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Abstract: Problem statement: One of the Cloud Services, Infrastructure as a Service (IaaS) provides 
a Compute resourses for demand in various applications like Parallel Data processing. The computer 
resources offered in the cloud are extremely dynamic and probably heterogeneous. Nephele is the first 
data processing framework to explicitly exploit the dynamic resource allocation offered by today’s 
IaaS clouds for both, task scheduling and execution. Particular tasks of processing a job can be 
assigned to different types of virtual machines which are automatically instantiated and terminated 
during the job execution. However, the current algorithms does not consider the resource overload or 
underutilization during the job execution. In this study, we have focussed on increasing the efficacy of 
the scheduling algorithm for the real time Cloud Computing services. Approach: Our Algorithm 
utilizes the Turnaround time Utility effieciently by differentiating it into a gain function and a loss 
function for a single task. The algorithm also assigns high priority for task of early completion and less 
priority for abortions/deadlines issues of real time tasks. Results: The algorithm has been implemented 
on both preemptive and Non-premptive methods. The experimental results shows that it outperfoms 
the existing utility based scheduling algorithms and also compare its performance with both 
preemptive and Non-preemptive scheduling methods. Conculsion: Hence, a novel Turnaround time 
utility scheduling approach which focuses on both high priority and the low priority tasks that arrives 
for scheduling is proposed.  
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INTRODUCTION  

 
 Cloud computing has the potential to 
dramatically change the landscape of the current IT 
industry (Armbrust et al., 2009; Goldberg, 1989) For 
companies that only have to process large amounts of 
data occasionally running their own data center is 
obviously not an option. Instead, Cloud computing has 
emerged as a promising approach to rent a large IT 
infrastructure on a short-term pay-per-usage basis. 
Operators of so-called IaaS clouds, like Amazon EC2, 
(AWSLLC, 2011a), let their customers allocate, 
access and control a set of Virtual Machines (VMs) 
which run inside their data centers and only charge 
them for the period of time the machines are allocated. 
The VMs are typically offered in different types, each 

type with its own characteristics (number of CPU 
cores, amount of main memory) and cost. 
 Since the VM abstraction of IaaS clouds fits the 
architectural paradigm assumed by the data processing 
frameworks described above, projects like Hadoop 
The Apache Software Foundation, 2011 (White, 
2010), a popular open source implementation of 
Google’s MapReduce framework, already have begun 
to promote using their frameworks in the cloud 
(White, 2010) Only recently, Amazon has integrated 
Hadoop as one of its core infrastructure services 
(AWSLLC, 2011b). However, instead of embracing its 
dynamic resource allocation, current data processing 
frameworks rather expect the cloud to imitate the static 
nature of the cluster environments (Dornemann et al., 
2009) they were originally designed for, e.g., at the 
moment the types and number of VMs allocated at the 
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beginning of a compute job cannot be changed in the 
course of processing, although the tasks the job 
consists of completely different demands on the 
environment. As a result, rented resources may be 
inadequate for big parts of the processing job, which 
may lower the overall processing performance and 
increase the cost. 
 One of an IaaS cloud’s key feature is the 
provisioning of compute resources on demand. The 
computer resources available in the cloud are highly 
dynamic and possibly heterogeneous. Nephele is the 
first data processing framework to explicitly exploit the 
dynamic resource allocation offered by today’s IaaS 
clouds for both task scheduling and execution. Particular 
tasks of a processing a job can be assigned to different 
types of virtual machines which are automatically 
instantiated and terminated during the job execution. 
 Nephele is the first data processing framework to 
explicitly exploit the dynamic resource allocation 
offered by today’s IaaS clouds for both, task scheduling 
and execution. Particular tasks of a processing job can 
be assigned to different types of virtual machines 
which are automatically instantiated and terminated 
during the job execution. 
 While there exist different interpretations and 
views on cloud computing (Armbrust et al., 2009) it is 
less disputable that being able to effectively exploit the 
computing resources in the clouds to provide 
computing service at different quality levels is essential 
to the success of cloud computing. For real-time 
applications and services, the timeliness is a major 
criterion in judging the quality of service. Due to the 
nature of real- time applications over the Internet, the 
timeliness here refers to more than the deadline guarantee 
as that for hard real-time systems. In this regard, an 
important performance metric for cloud computing can 
thus be the sum of certain value or utility that is accrued by 
processing all real-time service requests. 
 To improve the performance of cloud computing, 
one approach is to employ the traditional Utility 
Accrual (UA) approach first proposed to associate 
each task with a Time Utility Function (TUF), which 
indicates the task’s importance. Specifically, the TUF 
describes the value or utility accrued by a system at 
the time when a task is completed (Li et al., 2006). 
Based on this model, there have been extensive 
research results published on the topic of UA 
scheduling. While Jensen’s definition of TUF allows 
the semantics of soft time constraints to be more 
precisely specified, all these variations of UA-aware 
scheduling algorithms imply that utility is accrued only 
when a task is successfully completed and the aborted 
tasks neither increase nor decrease the accrued value 
or utility of the system. 

