
Journal of Computer Science 9 (11): 1534-1542, 2013 
ISSN: 1549-3636 
© 2013 Science Publications 
doi:10.3844/jcssp.2013.1534.1542 Published Online 9 (11) 2013 (http://www.thescipub.com/jcs.toc) 

Corresponding Author: Dina EL-Gammal, Department of Computer Science, Faculty of Information Technology,  
 MISR University for Science and Technology, Egypt 
 

1534 Science Publications

 
JCS 

NEW BINARY PARTICLE SWARM OPTIMIZATION 
WITH IMMUNITY-CLONAL ALGORITHM 

1Dina EL-Gammal, 2Amr Badr and 3Mostafa Abd El Azeim 
 

1Department of Computer Science, Faculty of Information Technology, 
MISR University for Science and Technology, Egypt 

2Department of Computer Science, 
Faculty of Computers and Information, Cairo University, Giza, Egypt 

3Department of Software Engineeering, Faculty of Computing and Information Technology, 
Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt 

 
Received 2013-09-16, Revised 2013-09-21; Accepted 2013-09-30 

ABSTRACT 

Particle Swarm Optimization used to solve a continuous problem and has been shown to perform well 
however, binary version still has some problems. In order to solve these problems a new technique called 
New Binary Particle Swarm Optimization using Immunity-Clonal Algorithm (NPSOCLA) is proposed This 
Algorithm proposes a new updating strategy to update the position vector in Binary Particle Swarm 
Optimization (BPSO), which further combined with Immunity-Clonal Algorithm to improve the 
optimization ability. To investigate the performance of the new algorithm, the multidimensional 0/1 
knapsack problems are used as a test benchmarks. The experiment results demonstrate that the New Binary 
Particle Swarm Optimization with Immunity Clonal Algorithm, found the optimum solution for 53 of the 58 
multidimensional 0/1knapsack problems. 
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1. INTRODUCTION 

This James Kennedy and Russell Eberhart introduced 
a Particle Swarm Optimization (PSO) in 1995 (Eberhart 
and Kennedy, 1995; Kennedy et al., 2001) by simulate a 
bird swarm. PSO depending on three steps which are 
repeated until some stopping condition is met, the first 
step is to Evaluate the fitness of each particle then 
specify the individual best position and global position 
ending with update velocity and position of each particle 
using the following equations: 
 

( ) ( ) ( ) ( )( )
( ) ( )( )

i i 1 1 i i

2 2 i i

v t 1 v t c r pbest t - p t

c r gbest t - p t ,

+ = ω +
+

 (1) 

 
( ) ( ) ( )i i ip t +1 = p t + v t +1   (2) 

where, (i) is the index of the particle and (t) is the time. 
In Equation (1), the velocity (v) of particle (i) at a time (t 
+ l) is calculated by using three terms. 

The first term (ωvi(t)) called inertia effect which is 
responsible for keeping the particle to fly in the same 
direction, where (ω) is the inertia factor usually 
decreases linearly during run (Shi and Eberhart, 1998), 
the higher value of (ω) encourages the exploration while 
the lower value encourages the exploitation. vi(y) is the 
velocity of particle (i) at time (t). 

The second term (c1r1(pbesti(t)-pi(t))) called cognitive 
effect. It allows the particle to return to the best position 
achieved by itself by calculating the distance between the 
current position (Pi(t)) and the best position pbesti (t) 
where, (c1) is a cognitive coefficient that usually close to 
2 and affects the size of step the particle takes toward the 
(pbest) and (r1) is a random value between 0 and 1 cause 
the particle to move in semi direction toward (pbest) 
(Eberhart and Kennedy, 1995; Kennedy et al., 2001). 
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The third term (c2r2(Gbesti(t)-pi(t))) called social 
effect; it is responsible for allowing the particle to follow 
(Gbest) the best position the swarm has found so far 
where (c2) is a social coefficient that usually close to 2 
and affects the size of step the particle takes toward 
(Gbest) and (r2) is a random value between 0 and 1 cause 
the particle to move in semi direction toward (Gbest) 
once the velocity is calculated, the position updated by 
Equation (2). 

