
Journal of Computer Science 8 (5): 780-788, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Venkatesa Kumar, V., Department of Computer Science and Engineering,
 Anna University of Technology Coimbatore, Coimbatore

780

A Dynamic Resource Allocation Method

for Parallel DataProcessing in Cloud Computing

1Venkatesa Kumar, V. and 2S. Palaniswami

1Department of Computer Science and Engineering,
Anna University of Technology Coimbatore, Coimbatore
Faculty of Information and Communication Engineering

2Department of Electrical Engineering,
 Government College of Technology, Coimbatore

Faculty of Electrical Engineering

Abstract: Problem statement: One of the Cloud Services, Infrastructure as a Service (IaaS) provides
a Compute resourses for demand in various applications like Parallel Data processing. The computer
resources offered in the cloud are extremely dynamic and probably heterogeneous. Nephele is the first
data processing framework to explicitly exploit the dynamic resource allocation offered by today’s
IaaS clouds for both, task scheduling and execution. Particular tasks of processing a job can be
assigned to different types of virtual machines which are automatically instantiated and terminated
during the job execution. However, the current algorithms does not consider the resource overload or
underutilization during the job execution. In this study, we have focussed on increasing the efficacy of
the scheduling algorithm for the real time Cloud Computing services. Approach: Our Algorithm
utilizes the Turnaround time Utility effieciently by differentiating it into a gain function and a loss
function for a single task. The algorithm also assigns high priority for task of early completion and less
priority for abortions/deadlines issues of real time tasks. Results: The algorithm has been implemented
on both preemptive and Non-premptive methods. The experimental results shows that it outperfoms
the existing utility based scheduling algorithms and also compare its performance with both
preemptive and Non-preemptive scheduling methods. Conculsion: Hence, a novel Turnaround time
utility scheduling approach which focuses on both high priority and the low priority tasks that arrives
for scheduling is proposed.

Key words: Cloud computing, task scheduling, resource utilization

INTRODUCTION

 Cloud computing has the potential to
dramatically change the landscape of the current IT
industry (Armbrust et al., 2009; Goldberg, 1989) For
companies that only have to process large amounts of
data occasionally running their own data center is
obviously not an option. Instead, Cloud computing has
emerged as a promising approach to rent a large IT
infrastructure on a short-term pay-per-usage basis.
Operators of so-called IaaS clouds, like Amazon EC2,
(AWSLLC, 2011a), let their customers allocate,
access and control a set of Virtual Machines (VMs)
which run inside their data centers and only charge
them for the period of time the machines are allocated.
The VMs are typically offered in different types, each

type with its own characteristics (number of CPU
cores, amount of main memory) and cost.
 Since the VM abstraction of IaaS clouds fits the
architectural paradigm assumed by the data processing
frameworks described above, projects like Hadoop
The Apache Software Foundation, 2011 (White,
2010), a popular open source implementation of
Google’s MapReduce framework, already have begun
to promote using their frameworks in the cloud
(White, 2010) Only recently, Amazon has integrated
Hadoop as one of its core infrastructure services
(AWSLLC, 2011b). However, instead of embracing its
dynamic resource allocation, current data processing
frameworks rather expect the cloud to imitate the static
nature of the cluster environments (Dornemann et al.,
2009) they were originally designed for, e.g., at the
moment the types and number of VMs allocated at the

