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ABSTRACT

Energy efficiency is an important issue in wirelassisor networks. A sensor node has a microprocesso
and a small amount of memory for signal procesaimg) task scheduling. Dynamic Planning is a metkod i
used in this approach it combines the flexibilifydynamic scheduling with the predictability offdrby
schedulabilty check. Whenever a node wants to mnéndata packet to the other node, the cluster head
attempts to guarantee data packets by construetimgan for its transmission without violating the
guarantees of the previously scheduled transmissitarMyopic scheduling technique is used for
transmission. The simulation results shows thatdidmgree of parallelization increases the succdis fa

the speedup function used. The resources or fitgirgh can be done effectively using this Parmyopic
scheduling scheme in the wireless sensor netwatktive deployment of nodes. The query responseifime
reduced by allowing more than one applicationset@xecuted simultaneously.
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1. INTRODUCTION packets without jeopardizing the guarantees thake ha
been provided for the previously scheduled dat&gtac
Energy expenditure is an important issue in wegle When dealing with dynamic scheduling, it becomes
sensor networks due to the short span battery life.necessary to be aware of several anomalies, called
Reliable content delivery over a wireless chansehi Richard’s anomalies, so that they can be avoided.
major source of energy expenditure. The increasingChanging the priority list, increasing the numbdr o
wireless transmission rate results in a rapid meeeof  processors, reducing the computation times, or
the energy consumption of wireless devices. Thisweakening the precedence constraints can incréese t
approach follows the Myopic scheduling algorithnrdan schedule length (Graham, 1976). Most existing work
in this nodes selectively transmit data streams offocuses on the minimization of the total energy
different data sizes at different transmissionga®e that  consumption under the timing constraints and sdivegiu
the system reward can be maximized under given timealgorithms. To minimize the transmission energy, we
and energy constraints (Gomg al., 2010). Scheduling vary packet transmission times and power levelfnt
strategy operates on an extremely fast time scalehe optimal schedule for transmitting the packeithivw
compared to the user dynamics, making it to natiral the given amount of time.
analyze the user level performance in continuotisera
than discrete time and assume that the users aredse 2.LITERATURE REVIEW
simultaneously rather than in a time-slotted fashio
(Borst, 2005). In dynamic scheduling (Manimaran and ~ Numerous solutions have been proposed for energy
Murthy, 1998; Ramamrithanet al., 1990), when new efficient problem in wireless sensor networks were
data packets arrive, the scheduler dynamicallylargely targeted at communication channels over a
determines the feasibility of scheduling these riata single-transmitter-single receiver model; Zhang and
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chanson targeted both throughput and value (rewardand more the look-ahead nature. The termination
maximization in an Additive White Gaussian Noise conditions are that (1) a complete feasible scletiak
(AWGN) channel (Gonget al., 2010). Many protocols been found (2) the maximum number of backtrackanor
have been developed for wireless sensor networks. SH function evaluation has been reached, or (3) noem
MAC is one among the protocol is used for energy backtracking is possible. The time complexity o€ th
efficiency. The main goal of the S-MAC protocoltes myopic scheduling algorithm for scheduling n tagks
reduce energy waste caused by idle listening,siolfis, O(Kn). The value of K is usually much smallerrnha
overhearing and control overhead. The protocolithes  for practical purposes. Some techniques aim to aedu
four major components such as periodic listen d@eps  the static power consumption, as up to 70% of gnerg
collision avoidance, overhearing avoidance and awss a chip is wasted in standby (Jaretlal., 2007), so items
passing. Periodic listen and sleep is designecdoae  such as clock gating and sleep modes are commonly
energy consumption during the long idle time when n used to reduce this value to a more manageablé leve
sensing events happen, by turning off the radio(Yeap and Najm, 1996). The observation that leads t
periodically (Bhapnagar and Robertezi, 1990). The this approach is that transmission energy can Wwerkxd
Power Control Multiple Access allows different nede by reducing transmission power and transmitting a
have different transmission power levels. PCMA usespacket over a longer period of time.

two channels, one channel for “busy tones” andother

for all other packets. PCMA use busy tones, instefad 3. DATA MODEL
RTS-CTS, to overcome the hidden terminal problem. ) _
The power level at which the busy tone is transditty Many sensing tasks require a sensor network system

a node is equal to the maximum additional noise thel® Process data cooperatively and to combine

node can tolerate. Any node wishing to transmiaekgt information from multiple sources. In traditional

first waits for a fixed duration and senses thencleh for centralized sensing and signal processing systems,
i data collected by sensors are relayed to the edias
busy tones from other nodes. The signal strengtiusy