1.1 Related Work 

PSO was designed for continuous problem, but can’t 
deal with discrete problems. A new version of PSO 
Called Binary Particle Swarm Optimization is introduced 
by Kennedy and Eberhart (1997) to be applied to discrete 
Binary Variables, because there are many optimization 
problems occur in a space featuring discrete. The 
Position in BPSO is represented as a binary vector and 
the velocity is still floating-point vector however; 
velocity is used to determine the probability to change 
from 0 to 1 or from 1 to 0 when updating the position of 
particle. 

There are some differences between PSO and BPSO, 
which may lead to the following problems. 

 Firstly, the behavior of velocity clamping in BPSO 
differ from it in PSO. The velocity in PSO is responsible 
for exploration where the velocity in BPSO encourages 
the exploitation (Engelbrecht, 2005). This problem lead to 
the phenomenon of premature convergence in which the 
search process will likely trapped in region containing a 
non-global optimum simply its mean loss of diversity. 

Secondly, the value of (ω) in PSO usually decreases 
linearly however; In BPSO there are some difficulties to 
choose a proper value for (ω) to control the exploration 
and exploitation as discuss in (Engelbrecht, 2005). 

Thirdly, the position in BPSO is updated using 
velocity, so the new position seems to be independent 
from current position but the position in PSO is updated 
using current position and the velocity determines only 
the movement of particle in the space (Khanesar et al., 
2007). Because of these difficulties, many researches have 
been devoted to solve these problems (Khanesar et al., 
2007; Mohamad et al., 2011; Gherboudj et al., 2012; 
Gherboudj and Chikhi, 2011). 

Ye et al. (2006) introduced a new technique of binary 
Particle Swarm Optimization in (Ye et al., 2006) by 
introducing some new operators to be used in updating 
velocity and position equations. 

In this technique, each potential solution (particle) is 
represented with position and velocity of n-bit binary 
string and updating according to the following equations: 

( ) ( ) ( ) ( )( )
( ) ( )( )

i i i i

i i

v t +1 = wv t or pbest t xor p t

or β gbest t xor  p t

α
 (3) 

 
( ) ( ) ( )i i ip t +1 = p t  xor v t +1  (4) 

 
A particle moves to nearer or farther corners of 

hypercube Depending on the perspective of flipping bits 
in the position vector. The cognitive term in Equation (1) 
is exchanged by (pbesti(t) xor pi(t)) where (xor) operator 
is used to set 1 when the bits in (pi) and (pbesti) are 
different otherwise set to 0; for example if pi = 10011 
and pbesti = 00011 the distance between (pi) and (pbesti) 
will look like that 10000. The social term in velocity 
equation and the equation of updating position are 
calculated in the same way. In Equation (3), the three 
terms: inertia term, cognitive term and social term are 
combined together using or operator to be united in one 
vector and the parameters (α) and (β) are used to control 
the convergence speed of the algorithm. 

In this approach the velocity and position for each 
particle are generated randomly at first iteration as n-bit 
binary string then the best position of each particle and 
the global best position are obtained by evaluating the 
fitness of each one, after that the particle velocity and 
position update using Equation (3) and (4). As it is obvious 
it does not clear how (ω), (α) and (β) in Equation (3) 
actually work as they represented in (Ye et al., 2006) as a 
parameters where the value of (ω) is generally set to less 
than 1.0 and the value of α equal the value of (β) equal 1.94. 

As mentioned above the (or) operator is used to 
combine the three terms of Equation (3) in one vector. 
One of these term is the inertia effect which 
essentially depending on the value of the velocity. For 
example if the velocity value at iteration (t) has ones 
more than zeros it may lead to make the new value of 
velocity has only ones and thus make the velocity has 
a constant value in all coming iteration and has no 
effect. For example: 

 
Let v = a+b+c, a = 1110, b = 1010 and c = 1001  
Then v(t + l) = 1111 
Also, let p(t) = 0001 
Then p(t+l) = 0001 xor 1111 = 1110 
 

When calculating v(t + 2) it remains equal to 1111 
because of (or) operator, So p(t + 2) = 1110 xor 1111 = 
0001 that is mean the new value of the new position has 
two choices only if to be 0001 or to be 1110 simply it 
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means loss of diversity and the new position doesn’t 
actually depending on all terms in the velocity equation. 