J. Computer Sci., 8 (5): 780-788, 2012

781

beginning of a compute job cannot be changed in the
course of processing, although the tasks the job
consists of completely different demands on the
environment. As a result, rented resources may be
inadequate for big parts of the processing job, which
may lower the overall processing performance and
increase the cost.
 One of an IaaS cloud’s key feature is the
provisioning of compute resources on demand. The
computer resources available in the cloud are highly
dynamic and possibly heterogeneous. Nephele is the
first data processing framework to explicitly exploit the
dynamic resource allocation offered by today’s IaaS
clouds for both task scheduling and execution. Particular
tasks of a processing a job can be assigned to different
types of virtual machines which are automatically
instantiated and terminated during the job execution.
 Nephele is the first data processing framework to
explicitly exploit the dynamic resource allocation
offered by today’s IaaS clouds for both, task scheduling
and execution. Particular tasks of a processing job can
be assigned to different types of virtual machines
which are automatically instantiated and terminated
during the job execution.
 While there exist different interpretations and
views on cloud computing (Armbrust et al., 2009) it is
less disputable that being able to effectively exploit the
computing resources in the clouds to provide
computing service at different quality levels is essential
to the success of cloud computing. For real-time
applications and services, the timeliness is a major
criterion in judging the quality of service. Due to the
nature of real- time applications over the Internet, the
timeliness here refers to more than the deadline guarantee
as that for hard real-time systems. In this regard, an
important performance metric for cloud computing can
thus be the sum of certain value or utility that is accrued by
processing all real-time service requests.
 To improve the performance of cloud computing,
one approach is to employ the traditional Utility
Accrual (UA) approach first proposed to associate
each task with a Time Utility Function (TUF), which
indicates the task’s importance. Specifically, the TUF
describes the value or utility accrued by a system at
the time when a task is completed (Li et al., 2006).
Based on this model, there have been extensive
research results published on the topic of UA
scheduling. While Jensen’s definition of TUF allows
the semantics of soft time constraints to be more
precisely specified, all these variations of UA-aware
scheduling algorithms imply that utility is accrued only
when a task is successfully completed and the aborted
tasks neither increase nor decrease the accrued value
or utility of the system.

 We believe that, to improve the performance of
cloud computing, it is important to not only measure
the profit when completing a job in time, but also
account for the penalty when a job is aborted or
discarded. Note that, before a task is aborted or
discarded, it consumes system sources including
network bandwidth, storage space and processing
power and thus can directly or indirectly affect the
system performance. This is especially true for cloud
computing in considering the large possibility of
migration of a task within the clouds for reasons such as
the economy considerations (Casati and Shan, 2001). If
a job is deemed to miss its deadline with no positive
semantic gain, a better choice should be one that can
detect it and discard it as soon as possible.
 Recently, (Yu et al., 2010) proposed a task model
that considers both the profit and penalty that a system
may incur when executing a task. According to this
model, a task is associated with two different TUFs,
a profit TUF and a penalty TUF. The system takes a
profit (determined by its profit TUF) if the task
completes by its deadline and suffers a penalty
(determined by its penalty TUF), if it misses its
deadline or is dropped before its deadline. It is
tempting to use negative values for the penalties and
thus combine both TUFs into one single TUF.
However, a task can be completed or aborted and
hence can produce either a profit value or a penalty
value. Mathematically, if there exists such a single
function, it would imply that a single value in its
domain was mapped to two values in its range,
violating that it is a function. Therefore, one utility
function cannot accurately represent both the profit
and penalty information when executing a task. There
are also some other penalty related models proposed in
the literature. For example, studied the on-line
scheduling problem when penalties have to be paid for
rejected jobs. This model, however, does not account
for the penalty to drop the task before its deadline.
 However Nephele does not consider resource
overload or underutilization during the job execution
automatically. In this study, a novel Turnaround time
utility algorithm is proposed for scheduling the real-
time cloud computing services. The most unique
characteristics of this approach is that, different from
traditional utility accrual approach that works under one
single Time Utility Function (TUF), which have two
different functions called a Gain and a loss Functions-
associated with each task at the same time, to model the
real-time applications for cloud computing. To compare
the performance of cloud computing, the traditional
Utility approach is deployed in both Non-Preemptive
and Preemptive scheduling.

J. Computer Sci., 8 (5): 780-788, 2012

782

 This study includes further details on scheduling
strategies and extended experimental results. The study
is structured as follows: First it starts with describing
the basic concept of cloud and present the architecture
of the Nephele and outline how jobs can be described
and executed in the cloud. Followed by our scheduling
approach in explained in detail. Then we present the
experiment setup used for the evaluation and discuss
the results. Finally, we conclude the study.

