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ABSTRACT 

The naïve Bayes classifier is considered one of the most effective classification algorithms today, 
competing with more modern and sophisticated classifiers. Despite being based on unrealistic (naïve) 
assumption that all variables are independent, given the output class, the classifier provides proper results. 
However, depending on the scenario utilized (network structure, number of samples or training cases, 
number of variables), the network may not provide appropriate results. This study uses a process variable 
selection, using the chi-squared test to verify the existence of dependence between variables in the data 
model in order to identify the reasons which prevent a Bayesian network to provide good performance. A 
detailed analysis of the data is also proposed, unlike other existing work, as well as adjustments in case of 
limit values between two adjacent classes. Furthermore, variable weights are used in the calculation of a 
posteriori probabilities, calculated with mutual information function. Tests were applied in both a naïve 
Bayesian network and a hierarchical Bayesian network. After testing, a significant reduction in error rate 
has been observed. The naïve Bayesian network presented a drop in error rates from twenty five percent to 
five percent, considering the initial results of the classification process. In the hierarchical network, there 
was not only a drop in fifteen percent error rate, but also the final result came to zero. 
 
Keywords: Bayesian Network, Entropy, Feature Weighting, Mutual Information, Small Sample Set 

 
1. INTRODUCTION 

Many tasks, including fault diagnosis, pattern 
recognition and forecasting can be seen as classification 
(Cheng and Greiner, 1999). The classification is a base 
task in data analysis and pattern recognition which 
requires the construction of a classifier, that is, a function 
that assigns a class tag to examples described by a set of 
variables. The inference of classifiers on data sets with 
pre-classified cases is a central problem in machine 
learning. Several approaches to this problem are based 
on functional representations such as decision trees, 
neural networks and rules (Friedman et al., 1997). 

The use of statistical tests to identify relationships 
and build the graphical structure of a network has been 
frequently used. Cheng and Greiner (1999) use a process 
of selecting variables (and discarding others), as well as 

using the mutual information function to quantify 
dependency relations between variables in a data model. 
Zhang (2004) proposes a new explanation on the excellent 
performance of naïve Bayes classifier by introducing the 
concept of local dependence. In the study by (Lee et al., 
2011) weights are assigned to the variables of the data set 
by using the Kullback-Leibler measure. 

However, most of the work already developed did 
not care with the assignment process of categories 
(discretization) for values of variables in the data set. 
It is easy to see that attributes with boundary values 
can compromise the classification task, since changing 
the category of a variable can change the value of the 
output variable. 

The objective of this study was to identify and correct 
characteristics of a training data set that could affect the 
classification process, especially in relation to the 
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allocation of categories to the variable values on training 
cases. As regards to model variables that were used to 
construct the network structure, a process of variable 
selection was applied by using a chi-squared test to 
verify the association between two variables. In order to 
control the influence of each variable in calculating 
probability a posteriori, variable weights were calculated 
using the mutual information function. 

Therefore, by acting in the process of categorizing 
values of the data set, in selecting variables that form the 
network structure and in reducing or increasing how each 
variable affects the output class, it is expected to result in 
a performance increase by the Bayesian classifiers utilized. 

1.1. Theoretical Background 
1.1.1. Bayesian Networks 

Bayesian networks (Pearl, 1988) are powerful tools 
for knowledge representation and inference under 
conditions of uncertainty that have only been considered 
classifiers upon the discovery of the naïve Bayes 
classifier. Surprisingly effective, the naïve Bayes 
classifier is essentially a simple Bayesian network in 
which every variable is considered independent of one 
another, given the classification node (Cheng and 
Greiner, 1999). 

A Bayesian network is a systematic way to represent 
relationships between the independent variables through 
a data structure (directed graphs), in which each node is 
labeled with quantitative probability information. Graphs 
are directed and acyclic, in which nodes represent 
variables; arcs represent the existence of direct causal 
influence among bound variables; and the intensity of 
such influences is expressed by conditional probabilities 
(Pearl, 1988). They are used to represent domain 
knowledge through relations of dependence between 
random variables (graphically), a priori probabilities and 
conditional probabilities among variables. 