1.2 Immune Clonal Selection 

Artificial Immune System inspired by natural immune 
system in which the human beings and animals are 
protected (using antibodies) from intrusions by substance 
(antigens). Clonal Selection is a type of adaptive immune 
system which is directed against specific antigen and 
consists of two major types of lymphocytes; B-cells (white 
blood cells which are responsible for producing 
antibodies) and T-cells (white blood cells also called cells-
receptors, they are responsible for detecting antigens) 
which are involved in process of identify and removing 
antigen. The basic idea of Clonal Selection as shown in 
Fig. (1) (De Castro and Timmis, 2002) based on the 
proliferation of activated B-cells that have better matching 
with specific antigen. Those B-cells can be changed in 
order to achieve a better matching. Clonal selection 
algorithm take into consideration, the memory set 
maintenance, death of cells that can’t recognize antigen or 
have a bad matching and the ratio between re-selection of 
the clones and their affinity. The main features of the 
Clonal Selection theory are (Burnet, 1978):  
 
• The new cells are copies of their parents exposed to 

a mutation mechanism of high rates 
• Newly differentiated lymphocytes which carry self-

reactive receptors are selected 
• When the mature cells contact with antigens, 

Proliferation and differentiation occurs 
 

 
 
Fig. 1. The clonal selection principle (De Castro and Timmis, 2002) 

2. NEW PARTICLE SWARM 
OPTIMIZATION WITH IMMUNITY 

CLONAL SELECTION ALGORITHM 

This section presents the new Binary Particle Swarm 
Optimization with immunity Clonal Algorithm 
(NPSOCLA). The algorithm combines a modified 
Binary Particle Swarm Optimization algorithm, the 
clonal selection algorithm and subset of random 
population in the aim to achieve a balance between 
exploration and exploitation. The proposed algorithm is 
explained in two parts as follows. 

2.1. New Binary Particle Swarm Optimization 
(NBPSO) 

In the NBPSO, the Position is updated without using 
the velocity. The particle’s step size toward the best 
position and the global best position is controlled by 
using logical operators. The NBPSO works as follows. 

2.2. Representation 

The population is initialized randomly where each 
particle (pi) in it represented as a binary position vector. 

2.3. Position Update Equation 

Particle’s position is updating by following equation: 
 

( ) ( ) ( )i 1 1 2 2p t +1 = c r diff1  or / and c r diff2 (5) 
 
Where: 
diff1(pbesti xor pi) = The different bits between 

the particle’s best position 
and particle’s position that 
obtained by xor operator. 

diff1(gbesti xor pi) = The different bits between 
the global best position 
and particle’s position that 
obtained by xor operator. 

r1 = A random number generated 
between zero and one. r1 is 
used to apply a single point 
mutation to diff1. 

r2 = a random number 
generated between zero 
and one. r2 is used to apply 
a single point mutation to 
diff2 

c1 (No of ones in diff1/n1) = The step size the particle 
takes toward its best 
position. n1 is the number 
between zero and no of 
ones in diff1. 
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c2 (No of ones in diff2/n2) = The step size the particle 
takes toward its best 
position. n2 is the number 
between zero and no of 
ones in diff2. 

or/and = A logical operator used to 
combine the two terms of 
Equation (5) in one binary 
vector (new position) 
Choosing between use (or) 
or (and) depends on the 
type of the problem. 