MARERIALS AND METHODS

Cloud computing: The cloud is a metaphor for the
Internet and is an abstraction for the complex
infrastructure it conceals. Cloud computing is a model
for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications and services) that can be rapidly
provisioned and released with minimal management
effort or service provider interaction. It define in three
models Software as a Service (SaaS), Platform as a
Service (PaaS), Infrastructure as a Service (IaaS). Figure
1 shows the architecture of the cloud computing. Cloud
computing system scales applications by maximizing
concurrency and using computing resources more
efficiently One must optimize locking duration,
statelessness, sharing pooled resources such as task
threads network connections bus, cache reference data
and partition large databases for scaling services to a large
number of users. IT companies with innovative ideas for
new application services are no longer required to make
large capital outlays in the hardware and software
infrastructures. By using clouds as the application hosting
platform, IT companies are freed from the trivial task of
setting up basic hardware and software infrastructures.
Thus they can focus more on innovation and creation of
business values for their application services. Some of the
traditional and emerging Cloud- based application
services include social networking, web hosting, content
delivery and real time instrumented data processing.

Fig. 1: Cloud Computing Architecture

Each of these application types has different composition,
configuration and deployment requirements. Quantifying
the performance of provisioning (scheduling and
allocation) policies in a real Cloud computing
environment (AEC2, 2011), Microsoft Azure, 2011
Google App Engine (2011) for different application
models.
 Cloud computing also describes applications that
are extended to be accessible through the Internet.
These cloud applications use large data centers and
powerful servers that host Web applications and Web
services. Anyone with a suitable Internet connection and
a standard browser can access a cloud application.

Task scheduling and load-balancing technique: A
task is a (sequential) activity that uses a set of inputs to
produce a set of outputs. Processes in fixed set are
statically assigned to processors, either at compile-time
or at start-up (i.e., partitioning) avoids overhead of load
balancing using these load-balancing algorithms. The
Grid computing algorithms can be broadly categorized
as centralized or decentralized, dynamic or static or the
hybrid policies in latest trend. A centralized load
balancing approach can support larger system. Hadoop
system takes the centralized scheduler architecture.
In static load balancing, all information is known in
advance and tasks are allocated according to the prior
knowledge and will not be affected by the state of the
system. Dynamic load-balancing mechanism has to
allocate tasks to the processors dynamically as they arrive.
Redistribution of tasks has to take place when some
processors become overloaded (Zaharia et al., 2009).
 In cloud computing, each applications of users will
run on a virtual operating systems, the cloud systems
distributed resources among these virtual systems. Every
application is completely different and is independent
and has no link between each other whatsoever, For
example, some require more CPU time to compute
complex task and some others may need more memory to
store data. Resources are sacrificed on activities performed
on each individual unit of service.

Fig. 2: Nephele’s Architecture

J. Computer Sci., 8 (5): 780-788, 2012

783

 In order to measure direct costs of applications,
every individual use of resources (like CPU cost,
memory cost, I/O cost) must be measured. When the
direct data of each individual resources cost has been
measured, more accurate cost and profit analysis.