Bayesian networks allow efficient calculations of a 
posteriori probability of any random variable 
(inference), through a recursive definition of Bayes’ 
theorem. The Bayes’ theorem, presented in Equation (1), 
the basis of all Artificial Intelligence modern systems for 
probabilistic inference, allows to simplify expressions 
through assertions of independence, discovering new 
relations between independent variables. This 
simplification is possible because these statements, 
which are based on knowledge about the problem 
domain, will dramatically reduce the amount of 
information necessary to specify probability distributions 
(Russel and Norvig, 2009). 

 
 
Fig. 1. Graphic structure of a naïve Bayesian network 
 

 
 
Fig. 2. Graphic structure of a hierarchical Bayesian network 

(with intermediate nodes) 
 

The naïve Bayes classifier presented in Equation (2) 
is the simplest representation of Bayesian networks, in 
which every variable is independent, given the class 
variable value. This condition is called conditional 
independence. Although the hypothesis of conditional 
independence is seldom true (Zhang, 2004), the naïve 
Bayes classifier has surprisingly surpassed many 
sophisticated classifiers in a large number of datasets, 
especially where variables are not strongly correlated 
(Cheng and Greiner, 1999): 
 

( ) ( ) ( )
( )

P A | B .P B
P B | A

P A
=    (1) 

 

ijc C a dij
d arg max P(c) P(a | c)∈ ∈= ∝ Π   (2) 

 
In the graphic representation of a naïve Bayesian 

network (Fig. 1), all nodes are connected to the 
classification node and no other connection is allowed. 
This assumption of conditional independence in all 
nodes does not exist in a Hierarchical Bayesian network, 
given the output node (Fig. 2), according to Equation (3): 
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i i j j j j iP(C | A,B) P(C ) P(A | D )P(B | D )P(D | C )=∝ ∑   (3) 

 
Which: 
C = Output node 
A,B = Child nodes 
D = Intermediate node 
i = i-th output class 
j = j-th class of intermediate variable 
α = Normalization constant 

1.2. Mutual Information 

The notion of independence is a special case of a 
more general concept known as mutual information 
(Darwiche, 2009), according to Equation (4): 
 

a,b 2

P(a,b)
MI(A;B)def P(a,b) log

P(a)Pr(b)
∑   (4) 

 
The result of the mutual information function will be 

non-negative and equal to zero only if variables X and Y 
are independent. More generally, mutual information 
measures the extent to which the observation of one 
variable will reduce the uncertainty about the other. In 
other words, it measures the amount of information that 
variable Y provides with respect to variable X, which 
can be obtained through the function values of entropy 
and conditional entropy, according to Equation (5-5b): 
 
MI(A;B) ENT(A) ENT(A | B)= −  (5) 
 
in which: 
 

a 2ENT(A) P(a)log P(a)= −∑  (5a) 

 
And: 
 

bENT(A | B) P(b)ENT(A | B)=∑  (5b) 

 
1.3. Chi-Square Test (χ2) 

The chi-square (χ
2) test is used to verify the 

association between two qualitative (categorical) 
variables, A and B, based on a sample of observations 
arranged in a contingency table with R rows and C 
columns (R, C ≥ 2) corresponding to categories A and B, 
respectively. The null hypothesis (H0) states 
independence between categories of A and B, while the 
alternative hypothesis (H1) points to an association 
between A and B (Barbetta et al., 2004). The distance χ

2 

is a measure of the discrepancy between the expected 
and observed frequencies, obtained by Equation (6): 
 

( )2

ij ij2 R C
i 1 j 1

ij

0 E
X

E= =

 −
 =
 
 

∑ ∑  (6) 