 
 Pseudo Code of new binary particle swarm 
algorithm: 
 
1. Initialize the position for each particle in the swarm 
2. While stopping criteria not met do 
3. { 
4.  For i=1 to n 
5.  {  
6.  Calculate fitness value 
7. If ( (i - particle) fitness > best position) 
8.  { 
9.  best position=i-particle 
10.  } 
11.  } 
12.  Choose the best of all best positions as gbest 
13.  For i=1 to n 
14.  { 
15. Update particle position according to Equation 5 as 

follows:  
16.  Set temp position1 to position 
17.  Set diff1 to the result of (position xor Pbest) 
18. Set c1 to the result of dividing the number of ones 

in diff1 by n1  
19.  For j=0 to C1 
20.  { 
21.  If (diff1 current bit==1 and tempposition1 current 

bit==0)  
22.  {  
23.   Set temp position current bit to 1 
24.   Set c1 to c1-1 
25.  } 
26.  } 
27.  If (r1>0.5) 
28.  { 
29.  Flip the value of temp position1 [random bit index] 
30.  } 

31. Repeat the same steps from 17 to 29 with diff2 by 
set temp position 2 to position 

32. Set new position to the result of (tempposition1 
xor tempposition2) 

33.  } 
34.  } 

2.4. Clonal Selection Algorithms 

In the new proposed Binary Particle Swarm 
Optimization with immunity Clonal Algorithm in this 
study, Clonal Selection Algorithm (CSA) is applied on 
the best-fit particles when the global best position does 
not change for (m) times. If the initial population size is 
P then CSA is applied on N = 10*p/100 best fit particles 
(Pbests). The number of clones generated is given by the 
following Equation (6): 
 

( )CN floor *= α β  (6) 

 
Where:  
NC = Total number of particles to be cloned from the 

current particle 
α = Fitness ratio of each particle 
β = Cloning index 
 
 By varying this parameter, number of Clones can be 
regulated. 

The new set C of NC number of cloned particles are 
then put through a mutation process in such a way that 
the best fit clone will have least mutation. This is done 
by the following Equation (7): 
 

( )M = floor 1-α *C  (7) 

 
Where:  
M = Number of bits to be flipped in the cloned particle 
α = Fitness ratio of each particle 
C = Mutating index.  
 
 By varying this parameter, number of Mutates can 
be regulated. 

The cloning and mutation applied on the best-fit 
particles of NBPSO to increase the exploration potential 
of the algorithm near the vicinity of the fittest particles 
and distant regions from the less fit particles in the 
search space. 
 
Pseudo Code of Clonal Selection Algorithm: 
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1. Create a population of the best pbests (best 
particles) in the swarm population. 

2. Create n clones from each particle, where n is 
proportional to the fitness of the particle. 

3. Mutate each clone inversely proportionally to its 
fitness. 

4.  Calculate the fitness of the cloned particles. 
5.  Sort. 
6.  Pick the best of them to be nominated in the next 

generation without redundancy. 
 
2.5. New Particle Swarm Optimization with 

Clonal Selection Algorithm Outline 
(NPSOCLA) 

This section shows how new particle swarm 
optimization, clonal selection algorithm and a subset of 
new random population are combined together. 
 
Pseudo Code of NPSOCLA: 
 
1. Initialize each particle with random position 

(Initialize population of P size) 
2. Initialize max-n iterations 
3. While n<max-n iterations 
4. { 
5. For i=1: population size 
6. { 
7. Calculate fitness value 
8. } 
9. Obtain pbests and gbest 
10. If gbest doesn’t change for n times  
11. { 
12. Go to clonal selection algorithm with the best pbests 

in the swarm population without redundancy 
13. New population(P size) =  select  the best individuals 

from (swarm population + New random     generating 
population + the clonal selection population) 

14. Go to the new binary particle swarm algorithm 
15. } 
16. Else 
17. Updating each particle position according to equation 

(5) 
18. } 

3. EXPERIMENTAL RESULTS 

To validate the feasibility and effectiveness of the 
proposed approach, the proposed algorithm was applied 
on several instances of 0/1 Multidimensional Knapsack 

Problem (0/1MKP) found in (Beasley, 2012). The 0/1 
Multidimensional Knapsack Problem is an NP-Hard 
problem (Garey and Johnson, 1979). It can be defined as 
follows: there are m knapsacks with maximum Cm 
capacities. All Knapsacks have to be filled with the same 
x objects. Each object has P profit and w weight. The 
weight of the object differs from one knapsack to 
another. The goal is to maximize the profit without 
violating constraints. The 0/1 MKP can be formulated as 
Equation (8 and 9): 
 

n

i i
i 0

Maxi xmiz pe
=
∑  (8) 