Overview of Nephele architecture: Nephele is a new
data processing framework (Warneke and Kao, 2009;
Ravindran et al., 2005) for cloud environment that takes
up many ideas of previous processing frameworks but
refines them to better match the dynamic and opaque
nature of a cloud.
 Nephele’s architecture follows a classic master-
worker pattern as illustrated in Fig. 2 .
 Before submitting a Nephele compute job, a user
must start a VM in the cloud which runs the so called
Job Manager (JM). The Job Manager which receives
the client’s jobs, is responsible for scheduling them
and coordinates their execution. It is capable of
communicating with the interface the cloud operator
provides to control the instantiation of VMs. We call
this interface the Cloud Controller. By means of the
Cloud Controller the Job Manager can allocate or
deallocate VMs according to the current job execution
phase. We will comply with common Cloud
computing terminology and refer to these VMs as
instances for the remainder of this study. The term
instance type will be used to differentiate between VMs
with different hardware characteristics. For example,
the instance type “m1.small” could denote VMs with one
CPU core, one GB of RAM and a 128 GB disk while the
instance type “c1.xlarge” could refer to machines with 8
CPU cores, 18 GB RAM and a 512 GB disk.
 The actual execution of tasks which a Nephele job
consists of is carried out by a set of instances. Each
instance runs a so-called Task Manager (TM). A Task
Manager receives one or more tasks from the Job
Manager at a time, executes them and after that informs
the Job Manager about their completion or possible
errors. Unless a job is submitted to the Job Manager, we
expect the set of instances (and hence the set of Task
Managers) to be empty. Upon job reception the Job
Manager then decides, depending on the job’s particular
tasks, how many and what type of instances the job
should be executed on and when the respective
instances must be allocated/deallocated to ensure a
continuous but cost-efficient processing. The newly
allocated instances boot up with a previously compiled
VM image. The image is configured to automatically
start a Task Manager and register it with the Job
Manager. Once all the necessary Task Managers
have successfully contacted the Job Manager, it
triggers the execution of the scheduled job.
 Initially, the VM images used to boot up the Task
Managers are blank and do not contain any of the

data the Nephele job is supposed to operate on. As a
result, we expect the cloud to offer persistent storage
(like, e.g., Amazon S3 (Amazon Web Services)). This
persistent storage is supposed to store the job’s input
data and eventually receive its output data. It must be
accessible for both the Job Manager as well as for
the set of Task Managers, even if they are connected
by a private or virtual network.

On-line non-preemptive utility:
Efficciency Scheduling: The on-line non-preemptive
scheduling method which is used to maximize the
efficiency gain. Since the execution of a task may gain
positive profit or suffer penalty and thus degrade the
overall computing performance, judicious decisions
must be made with regard to executing a task, dropping
or aborting a task and when to drop or abort a task. The
rationale of our approach is very intuitive, i.e. a task
can be accepted and executed only when it is
statistically promising to bring positive gain and
discarded or aborted otherwise. Before we introduce
the details of our scheduling approach, we first
introduce two useful concepts, the expected gain
utility and the critical point.

The expected gain utility and the critical point: Since
the task execution time is not known deterministically,
we do not know if executing the task will lead to
positive gain or loss. To solve this problem, we can
employ a metric, i.e., the expected gain utility, to help
us make the decision.
 Given a task T with arrival time of ati, let its
predicted starting time be ti. Then the potential Gain
Pi(ti) to execute T can be represented as the integration
of the summation of gain over time ti and the difference
of the starting time of the process and the arrival time
of the process.

()()
()i i ic t at

i i i i i i

max

P (t) P t t at f (t)dt
− −

= + −∫

 Similarly, the potential loss ()()TLi to execute Ti
can be represented as:

()i i i

max

i

c t at

Li(T) L i(D) f (t)dt
− −

= ∫

 Therefore, the expected increased efficiency η(T)

to execute Ti can be represented as:

i i i(T) P (t) -Li(t)η =

J. Computer Sci., 8 (5): 780-788, 2012

784

 A task can be accepted or chosen for execution
when η(T)>0, which means that the probability of to
obtain positive gain is no smaller than that to incur a
loss. We can further limit the task acceptance by
imposing a threshold (δ) to the expected accrued utility,
i.e. a task is accepted or can be chosen for execution if:

iP (T)≥ µ

We call µ as the Efficiency threshold: Furthermore,
since the task execution time is not known a prior, we
need to decide whether to continue or abort the
execution of a task. The longer we execut the task, the
closer we are to the completion point of the task. At the
same time, however, the longer the task executes the
higher penalty the system has to endure if the task
cannot meet its deadline. To determine the appropriate
time to abort a task, we employ another metric, i.e., the
critical point.
 Let task Ti starts its execution at t1, then the potential
profit Ti >t (i.e., η(T)) can be represented as the integration
of the maximum gain ad the the difference of the
completion of the task. The Potential loss of a sunction can
be calculated by theintegration of its completion time to
the max time. Hence, the expected efficiency η is the
difference believes the gain of a task and the loss of a task.
 If we substitute η to be tequal to 0, we can see that
the gains & loss are found to be equal in executing a task.
As time increases, the η decrease and after a critical point
at deadline more loss incurs then gain.

Algorithm 1: For non-preemptive scheduling:
 Consider K accepted Task in Ready Queue and the
Current Time t.
Parameters
1: Accepted Task in the Queue Level. Let { t1 , t2 , ...,
tk}Ar be the Arrival Time AT [T= 1 to K]
2: Let Currently Running Task may be at T=0. Show
the task with T and the Thershold Value Th AT = A0.
3: Conditions The Current Job is in Critical, Then Abort
the execution of T0
4:Otherwise New Task enrolled in the end process.
5: Calculation of efficiency of task and reschedule the task
based on the Utility value and load into the ready Queue.
6: Start the Execution from T1. The utility value is less
then the Thershold value then remove the process from
ready queue else the current process and start its execution

The scheduling algorithm: Our scheduling algorithm
works at scheduling points that include: the arrival of a
new task, the completion of the current task and the
critical point of the current task. The detailed algorithm
is described in algorithm 1.

 In algorithm 1, when the time reaches the critical
point of the current task, the current active task is
immediately discarded and the task with the highest
expected efficiency is selected to be executed. Upon the
finish of the current task, the task with the highest
expected efficiency is selected for execution. After the
selection of the new task in both of the two cases, the
expected efficiency for the rest of the tasks are re-
calculated. The tasks with the expected efficiency
smaller than the threshold value are discarded.

Algorithm 2: Sort the ready queue based on the
recalculated expected gain

1: Input: Let Tr={ t1 , t2 , ..., tk} be the accepted tasks
in the ready queue, let tri , i = 1, ..., k represent their
specific arrival times. Let current time be t and T0 be
the task currently being executed.
2: Output: The list of tasks in the ready queue T’r={
T’1 , T’2 , ..., T’k} sorted based on their expected gain.
3: Tstart = expected finishing time of T0 – t;
4: for i=0 to k do
5: T’i = Tj where Tj∈ Tr is the task with the
largest expected gain assuming it starts at Tstart ;
6: Remove Tj from Tr;
7: Tstart = Tstart + expected execution time of T’j;
8: Calculate the following task’s expected utility at
time Tstart;
9: end for

 When a new job comes, it is first inserted at the
head of the ready queue, assuming its expected starting
time would be the expected finishing time of the current
active task. Based on this starting time, we then can
compare its expected utility with the rest of the tasks in
the queue. If its expected utility is less than that of the
one following it, we re-insert this job to the queue
according to its new expected utility. We calculate the
new expected utility according to Algorithm 2, by
estimating its new expected starting time as the sum of
the expected executing time of the leading tasks’ in the
ready queue. This procedure continues until the entire
ready queue becomes a list ordered according to their
expected utilities. We remove the ones with expected
utility lower than the threshold.

On-line preemptive scheduling: The Preemptive
scheduling algorithm belongs to a new family of real-
time service oriented scheduling problems. As the
complementarily of our previous non-preemptive
algorithm (Liu et al., 2010), real time tasks are
scheduled preemptively with the objective of
maximizing the total utility time.

J. Computer Sci., 8 (5): 780-788, 2012

785

 The preemptive scheduling heuristics is to
judiciously accept, schedule and cancel real-time
services when necessary to maximize the efficiency.
The new scheduling algorithm has much better
performance than an earlier scheduling approach based
on a similar model does.