 We believe that, to improve the performance of 
cloud computing, it is important to not only measure 
the profit when completing a job in time, but also 
account for the penalty when a job is aborted or 
discarded. Note that, before a task is aborted or 
discarded, it consumes system sources including 
network bandwidth, storage space and processing 
power and thus can directly or indirectly affect the 
system performance. This is especially true for cloud 
computing in considering the large possibility of 
migration of a task within the clouds for reasons such as 
the economy considerations (Casati and Shan, 2001). If 
a job is deemed to miss its deadline with no positive 
semantic gain, a better choice should be one that can 
detect it and discard it as soon as possible. 
 Recently, (Yu et al., 2010) proposed a task model 
that considers both the profit and penalty that a system 
may incur when executing a task. According to this 
model, a task is associated with two different TUFs, 
a profit TUF and a penalty TUF. The system takes a 
profit (determined by its profit TUF) if the task 
completes by its deadline and suffers a penalty 
(determined by its penalty TUF), if it misses its 
deadline or is dropped before its deadline. It is 
tempting to use negative values for the penalties and 
thus combine both TUFs into one single TUF. 
However, a task can be completed or aborted and 
hence can produce either a profit value or a penalty 
value. Mathematically, if there exists such a single 
function, it would imply that a single value in its 
domain was mapped to two values in its range, 
violating that it is a function. Therefore, one utility 
function cannot accurately represent both the profit 
and penalty information when executing a task. There 
are also some other penalty related models proposed in 
the literature. For example, studied the on-line 
scheduling problem when penalties have to be paid for 
rejected jobs. This model, however, does not account 
for the penalty to drop the task before its deadline. 
 However Nephele does not consider resource 
overload or underutilization during the job execution 
automatically. In this study, a novel Turnaround time 
utility algorithm is proposed for scheduling the real-
time cloud computing services. The most unique 
characteristics of this approach is that, different from 
traditional utility accrual approach that works under one 
single Time Utility Function (TUF), which have two 
different functions called a Gain and a loss Functions-
associated with each task at the same time, to model the 
real-time applications for cloud computing. To compare 
the performance of cloud computing, the traditional 
Utility approach is deployed in both Non-Preemptive 
and Preemptive scheduling. 
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 This study includes further details on scheduling 
strategies and extended experimental results. The study 
is structured as follows: First it starts with describing 
the basic concept of cloud and present the architecture 
of the Nephele and outline how jobs can be described 
and executed in the cloud. Followed by our scheduling 
approach in explained in detail. Then we present the 
experiment setup used for the evaluation and discuss 
the results. Finally, we conclude the study. 
 

MARERIALS AND METHODS  
 
Cloud computing: The cloud is a metaphor for the 
Internet and is an abstraction for the complex 
infrastructure it conceals. Cloud computing is a model 
for enabling ubiquitous, convenient, on-demand 
network access to a shared pool of configurable 
computing resources (e.g., networks, servers, storage, 
applications and services) that can be rapidly 
provisioned and released with minimal management 
effort or service provider interaction. It define in three 
models Software as a Service (SaaS), Platform as a 
Service (PaaS), Infrastructure as a Service (IaaS). Figure 
1 shows the architecture of the cloud computing. Cloud 
computing system scales applications by maximizing 
concurrency and using computing resources more 
efficiently One must optimize locking duration, 
statelessness, sharing pooled resources such as task 
threads network connections bus, cache reference data 
and partition large databases for scaling services to a large 
number of users. IT companies with innovative ideas for 
new application services are no longer required to make 
large capital outlays in the hardware and software 
infrastructures. By using clouds as the application hosting 
platform, IT companies are freed from the trivial task of 
setting up basic hardware and software infrastructures. 
Thus they can focus more on innovation and creation of 
business values for their application services. Some of the 
traditional and emerging Cloud- based application 
services include social networking, web hosting, content 
delivery and real time instrumented data processing.  
 