 

{ }
n

ij i j i
i 0

 w x C ,  j 1 .m,  Subje x 0,1ct
=

≤ = … ∈∑  (9)  

 
The solutions to the 0/1 MKP that are represented 

as binary vectors may be infeasible because one of the 
knapsack constraints may be violated in the following 
two cases:  
 
• When initializing the population with random 

solutions (Random positions) 
• When updating the solutions with Equation (5)  
 

So, each solution must verify the m constrained of the 
knapsack to be accepted as a feasible solution. In our 
new algorithm, the following technique is used to 
convert the infeasible solution to feasible solution based 
on some ideas from greedy algorithm (Kohli et al., 2004) 
and Check and Repair Operator (CRO) (Labed et al., 
2011) as follows:  
 
1. Calculate the profit ratio Rij = Pi/Wij for every item 

in every knapsack. 
2. Compute the max value of the profit ratio Ri = max 

{Pj/Wij} for every item. 
3. Sort items according to the ascending order of Ri 
4. Remove the corresponding item with lowest values 

of Ri from the item set. (i.e., the value of 
corresponding bit which is 1 becomes 0). 

5. Repeat Step 4 until a feasible solution is achieved. 
 

The Proposed algorithm was implemented using 
Visual studio 2010 (.NET4) with the following 
parameters: 100 particles, 100 iterations, n1 = n2 = 2, 
cloning index (β) is equal to either 55 or 22 and 
Mutating index (C) is equal to either 22 or 7 respectively 
with the values of (β). 
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Table 1. Comparison of results obtained by proposed algorithm and the optimal known solution-using or operator 
Problem M N Optimal NPSOCLA Optimal% AVG 
pet2 10 10 87061 87061 100 87061.00 
weing1 2 28 141278 141278 100 141278.00 
weish01 5 30 4554 4554 100 4554.00 
weish04 5 30 4561 4561 100 4561.00 
weish05 5 30 4514 4514 100 4514.00 
weish07 5 40 5567 5567 100 5567.00 
Knap15 10 15 4015 4015 96 4013.70 
pet3 10 15 4015 4015 92 4014.20 
weish03 5 30 4115 4115 80 4105.52 
weing2 2 28 130883 130883 79 130849.40 
weing4 2 28 119337 119337 79 119010.19 
weish09 5 40 5246 5246 72 5232.21 
Knap20 10 20 6120 6120 72 6105.95 
pet5 10 28 12400 12400 71 12365.20 
weish02 5 30 4536 4536 69 4531.75 
weing5 2 28 98796 98796 66 97901.44 
pet4 10 20 6120 6120 65 6110.00 
Knap28 10 28 12400 12400 63 12384.65 
weish13 5 50 6159 6159 55 6123.25 
weish21 5 70 9074 9074 52 9048.30 
weing6 2 28 130623 130623 38 130381.20 
weish11 5 50 5643 5643 35 5574.83 
weish27 5 90 9819 9819 32 9681.06 
weish10 5 50 6339 6339 24 6305.34 
weish12 5 50 6339 6339 21 6297.97 
weish17 5 60 8633 8633 20 8609.03 
weish16 5 60 7289 7289 19 7273.01 
weish14 5 60 6954 6954 19 6892.65 
weish06 5 40 5557 5557 17 5538.36 
hp1 4 28 3418 3418 16 3382.82 
weing3 2 28 95677 95677 16 95535.66 
weish08 5 40 5605 5605 15 5602.51 
pb1 4 27 3090 3090 13 3055.44 
weish15 5 60 7486 7486 12 7446.30 
Sento1 30 60 7772 7772 12 7731.14 
pb6 30 40 776 776 12 734.01 
pb7 30 37 1035 1035 10 1016.35 
pb4 2 29 95168 95168 10 92635.55 
pb2 10 10 3186 3186 9 3111.90 
weish29 5 90 9410 9410 9 9272.05 
weish19 5 70 7698 7698 8 7602.98 
weish26 5 90 9584 9584 7 9470.67 
weish28 5 90 9492 9492 7 9348.21 
pb5 10 20 2139 2139 6 2079.53 