 
Which: 
Oij = Observed frequency in row i and column j 
Eij = Expected frequency in rowi and column j, 

assuming H0 true 

Under H0, the χ
2 statistics follows a chi-square 

distribution with degrees of freedom equal to Equation (7): 
 
df (R 1) (C 1)= − −  (7) 

 
1.4. Related Work 

The approach used in the study of (Cheng and 
Greiner, 1999) seeks to automatically learn the structure 
of Bayesian networks, identifying conditional 
independence relations between network nodes. 
Statistical tests (such as chi-square test and mutual 
information) have been used to identify these relations 
and thus build a simpler graphic structure for the 
network. The proposed algorithm is divided basically 
into two stages: first the relevant variables are selected 
and in sequence, while using score metrics, the graphical 
structure of the network is constructed. 

The algorithm Tree Augmented Naïve Bayes (TAN) 
proposes changes to the naïve Bayes classifier by using 
less restrictive conditional independence assumptions 
than those used in the original naïve classifier, in order to 
capture correlations among network variables. Variable 
subsets are constructed by using the concept of Markov 
blanket and only variables in the Markov blanket are 
dependent on output class, that is, there is a process of 
selecting variables (and discarding others). In order to 
justify its proposed change in the naïve network 
structure, the study shows that in some cases certain 
assumptions of independence by the naïve classifier may 
excessively penalize the output class probability, when 
considering unlikely observations. The proposed 
algorithm TAN allows that each variable has one more 
variable as parent, beyond the output class. For the 
construction of dependencies among variables, the 
algorithm uses the mutual information function 
(Friedman et al., 1997). 

In the study of (Zhang, 2004), a new explanation is 
proposed on the excellent performance of the naïve 
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Bayes classifier. This study introduces the concept of 
local dependence, which is basically the dependency 
between a node and its parents. In order to measure the 
local dependence of a node in each class, the ratio 
between the conditional probability of the node, given its 
parents and the conditional probability of the node 
without parents is utilized. This reflects how strongly 
parents affect the node in each class. The study shows 
that essentially the distribution of dependency, that is, 
the uniform or irregular manner in which the local 
dependence of a node is distributed in each class and 
how local dependencies on all nodes work either 
consistently (by supporting a certain classification) or 
inconsistently (by canceling one another), plays a crucial 
role in the classification task. Thus, the study states that 
no matter how strong dependencies between variables 
are, the naïve Bayes classifier can still be optimal if 
dependencies are distributed evenly in classes, or if 
dependencies cancel each other. 

The overall goal of the research by (Rish, 2001) was 
to understand data characteristics that affect performance 
of the naïve Bayes classifier. The approach makes use of 
Monte Carlo simulations, which allow a systematic study 
of classification accuracy for several classes of randomly 
generated problems. This approach also allows bypass 
the data amount limiting problem, as it assumes to have 
infinite amount of data (exact knowledge of data 
distribution). 

Huang and Li (2011) focused on studying a method 
that allowed utilizing the naïve Bayes classifier with a 
small set of samples, without losing accuracy. The study 
claims that the original use of the naïve Bayes classifier 
in small samples of data does not provide good 
performance. Based on this statement, they have 
proposed utilizing the Poisson distribution for text 
classification. 

In the study by (Lee et al., 2011) weights are 
assigned to the variables of a dataset through the 
Kullback-Leibler measure. The authors believe that 
certain variables carry more information than others and 
thus assigning weights to them, a more accurate result in 
the classification task is obtained. 

It is easy to see that attributes with boundary values 
can compromise the classification task, since changing 
the category of a variable and is in turn, can change the 
value of the output variable. Thus, this study aimed to 
identify and correct the characteristics of training data set 
that could affect the classification process, in relation to 
the assignment of categories to the values of the 
variables of training cases. Moreover, as in some 
previous works (Cheng and Greiner, 1999; Lee et al., 

2011), we used a feature selection process using the chi-
square test combined with calculation of weights for the 
remaining variables (after feature selection process) with 
the use of mutual information function. 