 
 
Fig. 1: Cloud Computing Architecture 

Each of these application types has different composition, 
configuration and deployment requirements. Quantifying 
the performance of provisioning (scheduling and 
allocation) policies in a real Cloud computing 
environment (AEC2, 2011), Microsoft Azure, 2011 
Google App Engine (2011) for different application 
models. 
 Cloud computing also describes applications that 
are extended to be accessible through the Internet. 
These cloud applications use large data centers and 
powerful servers that host Web applications and Web 
services. Anyone with a suitable Internet connection and 
a standard browser can access a cloud application. 
 
Task scheduling and load-balancing technique: A 
task is a (sequential) activity that uses a set of inputs to 
produce a set of outputs. Processes in fixed set are 
statically assigned to processors, either at compile-time 
or at start-up (i.e., partitioning) avoids overhead of load 
balancing using these load-balancing algorithms. The 
Grid computing algorithms can be broadly categorized 
as centralized or decentralized, dynamic or static or the 
hybrid policies in latest trend. A centralized load 
balancing approach can support larger system. Hadoop 
system takes the centralized scheduler architecture. 
In static load balancing, all information is known in 
advance and tasks are allocated according to the prior 
knowledge and will not be affected by the state of the 
system. Dynamic load-balancing mechanism has to 
allocate tasks to the processors dynamically as they arrive. 
Redistribution of tasks has to take place when some 
processors become overloaded (Zaharia et al., 2009). 
 In cloud computing, each applications of users will 
run on a virtual operating systems, the cloud systems 
distributed resources among these virtual systems. Every 
application is completely different and is independent 
and has no link between each other whatsoever, For 
example, some require more CPU time to compute 
complex task and some others may need more memory to 
store data. Resources are sacrificed on activities performed 
on each individual unit of service. 
 

 
 
Fig. 2: Nephele’s Architecture 
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 In order to measure direct costs of applications, 
every individual use of resources (like CPU cost, 
memory cost, I/O cost) must be measured. When the 
direct data of each individual resources cost has been 
measured, more accurate cost and profit analysis.  
  
Overview of Nephele architecture: Nephele is a new 
data processing framework (Warneke and Kao, 2009; 
Ravindran et al., 2005) for cloud environment that takes 
up many ideas of previous processing frameworks but 
refines them to better match the dynamic and opaque 
nature of a cloud. 
 Nephele’s architecture follows a classic master-
worker pattern as illustrated in Fig. 2 . 
 Before submitting a Nephele compute job, a user 
must start a VM in the cloud which runs the so called 
Job Manager (JM). The Job Manager which receives 
the client’s jobs, is responsible for scheduling them 
and coordinates their execution. It is capable of 
communicating with the interface the cloud operator 
provides to control the instantiation of VMs. We call 
this interface the Cloud Controller. By means of the 
Cloud Controller the Job Manager can allocate or 
deallocate VMs according to the current job execution 
phase. We will comply with common Cloud 
computing terminology and refer to these VMs as 
instances for the remainder of this study. The term 
instance type will be used to differentiate between VMs 
with different hardware characteristics. For example, 
the instance type “m1.small” could denote VMs with one 
CPU core, one GB of RAM and a 128 GB disk while the 
instance type “c1.xlarge” could refer to machines with 8 
CPU cores, 18 GB RAM and a 512 GB disk. 
 The actual execution of tasks which a Nephele job 
consists of is carried out by a set of instances. Each 
instance runs a so-called Task Manager (TM). A Task 
Manager receives one or more tasks from the Job 
Manager at a time, executes them and after that informs 
the Job Manager about their completion or possible 
errors. Unless a job is submitted to the Job Manager, we 
expect the set of instances (and hence the set of Task 
Managers) to be empty. Upon job reception the Job 
Manager then decides, depending on the job’s particular 
tasks, how many and what type of instances the job 
should be executed on and when the respective 
instances must be allocated/deallocated to ensure a 
continuous but cost-efficient processing. The newly 
allocated instances boot up with a previously compiled 
VM image. The image is configured to automatically 
start a Task Manager and register it with the Job 
Manager. Once all the necessary Task Managers 
have successfully contacted the Job Manager, it 
triggers the execution of the scheduled job. 
 Initially, the VM images used to boot up the Task 
Managers are blank and do not contain any of the 