Algorithm 3: On-line preemptive efficiency scheduling
method:
1: Input: Let {T1, T2,..., Tk } be the accepted tasks in
the ready queue and let ei be the expected execution
time of Ti . Let current time be t and let T0 be the task
currently being executed. Let the expected utility
density threshold be µ.
2:
3: if a new task, i.e., Tp arrives then
4: Check if Tp should preempt the current task or not;
5: if Preemption allowed then
6: Tp preempts the current task and starts being
executed;
7: end if
8: if Preemption not allowed then

9: Accept Tp if p 0

0

U (e)
e

e
> µ ;

10: Reject Tp if p 0 0

0 0

U (e) e
;

e e

µ>

11: end if

12: Remove Tj in the ready queue if p 0

j

U (e)
;

e
> µ

13: end if
14:
15: if At preemption check point then
16: PREEMPTION CHECKING;
17: end if
18:
19: if T0 is completed then
20: Choose the highest expected utility density task ti to
run.

21: Remove Tj in the ready queue if j i

j

U (e)
;

e
> µ

22: end if
23:
24: if t = the critical time of τ0 then
25: Abort τ0 immediately;
26: Choose the highest expected utility density task τi
to run.

27: Remove τj in the ready queue if Uj(Ci)

Cj
 ≤ δ;

28: end if

 The details of our scheduling are described in
algorithm 3. There are five main parts in the
scheduling. They are the preemption checking,
feasibility checking, task selecting, scheduling point
checking and critical point checking. When new tasks
are added in to ready queue, no matter whether there is
preemption or not, the feasibility checking will work to
check if the new ready queue is feasible or not. If any
task cannot meet the requirement, it will be removed
from the ready queue. Scheduling point checking makes
sure all the left tasks in the expected accrued utility
density task to run when the server is idle. The critical
point checking will always monitor the current running
task’s state to prevent the server wasting time on the
non-profitable running task. The preemption checking
works when there is a prosperous task wants to preempt
the current task. The combination of these parts
guarantees to judiciously schedule the tasks for
achieving high accumulated total utilities. It is worthy
to talk more about the preemption checking part in
details, because improper aggressive preemption will
worsen the scheduling performance. From Algorithm.4
we can see that if a task can be finished successfully
before its deadline even in its worst case, the scheduling
will protect the current running task from being
preempted by any other tasks. Otherwise, if a
prosperous task has an expected accrued utility density
which is larger than the current running task’s
conditional expected utility density by at least a value
equals to the pre-set preemption threshold, the
preemption is permitted.

Algorithm 4: Verification of Preemptive method
1: Input: Let T0 be the task currently being executed
and Tp be the task wants to preempt T0, current time be
t, U(T0, t) be the conditional expected utility density of
T0 at time t, eo is the remaining expected time of T0.
Up(t) be the expected utility density of Tp;
2: if the expected density is greater, then
3: Check what is T0’s worst case finish time;
4: if T0 can be finished before its deadline even in the
worst case then
5: Preemption is not allowed;
6: end if
7: if T0’s worst case will miss as its deadline then
8: Preemption allowed;
9: end if
10: end if

 The feasibility check is one more part deserves
detail description. In this part, scheduling simulates the
real execution sequence for the left tasks in ready queue
and check following this sequence, if all of them can
satisfy the requirement or not. The thing needs to be

J. Computer Sci., 8 (5): 780-788, 2012

786

discussed is how to determine the sequence of the left
tasks. From equation (1), (2) and (3), we can clearly see
that the expected utility of running a task depends
heavily on variable T, i.e., the time when the task can
start. If we know the execution order and thus the
expected starting time for tasks in the ready queue, we
will be able to quantify the expected utility density of
each task more accurately. In algorithm.5, we show our
utility metric based on a speculated execution order of
the tasks in the ready queue.
 The general idea to generate the speculated
execution order is as follows. We first calculate the
expected utility density for each task in the ready queue
based on the expected finishing time to the current
running task. Then the task with the largest one is
assumed to be the first task that will be executed after
the current task is finished. Based on this assumption,
we then calculate the expected utilities for the rest of
the tasks in the ready queue and select the next task.
This process continues until all tasks in the ready queue
are put in order. When completed, we essentially
generate a speculated execution order for the tasks in
the ready queue and, at the same time, calculate the
corresponding expected utility density for each task.