2. MATERIALS AND METHODS 

2.1. Bayesian Networks Assessment 

In order to compare the proposed method in this work 
with the traditional approach of Bayesian networks 
(naive and hierarchical), first, the data set (training and 
testing) was submitted to two networks in their initial 
settings, i.e., the networks naive and hierarchical 
(modeled by the expert). The results were saved and then 
we applied a process of selection variables using the chi-
square test to verify the association between pairs of 
variables (each variable in the data set combined with the 
output variable), so restricting the number of model 
variables used to build the graphical structure of the 
network. To control the influence of each variable in the 
posterior probability, we calculated weights of variables 
using mutual information function and finally, there was 
a adjustment in the process of categorization of the 
variables in the data set. The steps of the proposed 
method are described below. 

The first step of the classification process, considered 
as training phase of the network, consists in the 
following steps: 
 
• Receiving the training data set as input 
• Calculating values of χ² test for all pairs of “father-

daughter” variables 
• Calculating values of entropy and conditional 

entropy functions for all variables in the network. 
• Calculating mutual information function values for 

all variables 
• Submit the data to the naïve and hierarchical 

networks 
• Identifying changes to improve network 

performance 
 

Steps in the final classification process, with changes 
identified in the previous step in the process included, 
are listed below: 

 
• Receiving the training data set as input 
• For each sample set of test data, calculating a 

posteriori probability values, using values generated 
by mutual information function as weight, only for 
variables selected by the χ² test 
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Fig. 3. Naïve Bayesian network 
 

 
 
Fig. 4. Hierarchical Bayesian network 
 
Table 1. List of variables used on both network models 
Variable # of classes 
Blood Pressure (PPA) 3 
Abdominal circumference (PCA) 2 
Weekly Physical Activity (AFS) 3 
Body Mass Index (PIMC) 5 
Parent’s Body Mass Index (H) 3 
Cardiac Risk (RCV) 3 
Nutritional Risk (RN) 3 
Metabolic Risk (RM) 3 
 
• Adjusting for class examples with threshold values. 
• Resubmit the data set to the naïve and hierarchical 

networks 

2.2. Modeling of Bayesian Network  

In the creation of networks, cardiovascular risk and 
nutritional risk variables were not part of the naïve 
network, since they are intermediate nodes in the Bayesian 
network. The other variables in the naïve network are 
connected directly to the output node (Fig. 3). 

In the hierarchical Bayesian network all variables 
listed are part of the network (Fig. 4). 

Based on the estimated probabilities in accordance 
with relative frequencies, the domain expert has made an 
adjustment in the probability distributions of each 
variable. According to medical knowledge regarding the 
diagnosis of metabolic risk for children and adolescents, 
this adjustment was necessary due to a shortage of 
examples in the training sample and that both networks 
would adequately reflect the relation between variables. 

2.3. Methods 

In the second stage of testing, values obtained in the 
χ² test and by the mutual information function have been 
used once more in order to classify the test data set. On a 
first moment, the values of mutual information between 
dependent variables have been calculated, according to 
graphical models of both networks. The resulting values 
were used to adjust the interference of each variable in 
the classification. Equation (8) presents a new formula 
for calculating probabilities of the naïve network, as the 
work of Lee et al. (2011): 
 

w(i)
ijc C a dij

d arg max P(c)II P(a | c)∈ ∈= ∝  (8) 

 
Which: 
d = Complete set of variables of a given test 
C = Output class 
aij = j-th value of the i-th variable 
w = Variable weight (mutual information) 
α = Normalization constant 
 
and in in hierarchical network calculation is done 
according to the new formula, introduced by this work, 
as can be seen in Equation (9): 
 

w w
i i j j j j iP(C | A,B) P(C ) P(A | D ) P(B | D ) (D | C )=∝ ∑  (9) 

 
Which: 
C = Output node 
A,B = Child nodes 
D = Intermediate node 
i = i-th output class 
j = j-th class of intermediate value 
w = Variable weight (mutual information) 
α = Normalization constant 
 
2.4. Data 

Data used in this study was collected from patients 
seen in the Nutrition outpatient clinic of the University 
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Hospital, at Federal University of Santa Catarina, Brazil, 
from November 2010 to November 2011. Variables 
selected for the creation of networks are related to 
anthropometric data of physical activity, blood pressure 
and patient nutritional status assessment. 