Flei 10 20 2139 2139 4 2080.19 
weish24 5 80 10220 10220 4 10160.70 
hp2 4 35 3186 3186 4 3104.05 
weish18 5 70 9580 9580 2 9539.78 
weish25 5 80 9939 9939 2 9865.51 
weish20 5 70 9450 9450 1 9404.53 
weish30 5 90 11191 11173 0 11118.81 
weish23 5 80 8344 8341 0 8227.13 
Sento2 30 60 8722 8721 0 8615.91 
weing7 2 105 1095445 1094917 0 1091330.72 
Knap50 5 50 16537 16524 0 16410.78 
Knap39 5 39 10618 10605 0 10480.46 
weish22 5 80 8947 8929 0 8853.98 
weing8 2 105 624319 616345 0 553836.44 
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Table 2. Comparison of results obtained by proposed algorithm and the optimal known solution-using and operator 
Problem M N Optimal NPSOCLA Optimal% AVG 
pet2 10 10 87061 87061 100 87061 
weing1 2 28 141278 141278 100 141278 
weish01 5 30 4554 4554 100 4554 
weish04 5 30 4561 4561 100 4561 
weish05 5 30 4514 4514 100 4514 
Knap15 10 15 4015 4015 100 4015 
pet3 10 15 4015 4015 96 4014.6 
weing4 2 28 119337 119337 93 119182.74 
weish07 5 40 5567 5567 91 5564.52 
pet4 10 20 6120 6120 87 6118.7 
Knap20 10 20 6120 6120 81 6118.1 
weish03 5 30 4115 4115 79 4103.15 
weish09 5 40 5246 5246 74 5235.96 
weing5 2 28 98796 98796 66 97788.37 
weing2 2 28 130883 130883 65 130827 
pet5 10 28 12400 12400 63 12387.7 
Knap28 10 28 12400 12400 59 12391.9 
weish21 5 70 9074 9074 50 9049.64 
pb4 2 29 95168 95168 43 93846.58 
weish02 5 30 4536 4536 41 4516.38 
weing6 2 28 130623 130623 39 130385.1 
weish11 5 50 5643 5643 38 5586.98 
weish27 5 90 9819 9819 35 9705.25 
weish12 5 50 6339 6339 33 6303.34 
weish13 5 50 6159 6159 30 6106.59 
sento1 30 60 7772 7772 29 7743.44 
weish10 5 50 6339 6339 28 6299.95 
hp1 4 28 3418 3418 26 3391.26 
weish08 5 40 5605 5605 23 5603.2 
pb1 4 27 3090 3090 23 3061.14 
hp2 4 35 3186 3186 13 3113.47 
weish06 5 40 5557 5557 12 5537.23 
weish16 5 60 7289 7289 12 7269.19 
weish17 5 60 8633 8633 11 8610.87 
weish14 5 60 6954 6954 11 6885.69 
pb2 4 34 3186 3186 9 3120.99 
weish19 5 70 7698 7698 9 7568.47 
weing3 2 28 95677 95677 8 95447.08 
weish15 5 60 7486 7486 7 7441.1 
flei 10 20 2139 2139 5 2080.52 
pb5 10 20 2139 2139 5 2079.66 
weish28 5 90 9492 9492 5 9318.59 
weish29 5 90 9410 9410 4 9283.94 
pb7 30 37 1035 1035 3 1006.36 
weish24 5 80 10220 10220 3 10155.12 
Knap39 5 39 10618 10618 3 10486.25 
weish20 5 70 9450 9450 2 9404.21 
pb6 30 40 776 776 2 729.98 
weish25 5 80 9939 9939 2 9889.73 
weish18 5 70 9580 9580 2 9530.55 
weish26 5 90 9584 9584 2 9484.47 
weish30 5 90 11191 11191 1 11136.7 
weish23 5 80 8344 8344 1 8211.11 
weish22 5 80 8947 8929 0 8871.3 
Knap50 5 50 16537 16524 0 16426.5 
Sento2 30 60 8722 8711 0 8632.16 
weing7 2 105 1095445 1090160 0 1082188.63 
weing8 2 105 624319 614510 0 565434.86 
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Table 3. Comparative results between PSO and NPSOCLA 
Problem M N  Optimal Best solution by PSO Best solution by NPSOCLA 
Senot1 30 60 7772 7725 7772 
Sento2 30 60 8722 8716 8721 
weing1 2 28 141278 138927 141278 
weing2 2 28 130883 125453 130883 
weing3 2 28 95677 92297 95677 
weing4 2 28 119337 116622 119337 
weing5 2 28 98796 93678 98796 
weing6 2 28 130623 128093 130623 
weing7 2 105 1095445 1059560 1094917 
weing8 2 105 624319 492347 616345 
 