data the Nephele job is supposed to operate on. As a 
result, we expect the cloud to offer persistent storage 
(like, e.g., Amazon S3 (Amazon Web Services)). This 
persistent storage is supposed to store the job’s input 
data and eventually receive its output data. It must be 
accessible for both the Job Manager as well as for 
the set of Task Managers, even if they are connected 
by a private or virtual network. 
 
On-line non-preemptive utility:  
Efficciency Scheduling: The on-line non-preemptive 
scheduling method which is used to maximize the 
efficiency gain. Since the execution of a task may gain 
positive profit or suffer penalty and thus degrade the 
overall computing performance, judicious decisions 
must be made with regard to executing a task, dropping 
or aborting a task and when to drop or abort a task. The 
rationale of our approach is very intuitive, i.e. a task 
can be accepted and executed only when it is 
statistically promising to bring positive gain and 
discarded or aborted otherwise. Before we introduce 
the details of our scheduling approach, we first 
introduce two useful concepts, the expected gain 
utility and the critical point. 
 
The expected gain utility and the critical point: Since 
the task execution time is not known deterministically, 
we do not know if executing the task will lead to 
positive gain or loss. To solve this problem, we can 
employ a metric, i.e., the expected gain utility, to help 
us make the decision. 
 Given a task T with arrival time of ati, let its 
predicted starting time be ti. Then the potential Gain 
Pi(ti) to execute T can be represented as the integration 
of the summation of gain over time ti and the difference 
of the starting time of the process and the arrival time 
of the process. 
 

( )( )
( )i i ic t at

i i i i i i
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 Therefore, the expected increased efficiency η(T) 

to execute Ti can be represented as: 
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 A task can be accepted or chosen for execution 
when η(T)>0, which means that the probability of to 
obtain positive gain is no smaller than that to incur a 
loss. We can further limit the task acceptance by 
imposing a threshold (δ) to the expected accrued utility, 
i.e. a task is accepted or can be chosen for execution if: 

iP (T)≥ µ  
 
We call µ as the Efficiency threshold: Furthermore, 
since the task execution time is not known a prior, we 
need to decide whether to continue or abort the 
execution of a task. The longer we execut the task, the 
closer we are to the completion point of the task. At the 
same time, however, the longer the task executes the 
higher penalty the system has to endure if the task 
cannot meet its deadline. To determine the appropriate 
time to abort a task, we employ another metric, i.e., the 
critical point. 
 Let task Ti starts its execution at t1, then the potential 
profit Ti >t (i.e., η(T)) can be represented as the integration 
of the maximum gain ad the the difference of the 
completion of the task. The Potential loss of a sunction can 
be calculated by theintegration of its completion time to 
the max time. Hence, the expected efficiency η is the 
difference believes the gain of a task and the loss of a task. 
 If we substitute η to be tequal to 0, we can see that 
the gains & loss are found to be equal in executing a task. 
As time increases, the η decrease and after a critical point 
at deadline more loss incurs then gain. 