The sample consisted of 120 children and adolescents 
aged 5 to 17 years. Data collection complied with the 
guidelines for research involving human participants, 
established by Resolution No. 196/96 of the National 
Health Council (Brazil) (Mayer, 2012). About 100 cases 
were used to estimate a priori probabilities and other 20 
cases for testing. Table 1 lists the variables used in 
Bayesian networks. 

All variables are measured on an ordinal qualitative 
level, that is, their classes are ranked among them. 

When utilizing the χ2 test it is recommended that the 
minimum value of expected frequency is greater or equal 
to five (Filho, 2008). This criterion is not satisfied in the 
data set used, on the variables of Weekly Physical 
Activity (AFS), Blood Pressure (PPA) and Parent Rating 
Anthropometric (H) for naïve network variables and 
Weekly Physical Activity (AFS) and Blood Pressure 
(PPA) for the hierarchical network. Thus, this 
recommendation was disregarded for this study. 

3. RESULTS AND DISCUSSION 

In order to display the summary of test results, the 
method known as confusion matrix (or classification 
matrix) has been chosen. The method is in essence quite 
simple, consisting primarily of a square matrix that 
contains all possible classes, both in rows and in 
columns. The matrix columns receive response values 
generated by the network and lines receive the output 
class values according to gold standard (Marsland, 
2009). 

Validation of Bayesian networks was performed by 
comparing diagnoses made by specialist physicians (gold 
standard) with the results of probabilities presented by 
both networks. 

Table 2 presents test results for a sample of 20 
patients, in which node classification classes are labeled 
“Low”, “Moderate” and “Elevated”. 

On the naïve network, five cases had different 
classification from that provided by the specialist. On the 
hierarchical network, three cases have shown divergence. 
The remaining cases have been correctly classified. 

When analyzing possible reasons that have 
contributed to differences between the classifications 
provided by the network and the gold standard, it was 
noted that: 

• On the naïve network, in 4 out of 5 disagreeing 
cases, the values in one of the variables were rather 
close to the upper class threshold value (assuming 
the value of the upper class, examples came to be 
correctly classified) 

• On the hierarchical network, the three cases in 
which misclassifications occurred also had 
threshold values 

 
Thus, it was possible to observe that in cases where 

there is presence of threshold values in the input nodes, 
the classification obtained by Bayesian networks is 
affected, causing divergence in relation to the 
classification performed through gold standard. 

This issue is present when there are nodes present 
that represent ordinal qualitative variables. In this 
situation, the class division criterion is a factor that also 
affects the response generated by networks. 

After submitting sample data to testing both 
networks, the χ² test was calculated (see values for naïve 
and hierarchical networks in Table 3 and 4, 
respectively) adopting a significance level of 5% used to 
obtain χ²C on the chi-squared distribution table and also 
mutual information function values (Table 5 and 6 for 
naïve and hierarchical networks, respectively). The 
indicators generated by these metrics have been used in 
the analysis of dependence relations among variables.  
 