Table 4. Comparative results between PSO and NPSOCLA 
Problem instance GA  NPSOCLA 
-------------------------- ---------------------- ---------------------- 
Name Optimum Average #Max Average #Max 
knap15 4015 4012.70 83 4015.00 100 
knap20 6120 6102.30 33 6118.10 81 
knap28 12400 12374.70 33 12384.65 63 
knap39 10618 10536.90 4 10486.25 3 
knap50 16537 16378.00 1 16426.50 0 

 

 
 
Fig. 2. A comparison between PSO and NPSOCLA explains 

the percent of finding the optimal solution 
 
 Two parts of experiments were performed. First, the 
proposed algorithm was tested when the logical operator 
in Equation (5) is (or) and when it is (and). In the 
second part of experiments, the obtained results were 
compared with the obtained solutions in (Khuri et al., 
1994; Hembecker et al., 2007). 

 Table 1 and 2 show the experiment result of the 
proposed algorithm with some instances taken from 
ORlib (Beasley, 2012). The first column indicates the 
name of problem. The second column indicates the 
number of knapsacks (M). The third column indicates 
the number of objects (N). The fourth column indicates 
the best-known solution. The fifth column indicates the 
best result obtained by the New Particle Swarm 
Optimization with Clonal Selection algorithm. The sixth 

column indicates the number of times that the New 
Particle Swarm Optimization with Clonal Selection 
algorithm reaches the best-known solution (#max). The 
seventh column indicates the average obtained over all 
100 runs by (NPSOCLA).  

We can deduce from Table 1 and 2 that, the 
NPSOCLA found the optimum solution for 53 of the 58 
test cases. It should be noted that there are five problems 
(sento2, knap50, weish22, weing7, weing8) that do not 
reach the optimum solution but are very close to it. 

Table 3 and Fig. 2 show a comparison in terms of 
best solution between the exact solutions (optimal), 
proposed algorithm and PSO algorithm      
(Hembecker et al., 2007). It is show that the 
NPSOCLA outperforms the PSO algorithm. 

Table 4 shows a comparison between a GA in  
(Khuri et al., 1994) and the New Particle Swarm 
Optimization with Clonal Selection Algorithm 
(NPSOCLA). The first two columns (problem instance) 
report the name of the problem and the maximum 
obtainable benefit. The following groups of columns 
report the results archived by GA in (Khuri et al., 1994) 
and by NPSOCLA, respectively. We show the average 
profit obtained over all 100 runs and, in the column #max, 
the number of times the best solution is reached. It is show 
that the NPSOCLA outperforms the GA in kanp15, knap20 
and, knap28 .The GA outperforms the proposed algorithm 
in knap39. In knap50 the GA reach the optimal solution one 
time but its average is less than the NPSOCLA’s average, 
which doesn’t reach the optimal solution. 

4. CONCLUSION 

In this study, a new binary particle swarm optimization 
method using a clonal selection algorithm is proposed. 
The performance of the proposed algorithm is evaluated 
and compared with PSO and GA on a number of the 
benchmark multidimensional knapsack problem instances. 
The experimental result shows that the proposed algorithm 
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(NPSOCLA) has a good performance; on the other hand 
the difficult task in the proposed algorithm is to choose the 
proper parameters because the best setting for parameters 
can be different from problem to another So, our 
fundamental outlook moving towards design a self-
adaptive method to control parameters setting. 
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