Algorithm 5: Verification of Preemptive method
1: Input: Let T = { t1, t2 , ..., tk} be the accepted tasks in
the ready queue, let ri, ei represent the arrival time and
expected execution time of ti. Let the current time be t.
2: Output: The new list T’ = {t’1, t’2,..., t’k} with the
speculate execution order and their corresponding
expected utility density ̂U(T ' j) for τ’j, 1≤ j ≤ k.
3: if a task T0 is being executed then
4: T = r0 + e0;
5: else
6: T=t;
7: end if
8: While T is not empty list do
9: for Each task e in T do the list
10: Calculate gain

based on Eq. 1-3;

11: end for
12: Select tj with the highest priority;
13: Add tj to the end T’ the list;
14: Excecution time = Excecution time(t)+excecuting
time for task.

15: Remove tj from list;
16: end

 The investigations and the comparison of the
performance of the algorithms have been studied and
simulated under a variety of conditions.

RESULTS

To evaluate the performance of the algorithms,
certain investigations were done using different
experimental setup.

Experiment set up: The test cases in our experiments
were randomly generated. Specifically, B, W and D
were randomly generated such that they are uniformly
distributed within interval of [1, 10], [30, 50] and [40,
50], respectively. The execution time of a task is
assumed to be evenly distributed between interval of

[B, W], i.e. f (t) =
1

W B−
. G, L were assumed to be

linear functions, i.e., G (t) = -ag(t - D) in the range of [0,
D] and L(t) = alt. The gradient for G (t) and L (t), i.e., ag
and al were randomly picked from the interval of [4, 10]
and [1, 5], respectively. Task release times’ intervals
follow the exponential distribution with µ = 2. The
utility threshold µ is set to 0. We conducted three
different groups of experiments to study and compare
the performance of different approaches under different
conditions. The results are reported as follows.

DISCUSSION

 We first constructed 1000 task sets, each of which
consists of 20 tasks. Figure 1-3 plot the accrued utility,
accrued profit, as well as the accrued penalty for three
different approaches: Non Pre-emptive, Preemptive and
Nephele. For ease of presentation, we only show 50 sets
of results in the figures. The horizontal axis is the index
of the experiment sets.
 The graph in Fig. 3 shows that the variation
between the total utility and the experiment sets. From
that we can know, how the values of total utility will
increased to the corresponding values of experiment
sets. And this graph shows that, preemptive results are
having higher total utility than the Non preemptive and
execution graph of the Nephele.
 The graph in Fig. 4 shows that the variation
between the total profit and the experiment sets. From
that we can know, how the values of total profit will
increased to the corresponding values of experiment
sets. And this graph shows that, preemptive results are
having higher profit than the Non preemptive and
execution graph of the Nephele.
 This graph in Fig. 5 shows that the variation
between the total penalty and the experiment sets. From
that we can know, how the values of total penalty will
increased to the corresponding values of experiment
sets. And this graph shows that, Non preemptive results
are having higher profit than the preemptive and
execution graph of the Nephele.