. . i network where the data is processed. If every sems®
tones received by a node is utilized to determime t . o qata that it needs to send to another node in

highest power level at which this node may transmit heyork, then a well known wireless capacity pedeo
without interfering with other on-going transmiss0  throughput scales agVN, in other words, it goes to zero
Mean-while, more and more embedded systems args the number of nodes N in a wireless sensor metwo
being built with renewable energy sources, suckod®  increases. Sensor networks contain a large quaotity
power, wind power and mechanical power, from the nodes that collect measurements before sending them
environment (Li and Chou, 2005). The myopic the applications. If all nodes forwarded their
scheduling (Ramamrithanet al., 1990) is a non- measurements, the volume of data receivedthsy
preemptive heuristic search algorithm for schedulin applications would increase exponentially, —reimder
real-time data packets with resource constraintgeriex ~ data processing a tedious task. In this prapaisga

in the search tree represents is strongly feasibie mo_del, a_singIe—transm_itter—muItiple—_receiver_ m_odhel
schedule from a vertex is extended only if the eseiit which a wireless transmitter communicates with ipldt

strongly feasible. If the current vertex is strongl receivers as shown iRig. 1. In this model transmitter

. . L can only communicate with one receiver at a timé an
feasible, the algorithm computes a heuristic fuorctior has an enerav budaet in each transmit cvcle. Each
each data packet within the feasibility window ahdn oy g ycie.

ds th hedule b d ket having t | receiver will receive data from the transmitter
extends the schedule by a data packet having € periodically. Every transmitter-receiver pair has a

heuristic value. The heuristic function for a tagks Hy maximal amount of data to be transmitted in eagle ti
= d.+ W *EST (Ty), an integrated heuristic that captures period. The receivers are located with differesstatices
the deadline and resource requirements of taskviere  from the transmitter. The data to different recesvean
W is a constant which is an input parameter. If the be transmitted at different transmission rates.

current vertex is not strongly feasible, the althon . . .

backtracks to the previous search point and fraeretion 3.1. ParMyopic Scheduling (K, Max-Split)

extends the schedule using the task having the next The ParMyopic scheduling algorithm is a non-
minimum heuristic value. The larger the size of the preemptive heuristic search algorithm for schedulin
feasibility checks window, the higher the schedyloost real-time tasks with resource constraints.
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Fig. 1. Data model

A vertex in the search tree represents a parttadide.
The schedule from a vertex is extended only ifvibeex

is strongly feasible. If the current vertex is sty
feasible, the algorithm computes a heuristic fuorctior
each task within the feasibility window and thertegxis
the schedule by a task having the least heuristigev
The heuristic function for a task,Ts H, = d. + W *
EST(Ty), an integrated heuristic that captures the
deadline and resource requirements of tagkviiere W

is a constant which is an input parameter. If therent
vertex is not strongly feasible, the algorithm keatks

to the previous search point and from there onrelge
the schedule using the task having the next minimum
heuristic value. The larger the size of the fedigibi
checks window, the higher the scheduling cost antem
the look-ahead nature. The termination conditiors a
that (1) a complete feasible schedule has beerdfd@p
the maximum number of backtracks or H function
evaluations has been reached, or (3) no more
backtracking is possible. The time complexity o€ th
ParMyopic scheduling algorithm for scheduling nk&as
is O(Kn). The value of K is usually much smallearthn

for practical purposes:

level.

Begin

Let T, be the K +1)" task in the current task
queue.
Let num-split be the maximum degree of
parallelism permitted for the current task T
Let cost be the sum of degree of parallelism
over all theK tasks for which feasibility check
has been done so far.
(@) Num-split = max-split; K =0; cost=0;
feasible=TRUE.

(b) While(feasible is TRUE)do

i. If (K-cost < num-split) num-split=K-cost.

ii. Compute EST (i) for task T. _

iii. Find the smallest j such that EST; (¥ ¢/

< d,1j<num-split.

iv. If (such j exists)K =K +1; cost=cost+.

v. else if(num-split < max-split) break  vi.

else feasible =FALSE.
If (feasible is TRUE)
(a) Compute the heuristic function (H) for the
first K tasks, where kd, + W* EST(Ty) for
task T . (b) Extend the schedule by the task
having the best (smallest) H value.

Else (C) Backtrack to the previous search

(d) Extend the schedule by the task having

1. Order the tasks (in the task queue) in NONiha next-best H value

decreasing order of their deadlines and then
start with an empty partial schedule.

4.

2. Determine whether the current scheduleg end.

vertex(schedule) is strongly feasible by
performing feasibility check for K or less

than K tasks in the feasibility check window
as given below:

Let K be the count of the number of tasks for
which feasibility check has been done.
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Move the feasibility check window by one task.

5. Repeat steps (2-5) until termination conditienet.

4. CONCLUSION

Figure 2 and 3 represent the success ratio by

varying Laxity parameter and W respectively.
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When max-split is 1, the task is considered to be n ParMyopic Scheduling algorithnkigure 2 shows the
parallelizable and the ParMyopic algorithm behdiles effect on success ratio of the laxity parameter {®Rich
the myopic algorithm. When the value of max-spdit i helps in investigating the sensitivity of task
more than 1, then the parallelism plays, so it seed parallelization to varying laxitiesFigure 3 shows the
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