 
Algorithm 1:  For non-preemptive scheduling: 
 Consider K accepted Task in Ready Queue and the 
Current Time t. 
Parameters 
1: Accepted Task in the Queue Level. Let { t1 , t2 , ..., 
tk}Ar be the Arrival Time AT [T= 1 to K] 
2: Let Currently Running Task may be at T=0. Show 
the task with T and the Thershold Value Th AT = A0. 
3: Conditions The Current Job is in Critical, Then Abort 
the execution of T0 
4:Otherwise New Task enrolled in the end process. 
5: Calculation of efficiency of task and reschedule the task 
based on the Utility value and load into the ready Queue. 
6: Start the Execution from T1. The utility value is less 
then the Thershold value then remove the process from 
ready queue else the current process and start its execution 

 

The scheduling algorithm: Our scheduling algorithm 
works at scheduling points that include: the arrival of a 
new task, the completion of the current task and the 
critical point of the current task. The detailed algorithm 
is described in algorithm 1. 

 In algorithm 1, when the time reaches the critical 
point of the current task, the current active task is 
immediately discarded and the task with the highest 
expected efficiency is selected to be executed. Upon the 
finish of the current task, the task with the highest 
expected efficiency is selected for execution. After the 
selection of the new task in both of the two cases, the 
expected efficiency for the rest of the tasks are re-
calculated. The tasks with the expected efficiency 
smaller than the threshold value are discarded. 
 
Algorithm 2:  Sort the ready queue based on the 
recalculated expected gain 
 
1:  Input: Let Tr={ t1 , t2 , ..., tk} be the accepted tasks 
in the ready queue, let tri , i = 1, ..., k represent their 
specific arrival times. Let current time be t and T0 be 
the task currently being executed.  
2:  Output: The list of tasks in the ready queue T’r={ 
T’1 , T’2 , ..., T’k} sorted based on their expected gain.  
3: Tstart = expected finishing time of T0 – t; 
4: for i=0 to k do 
5:   T’i = Tj where Tj∈  Tr is the task with the 
largest expected gain assuming it starts at Tstart ; 
6:  Remove Tj from Tr; 
7:  Tstart = Tstart + expected execution time of T’j; 
8:  Calculate the following task’s expected utility at 
time Tstart; 
9:  end for 
 
 When a new job comes, it is first inserted at the 
head of the ready queue, assuming its expected starting 
time would be the expected finishing time of the current 
active task. Based on this starting time, we then can 
compare its expected utility with the rest of the tasks in 
the queue. If its expected utility is less than that of the 
one following it, we re-insert this job to the queue 
according to its new expected utility. We calculate the 
new expected utility according to Algorithm 2, by 
estimating its new expected starting time as the sum of 
the expected executing time of the leading tasks’ in the 
ready queue. This procedure continues until the entire 
ready queue becomes a list ordered according to their 
expected utilities. We remove the ones with expected 
utility lower than the threshold. 
 
On-line preemptive scheduling: The Preemptive 
scheduling algorithm belongs to a new family of real-
time service oriented scheduling problems. As the 
complementarily of our previous non-preemptive 
algorithm (Liu et al., 2010), real time tasks are 
scheduled preemptively with the objective of 
maximizing the total utility time.  
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 The preemptive scheduling heuristics is to 
judiciously accept, schedule and cancel real-time 
services when necessary to maximize the efficiency. 
The new scheduling algorithm has much better 
performance than an earlier scheduling approach based 
on a similar model does.  

 
Algorithm 3:  On-line preemptive efficiency scheduling 
method: 
1:  Input: Let {T1, T2,..., Tk } be the accepted tasks in 
the ready queue and let ei be the expected execution 
time of Ti . Let current time be t and let T0 be the task 
currently being executed. Let the expected utility 
density threshold be µ. 
2: 
3:  if a new task, i.e., Tp arrives then 
4: Check if Tp should preempt the current task or not; 
5: if Preemption allowed then 
6: Tp preempts the current task and starts being 
executed; 
7: end if 
8: if Preemption not allowed then 

9: Accept Tp if p 0

0

U (e )
e

e
> µ ; 

10: Reject Tp if p 0 0

0 0

U (e ) e
;

e e

µ>  

11: end if 

12: Remove Tj in the ready queue if p 0

j

U (e )
;

e
> µ  

13: end if 
14:  
15: if At preemption check point then 
16: PREEMPTION CHECKING; 
17: end if 
18: 
19: if T0 is completed then  
20: Choose the highest expected utility density task ti to 
run. 