Table 2. Classification matrix (confusion matrix) for the 20-patients 

sample 
Gold Naïve network   Hierarchical network 
 ---------------------------------- ---------------------------------- 
standard Low Moderate  Elevated Low Moderate  Elevated 
Low 4 1 0 5 0 0 
Moderate 0 5 0 0 5 0 
Elevated 0 4 6 0 3 7 
Error Rate 25%   15% 

 
Table 3. Values of χ2 for the naïve network 
 Naïve network-χ2 (5% significance level) 
 ------------------------------------------------------------- 
Statistics PIMC PCA H PPA AFS 
χ2 58,61 44,49 15,82 12,53 6,77 
χ2

C 15,51 5,99 9,49 9,49 9,49 

 
Table 4. Values of χ2 for the hierarchical network 
 Hierarchical network - χ2 (5% significance level) 
 --------------------------------------------------------------- 
Statistics RCV RN PIMC PCA H PPA AFS 
χ2 18,24 71,04 130,24 61,59 23,77 116,18 28,75 
χ2

C 9,49 9,49 15,51 5,99 9,49 9,490 9,49 
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The χ² test was used on a variable selection process, 
to verify if any variable should be disregarded in the 
calculation of probabilities. The mutual information 
function was used to weight the calculation of a 
posteriori probability. 

3.1. Naïve Network 

After applying the new test on the naïve network, 
utilizing mutual information function values, 4 cases 
have continued to present divergent classes. One of the 
cases that had been classified correctly in the first test 
started presenting error and one error on the first test was 
correctly classified. In the next step, χ² test results were 
used in order to eliminate network variables through a 
variable selection process. According to the χ² test 
results, the variable AFS is independent of the variable 
RM according to the naïve network model. In order to use 
this information, the AFS variable was disregarded in 
calculations. As a result, 2 cases have ceased presenting 
error and another case that had been correctly classified in 
the previous test, was now classified incorrectly. 

After adjusting threshold data in test cases and using 
both calculation approaches, value of mutual information 

function and variable selection through the χ² test, only 
one case remained with erroneous classification. By 
examining the data in more detail, it is possible to notice 
that the likely issue with this case is that the weight 
assigned to the PCA variable when using mutual 
information function, because in this example, this is the 
only column with a value which contributes to the output 
class indicated by the network. Test results with the 
naïve network are listed on Table 7. 
 
Table 5. Mutual Information function values for the naïve 

network 
 Mutual information-naïve network 
 ------------------------------------------------------------------ 
IM PIMC PCA H PPA AFS Total 
Value 33,05 41,64 35,30 20,54 9,15 139,66 
% 23,66 29,81 25,27 14,70 6,55 100,00 
 
Table 6.  Mutual Information function values for the 

hierarchical network 
 Mutual information-hierarchical network 
 ---------------------------------------------------------------------------- 
IM RCV RN PIMC PCA H PPA AFS Total 
Value 28,60 38,77 36,54 41,29 35,67 18,78 0,04 199,69 
% 14,32 19,42 18,30 20,68 17,86 9,41 0,02 100,00

 
Table 7. Final results for the naïve network testing-divergent cases (B = Low, M = Moderate and E = Elevated) 
 Normal calculation  IM    IM andχ2   IM, χ2 and threshold values 
Standard ---------------------------- ------------------------------ ------------------------------ -------------------------------------- 
Gold RM B M E RM B M E RM B M E RM B M E 
Low M 41,80 57,90 0,320 L 58,49 31,34 10,17 L 64,86 26,24 8,90 L 64,86 26,24 8,90 
Elevated M 0,000 93,50 6,490 M 5,180 60,96 33,86 M 5,040 55,62 39,34 E 4,940 37,88 57,19 
Elevated M 0,000 93,50 6,490 M 5,180 60,96 33,86 M 5,040 55,62 39,34 E 4,940 37,88 57,19 
Elevated E 0,010 16,30 83,70 M 8,500 51,23 40,26 M 7,750 49,51 42,74 E 3,220 47,92 48,86 
Elevated M 0,000 76,30 23,70 M 4,270 53,22 42,50 E 3,980 46,61 49,41 E 3,620 29,54 66,84 
Low L 99,90 0,000 0,080 L 41,03 37,57 21,39 M 35,14 44,05 20,81 M 35,14 44,05 20,81 
Elevated M 0,000 80,50 19,50 M 3,550 55,16 41,29 E 3,220 47,92 48,86 E 3,220 47,92 48,86 

