

Dina EL-Gammal et al. / Journal of Computer Science 9 (11): 1534-1542, 2013

1540 Science Publications

JCS

Table 2. Comparison of results obtained by proposed algorithm and the optimal known solution-using and operator
Problem M N Optimal NPSOCLA Optimal% AVG
pet2 10 10 87061 87061 100 87061
weing1 2 28 141278 141278 100 141278
weish01 5 30 4554 4554 100 4554
weish04 5 30 4561 4561 100 4561
weish05 5 30 4514 4514 100 4514
Knap15 10 15 4015 4015 100 4015
pet3 10 15 4015 4015 96 4014.6
weing4 2 28 119337 119337 93 119182.74
weish07 5 40 5567 5567 91 5564.52
pet4 10 20 6120 6120 87 6118.7
Knap20 10 20 6120 6120 81 6118.1
weish03 5 30 4115 4115 79 4103.15
weish09 5 40 5246 5246 74 5235.96
weing5 2 28 98796 98796 66 97788.37
weing2 2 28 130883 130883 65 130827
pet5 10 28 12400 12400 63 12387.7
Knap28 10 28 12400 12400 59 12391.9
weish21 5 70 9074 9074 50 9049.64
pb4 2 29 95168 95168 43 93846.58
weish02 5 30 4536 4536 41 4516.38
weing6 2 28 130623 130623 39 130385.1
weish11 5 50 5643 5643 38 5586.98
weish27 5 90 9819 9819 35 9705.25
weish12 5 50 6339 6339 33 6303.34
weish13 5 50 6159 6159 30 6106.59
sento1 30 60 7772 7772 29 7743.44
weish10 5 50 6339 6339 28 6299.95
hp1 4 28 3418 3418 26 3391.26
weish08 5 40 5605 5605 23 5603.2
pb1 4 27 3090 3090 23 3061.14
hp2 4 35 3186 3186 13 3113.47
weish06 5 40 5557 5557 12 5537.23
weish16 5 60 7289 7289 12 7269.19
weish17 5 60 8633 8633 11 8610.87
weish14 5 60 6954 6954 11 6885.69
pb2 4 34 3186 3186 9 3120.99
weish19 5 70 7698 7698 9 7568.47
weing3 2 28 95677 95677 8 95447.08
weish15 5 60 7486 7486 7 7441.1
flei 10 20 2139 2139 5 2080.52
pb5 10 20 2139 2139 5 2079.66
weish28 5 90 9492 9492 5 9318.59
weish29 5 90 9410 9410 4 9283.94
pb7 30 37 1035 1035 3 1006.36
weish24 5 80 10220 10220 3 10155.12
Knap39 5 39 10618 10618 3 10486.25
weish20 5 70 9450 9450 2 9404.21
pb6 30 40 776 776 2 729.98
weish25 5 80 9939 9939 2 9889.73
weish18 5 70 9580 9580 2 9530.55
weish26 5 90 9584 9584 2 9484.47
weish30 5 90 11191 11191 1 11136.7
weish23 5 80 8344 8344 1 8211.11
weish22 5 80 8947 8929 0 8871.3
Knap50 5 50 16537 16524 0 16426.5
Sento2 30 60 8722 8711 0 8632.16
weing7 2 105 1095445 1090160 0 1082188.63
weing8 2 105 624319 614510 0 565434.86

Dina EL-Gammal et al. / Journal of Computer Science 9 (11): 1534-1542, 2013

1541 Science Publications

JCS

Table 3. Comparative results between PSO and NPSOCLA
Problem M N Optimal Best solution by PSO Best solution by NPSOCLA
Senot1 30 60 7772 7725 7772
Sento2 30 60 8722 8716 8721
weing1 2 28 141278 138927 141278
weing2 2 28 130883 125453 130883
weing3 2 28 95677 92297 95677
weing4 2 28 119337 116622 119337
weing5 2 28 98796 93678 98796
weing6 2 28 130623 128093 130623
weing7 2 105 1095445 1059560 1094917
weing8 2 105 624319 492347 616345