21: Remove Tj in the ready queue if j i

j

U (e )
;

e
> µ  

22: end if 
23: 
24: if t = the critical time of τ0 then  
25:   Abort τ0 immediately;  
26: Choose the highest expected utility density task τi 
to run. 

27: Remove τj in the ready queue if Uj(Ci)

Cj
 ≤ δ; 

28: end if 

 The details of our scheduling are described in 
algorithm 3. There are five main parts in the 
scheduling. They are the preemption checking, 
feasibility checking, task selecting, scheduling point 
checking and critical point checking. When new tasks 
are added in to ready queue, no matter whether there is 
preemption or not, the feasibility checking will work to 
check if the new ready queue is feasible or not. If any 
task cannot meet the requirement, it will be removed 
from the ready queue. Scheduling point checking makes 
sure all the left tasks in the expected accrued utility 
density task to run when the server is idle. The critical 
point checking will always monitor the current running 
task’s state to prevent the server wasting time on the 
non-profitable running task. The preemption checking 
works when there is a prosperous task wants to preempt 
the current task. The combination of these parts 
guarantees to judiciously schedule the tasks for 
achieving high accumulated total utilities. It is worthy 
to talk more about the preemption checking part in 
details, because improper aggressive preemption will 
worsen the scheduling performance. From Algorithm.4 
we can see that if a task can be finished successfully 
before its deadline even in its worst case, the scheduling 
will protect the current running task from being 
preempted by any other tasks. Otherwise, if a 
prosperous task has an expected accrued utility density 
which is larger than the current running task’s 
conditional expected utility density by at least a value 
equals to the pre-set preemption threshold, the 
preemption is permitted. 
 
Algorithm 4:  Verification of Preemptive method 
1:  Input: Let T0 be the task currently being executed 
and Tp be the task wants to preempt T0, current time be 
t, U(T0, t) be the conditional expected utility density of 
T0 at time t, eo is the remaining expected time of T0. 
Up(t) be the expected utility density of Tp; 
2:  if the expected density is greater, then 
3: Check what is T0’s worst case finish time; 
4: if T0 can be finished before its deadline even in the 
worst case then 
5: Preemption is not allowed; 
6: end if 
7: if T0’s worst case will miss as its deadline then 
8: Preemption allowed; 
9: end if 
10: end if 
 
 The feasibility check is one more part deserves 
detail description. In this part, scheduling simulates the 
real execution sequence for the left tasks in ready queue 
and check following this sequence, if all of them can 
satisfy the requirement or not. The thing needs to be 
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discussed is how to determine the sequence of the left 
tasks. From equation (1), (2) and (3), we can clearly see 
that the expected utility of running a task depends 
heavily on variable T, i.e., the time when the task can 
start. If we know the execution order and thus the 
expected starting time for tasks in the ready queue, we 
will be able to quantify the expected utility density of 
each task more accurately. In algorithm.5, we show our 
utility metric based on a speculated execution order of 
the tasks in the ready queue. 
 The general idea to generate the speculated 
execution order is as follows. We first calculate the 
expected utility density for each task in the ready queue 
based on the expected finishing time to the current 
running task. Then the task with the largest one is 
assumed to be the first task that will be executed after 
the current task is finished. Based on this assumption, 
we then calculate the expected utilities for the rest of 
the tasks in the ready queue and select the next task. 
This process continues until all tasks in the ready queue 
are put in order. When completed, we essentially 
generate a speculated execution order for the tasks in 
the ready queue and, at the same time, calculate the 
corresponding expected utility density for each task.  

 
Algorithm 5:  Verification of Preemptive method 
1:  Input: Let T = { t1, t2 , ..., tk} be the accepted tasks in 
the ready queue, let ri, ei represent the arrival time and 
expected execution time of ti. Let the current time be t.  
2:  Output: The new list T’ = {t’1, t’2,..., t’k} with the 
speculate execution order and their corresponding 
expected utility density ̂U(T ' j) for τ’j, 1≤ j ≤ k. 
3:  if a task T0 is being executed then 
4: T = r0 + e0; 
5:  else 
6: T=t; 
7: end if 
8: While T is not empty list do  
9:  for Each task e in T do the list 
10:   Calculate gain

 
based on Eq. 1-3; 

11: end for 
12:  Select tj with the highest priority; 
13:  Add tj to the end T’ the list; 
14: Excecution time = Excecution time(t)+excecuting 
time for task.  