 
Table 8. Final results for the hierarchical network testing-divergent cases (B = Low, M = Moderate and E = Elevated) 
 Normal calculation  IM    IM, χ2 and threshold values 
Gold ----------------------------------------- ------------------------------------------- ------------------------------------------------ 
standard RM B M E RM B M E RM B M E 
Elevated M 8,77 58,70 32,60 M 0,22 0,41 0,36 E 0,21 0,31 0,47 
Elevated M 8,77 58,70 32,60 M 0,22 0,41 0,36 E 0,21 0,31 0,47 
Elevated M 3,59 49,10 47,30 El 0,21 0,38 0,41 E 0,14 0,33 0,52 

 
Table 9. Classification matrix (confusion matrix) for the 20-patients sample, after adjustments 
 Naïve network   Hierarchical network 
Gold -------------------------------------------------------------- ------------------------------------------------------------ 
standard Low Moderate Elevated Low Moderate Elevated 
Low 4 1 0 5 0 0 
Moderate 0 5 0 0 5 0 
Elevated 0 0 10 0 0 10 
Error Rate 5%   0% 
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3.2. Hierarchical Network 

On the second test, while using values generated by 
the mutual information function performed in the 
hierarchical network (Table 8), 2 cases have continued 
to present divergent classes. When adjusting threshold 
values, all cases have been correctly classified. On this 
test, weights generated by the mutual information 
function have been applied only on the leaf variables, 
that is, nodes NB and RCV did not have their 
probabilities altered, since weights had already been 
applied to the children variables of these nodes. 

In the case of the hierarchical network, the χ² test did 
not suggest eliminating variables, which explains the 
absence of the last column in Table 8.  

3.3. Final Results 

The final results for testing both networks can be 
seen in Table 9, which shows the classification matrix 
and where there is clear reduction in the error rate for the 
classification process in both networks. 

4. CONCLUSION 

This study presents an analysis of Bayesian 
classifiers, specifically hierarchical Bayesian networks 
and naïve Bayesian networks for a small data set (100 
cases used for training and 20 for testing). To that sense, 
2 networks were created, one for each model. A set of 
test data was submitted to each of these networks and 
results were recorded. In sequence, the χ² test was used 
to check the dependence among variables of the model in 
order to verify whether any of these variables should be 
disregarded. Then, mutual information values have been 
calculated to verify the amount of information that each 
variable carries in relation to the variable class. 
Furthermore, variable class intervals were analyzed in 
order to check threshold values which could interfere 
with the final classification. 

The size of the data set had a strong influence in the 
classification process, mainly affecting the performance 
of the χ² test (expected frequencies below the 
recommended values for the test). It is suggested that the 
methods described herein are also applicable to larger 
data sets in order to eliminate the negative influence 
related to the amount of training examples. 

The use of values generated by the mutual 
information function could correct errors in some 
classifications by attributing higher weights in the 

probability calculation for certain variables. 
Nevertheless, one of the cases in the test was incorrectly 
classified due to the weight of a single variable. All other 
variable values in the example favored the correct class, 
but the elevated weight assigned to variable PIMC 
altered the output class to an incorrect value. In future 
research, this aspect will require revision. 

In order to automate the task of adjusting classes of 
examples with threshold data, the use of fuzzy logic 
(Zadeh, 1965) is suggested to allow more flexibility in 
treating class division within model variables. 

Thus, it is clear that the real gain of this study is 
related to improving the classification process, that is, 
the reduction in error rates. In the naïve Bayesian 
network the error rate dropped from 25% to 5%, 
considering the initial results of the classification 
process. In the hierarchical network, there was not only a 
15% reduction in error rate, but it has also come to zero. 
Therefore, it is considered that, with the implementation 
of the proposed changes, there was considerable 
improvement in the classification process. 
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