Table 4. Comparative results between PSO and NPSOCLA
Problem instance GA NPSOCLA
-------------------------- ---------------------- ----------------------
Name Optimum Average #Max Average #Max
knap15 4015 4012.70 83 4015.00 100
knap20 6120 6102.30 33 6118.10 81
knap28 12400 12374.70 33 12384.65 63
knap39 10618 10536.90 4 10486.25 3
knap50 16537 16378.00 1 16426.50 0

Fig. 2. A comparison between PSO and NPSOCLA explains

the percent of finding the optimal solution

 Two parts of experiments were performed. First, the
proposed algorithm was tested when the logical operator
in Equation (5) is (or) and when it is (and). In the
second part of experiments, the obtained results were
compared with the obtained solutions in (Khuri et al.,
1994; Hembecker et al., 2007).

 Table 1 and 2 show the experiment result of the
proposed algorithm with some instances taken from
ORlib (Beasley, 2012). The first column indicates the
name of problem. The second column indicates the
number of knapsacks (M). The third column indicates
the number of objects (N). The fourth column indicates
the best-known solution. The fifth column indicates the
best result obtained by the New Particle Swarm
Optimization with Clonal Selection algorithm. The sixth

column indicates the number of times that the New
Particle Swarm Optimization with Clonal Selection
algorithm reaches the best-known solution (#max). The
seventh column indicates the average obtained over all
100 runs by (NPSOCLA).

We can deduce from Table 1 and 2 that, the
NPSOCLA found the optimum solution for 53 of the 58
test cases. It should be noted that there are five problems
(sento2, knap50, weish22, weing7, weing8) that do not
reach the optimum solution but are very close to it.

Table 3 and Fig. 2 show a comparison in terms of
best solution between the exact solutions (optimal),
proposed algorithm and PSO algorithm
(Hembecker et al., 2007). It is show that the
NPSOCLA outperforms the PSO algorithm.

Table 4 shows a comparison between a GA in
(Khuri et al., 1994) and the New Particle Swarm
Optimization with Clonal Selection Algorithm
(NPSOCLA). The first two columns (problem instance)
report the name of the problem and the maximum
obtainable benefit. The following groups of columns
report the results archived by GA in (Khuri et al., 1994)
and by NPSOCLA, respectively. We show the average
profit obtained over all 100 runs and, in the column #max,
the number of times the best solution is reached. It is show
that the NPSOCLA outperforms the GA in kanp15, knap20
and, knap28 .The GA outperforms the proposed algorithm
in knap39. In knap50 the GA reach the optimal solution one
time but its average is less than the NPSOCLA’s average,
which doesn’t reach the optimal solution.

4. CONCLUSION

In this study, a new binary particle swarm optimization
method using a clonal selection algorithm is proposed.
The performance of the proposed algorithm is evaluated
and compared with PSO and GA on a number of the
benchmark multidimensional knapsack problem instances.
The experimental result shows that the proposed algorithm

Dina EL-Gammal et al. / Journal of Computer Science 9 (11): 1534-1542, 2013

1542 Science Publications

JCS

(NPSOCLA) has a good performance; on the other hand
the difficult task in the proposed algorithm is to choose the
proper parameters because the best setting for parameters
can be different from problem to another So, our
fundamental outlook moving towards design a self-
adaptive method to control parameters setting.

5. REFERENCES

Beasley, J.E., 2012. OR-Library-Operations Research
Library.

Burnet, F.M., 1978. Clonal Selection and After. In:
Theoretical Immunology, Bell, G.I., A.S. Perelson
and G.H. Pimbley (Eds.), Marcel Dekker Inc., pp:
63-85.

De Castro, L.N. and J. Timmis, 2002. Artificial immune
systems: A new computational intelligence
approach. Springer, 1: 57-58.

Eberhart, R. and J. Kennedy, 1995. A new optimizer
using particle swarm theory. Proceedings of the 6th
International Symposium on Micro Machine and
Human Science, Oct. 4-6, IEEE Xplore Press,
Nagoya, pp: 39-43. DOI:
10.1109/MHS.1995.494215

Engelbrecht, A.P., 2005. Fundamentals of Computational
Swarm Intelligence. 1st Edn., John Wiley and Sons,
Chichester, ISBN-10: 0470091916, pp: 672.