15: Remove tj from list; 
16:  end  
 
 The investigations and the comparison of the 
performance of the algorithms have been studied and 
simulated under a variety of conditions. 

RESULTS  
 
To evaluate the performance of the algorithms, 
certain investigations were done using different 
experimental setup.  
 
Experiment set up: The test cases in our experiments 
were randomly generated. Specifically, B, W and D 
were randomly generated such that they are uniformly 
distributed within interval of [1, 10], [30, 50] and [40, 
50], respectively. The execution time of a task is 
assumed to be evenly distributed between interval of 

[B, W], i.e. f (t) =
1

W B−
. G, L were assumed to be 

linear functions, i.e., G (t) = -ag(t - D) in the range of [0, 
D] and L(t) = alt. The gradient for G (t) and L (t), i.e., ag 
and al were randomly picked from the interval of [4, 10] 
and [1, 5], respectively. Task release times’ intervals 
follow the exponential distribution with µ = 2. The 
utility threshold µ is set to 0. We conducted three 
different groups of experiments to study and compare 
the performance of different approaches under different 
conditions. The results are reported as follows. 
 

DISCUSSION 
 
 We first constructed 1000 task sets, each of which 
consists of 20 tasks. Figure 1-3 plot the accrued utility, 
accrued profit, as well as the accrued penalty for three 
different approaches: Non Pre-emptive, Preemptive and 
Nephele. For ease of presentation, we only show 50 sets 
of results in the figures. The horizontal axis is the index 
of the experiment sets.  
 The graph in Fig. 3 shows that the variation 
between the total utility and the experiment sets. From 
that we can know, how the values of total utility will 
increased to the corresponding values of experiment 
sets. And this graph shows that, preemptive results are 
having higher total utility than the Non preemptive and 
execution graph of the Nephele. 
 The graph in Fig. 4 shows that the variation 
between the total profit and the experiment sets. From 
that we can know, how the values of total profit will 
increased to the corresponding values of experiment 
sets. And this graph shows that, preemptive results are 
having higher profit than the Non preemptive and 
execution graph of the Nephele. 
 This graph in Fig. 5 shows that the variation 
between the total penalty and the experiment sets. From 
that we can know, how the values of total penalty will 
increased to the corresponding values of experiment 
sets. And this graph shows that, Non preemptive results 
are having higher profit than the preemptive and 
execution graph of the Nephele. 
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Fig. 3: Utility gain  
 

 
 
Fig. 4: Profit gain 
 

 
 
Fig. 5: Penalty cause 
 

CONCLUSION 
 
 The popularity of the Internet has grown 
enormously, which has presented a great opportunity 
for providing real-time services over the Internet. We 
have discussed the challenges and opportunities for 
efficient parallel data processing (Chaiken et al., 2008) 
in cloud environments and presented Nephele, the first 
data processing framework to exploit the dynamic 
resource provisioning offered by today’s IaaS clouds. 
We have described Nephele’s basic architecture and 
presented a performance comparison to the well-
established data processing framework Hadoop. The 
performance evaluation gives a first impression on how 
the ability to assign specific virtual machine types to 
specific tasks of a processing job, as well as the 

possibility to automatically allocate/deallocate virtual 
machines in the course of a job execution, can help to 
improve the overall resource utilization and, 
consequently, reduce the processing cost. The on-line 
real-time service system should be compatible with 
preemption in respect that it is necessary and befitting 
for nowadays’ service requests. Our experimental 
results clearly show that our proposed preemptive 
scheduling algorithm is effective in this regard. 
 In this study, we present a novel Turnaround time 
utility scheduling approach which focuses on both the 
high priority and the low priority takes that arrive for 
scheduling. This study can be viewed as the extended 
version of Nephele (Warneke and Kao, 2011). It is also 
a significant improvement compared to non-preemptive 
scheduling (Liu et al., 2010) in which, the preemptive 
approaches better than the non-preemptive counterpart. 
Our extensive experimental results clearly show that our 
proposed preemptive method can outperform the non-
preemptive approach. 
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