Garey, M.R. and D.S. Johnson, 1979. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. 10th Edn., W. H. Freeman, New
York, pp: 338.

Gherboudj, A. and S. Chikhi, 2011. BPSO algorithms for
knapsack problem. Proceedings of the 3rd
International Conference on Recent Trends in
Wireless and Mobile Networks, Jun. 26-28, Springer
Berlin Heidelberg, Ankara, Turkey, pp: 217-227.
DOI: 10.1007/978-3-642-21937-5_20

Gherboudj, A., S. Labed and S. Chikhi, 2012. A new
hybrid binary particle swarm optimization algorithm
for multidimensional knapsack problem.
Proceedings of the 2nd International Conference on
Computer Science, Engineering and Applications,
May 25-27, Springer Berlin Heidelberg, New Delhi,
India, pp: 489-498. DOI: 10.1007/978-3-642-30157-
5_49

Hembecker, F., H.S. Lopes and W. Godoy Jr., 2007.
Particle swarm optimization for the
multidimensional knapsack problem. Proceedings of
8th International Conference on Particle Swarm
Optimization for the Multidimensional Knapsack
Problem, Apr. 11-14, Heidelberg Springer-Verlag,
Warsaw, Poland, pp: 358-365. DOI: 10.1007/978-3-
540-71618-1_40

Kennedy, J. and R.C. Eberhart, 1997. A discrete binary
version of the particle swarm algorithm. Proceedings
of the IEEE International Conference on Systems,
Man and Cybernetics, Oct. 12-15, IEEE Xplore
Press, Orlando, FL., pp: 4104-4108. DOI:
10.1109/ICSMC.1997.637339

Kennedy, J., R.C. Eberhart and Y. Shi, 2001. Swarm
Intelligence. 1st Edm., Morgan Kaufmann, San
Francisco, Calif, USA.

Khanesar, M.A., M. Teshnehlab and M.A. Shoorehdeli,
2007. A novel binary particle swarm optimization.
Proceedings of the 15th Mediterranean Conference
on Control and Automation, Jun. 27-29, IEEE
Xplore Press, Athens, pp: 1-6. DOI:
10.1109/MED.2007.4433821

Khuri, S., T. Back and J. Heitkotter, 1994. The zero/one
multiple knapsack problem and genetic algorithms.
Proceedings of the ACM Symposium on Applied
Computing, (SAC’ 94), ACM Press, Phoenix,
Arizona, USA., pp: 578-582. DOI:
10.1145/326619.326694

Kohli, R., R. Krishnamurti and P. Mirchandani, 2004.
Average performance of greedy heuristics for the
integer knapsack problem. Eur. J. Operat. Res., 154:
36-45. DOI: 10.1016/S0377-2217(02)00810-X

Labed, S., A. Gherboudj and S. Chikhi, 2011. A
modified hybrid particle swarm optimization
algorithm for multidimensional knapsack problem.
Int. J. Comput. Applic., 34: 11-16. DOI:
10.5120/4070-5586

Mohamad, M.S., S. Omatu, S. Deris and M. Yoshioka,
2011. A modified binary particle swarm
optimization for selecting the small subset of
informative genes from gene expression data. IEEE
Trans. Inform. Technol. Biomed., 15: 813-822.
DOI: 10.1109/TITB.2011.2167756

Shi, Y. and R. Eberhart, 1998. A modified particle
swarm optimizer. Proceedings of the IEEE
International Conference on Evolutionary
Computation, May 4-9, IEEE Xplore Press,
Anchorage, AK., pp: 69-73. DOI:
10.1109/ICEC.1998.699146

Ye, B., J. Sun and W.B. Xu, 2006. Solving the hard
knapsack problems with a binary particle swarm
approach. Proceedings of the International
Conference on Intelligent Computing,
Computational Intelligence and Bioinformatics,
Aug. 16-19, Springer Berlin Heidelberg, Kunming,
China, pp: 155-163. DOI: 10.1007/11816102_17