J. Computer Sci., 8 (5): 780-788, 2012

787

Fig. 3: Utility gain

Fig. 4: Profit gain

Fig. 5: Penalty cause

CONCLUSION

 The popularity of the Internet has grown
enormously, which has presented a great opportunity
for providing real-time services over the Internet. We
have discussed the challenges and opportunities for
efficient parallel data processing (Chaiken et al., 2008)
in cloud environments and presented Nephele, the first
data processing framework to exploit the dynamic
resource provisioning offered by today’s IaaS clouds.
We have described Nephele’s basic architecture and
presented a performance comparison to the well-
established data processing framework Hadoop. The
performance evaluation gives a first impression on how
the ability to assign specific virtual machine types to
specific tasks of a processing job, as well as the

possibility to automatically allocate/deallocate virtual
machines in the course of a job execution, can help to
improve the overall resource utilization and,
consequently, reduce the processing cost. The on-line
real-time service system should be compatible with
preemption in respect that it is necessary and befitting
for nowadays’ service requests. Our experimental
results clearly show that our proposed preemptive
scheduling algorithm is effective in this regard.
 In this study, we present a novel Turnaround time
utility scheduling approach which focuses on both the
high priority and the low priority takes that arrive for
scheduling. This study can be viewed as the extended
version of Nephele (Warneke and Kao, 2011). It is also
a significant improvement compared to non-preemptive
scheduling (Liu et al., 2010) in which, the preemptive
approaches better than the non-preemptive counterpart.
Our extensive experimental results clearly show that our
proposed preemptive method can outperform the non-
preemptive approach.

REFERENCES

AEC2, 2011. Amazon Elastic Compute Cloud.

Amazon EC2.
Armbrust, M., A. Fox, R. Griffith, A.D. Joseph and R.

Katz et al., 2009. Above the clouds: A berkeley
view of cloud computing. Miscellaneous.

AWSLLC 2011a. Amazon elastic MapReduce.
Amazon Web Services LLC.

AWSLLC, 2011b. Amazon simple storage service.
Amazon Web Services LLC.

Casati, F and Shan, M., 2001. Definition, Execution,
Analysis and Optimization of Composite E-
Services. IEEE Data Eng. Bull.

Chaiken, R., B. Jenkins, P. Larson, B. Ramsey and D.
Shakib et al., 2008. SCOPE: Easy and efficient
parallel processing of massive data sets. Proc.
VLDB Endowment, 1: 1265-1276. DOI:
10.1145/1454159.1454166

Dornemann, T., E. Juhnke and B. Freisleben, 2009.
On-demand resource provisioning for BPEL
workflows using amazon's elastic compute cloud.
Proceedings of the 9th IEEE/ACM International
Symposium Cluster Computing and the Grid, May
18-21, IEEE Xplore Press, Shanghai, pp: 140-147.
DOI: 10.1109/CCGRID.2009.30

Goldberg, D.E., 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. 1st Edn.,
Addison-Wesley, Reading, MA., ISBN:
0201157675, pp: 412.

J. Computer Sci., 8 (5): 780-788, 2012

788

Li, P, H. Wu, B. Ravindran and E. D. Jensen, April
2006. A utility accrual scheduling algorithm for
real-time activities with mutual exclusion resource
constraints. IEEE Trans. Comput., 55: 454-469.
DOI: 10.1109/TC.2006.47

Liu, S., G. Quan and S. Ren, 2010. On-line scheduling
of real-time services for cloud computing.
Proceedings of the 6th World Congress on Services,
Jul. 5-10, IEEE Xplore Press, Miami, FL., pp: 459-
464. DOI: 10.1109/SERVICES.2010.109

Ravindran, B., E.D. Jensen and P. Li, 2005. On recent
advances in time/utility function real-time
scheduling and resource management. Proceedings
of the 8th IEEE International Symposium on
Object-Oriented Real-Time Distributed
Computing, May 18-20, IEEE Xplore Press, USA.,
pp: 55-60. DOI: 10.1109/ISORC.2005.39

Warneke, D and O. Kao, 2009. Nephele: Efficient
parallel data processing in the cloud. Proceedings
of the 2nd Workshop Many-Task Computing on
Grids and Supercomputers, Nov. 14-20, ACM,
Portland, OR, USA., pp: 1-10. ISBN: 978-1-60558-
714-1 DOI: 10.1145/1646468.1646476

Warneke, D and O. Kao, 2011. Exploiting Dynamic
resource allocation for efficient parallel data
processing in the cloud. IEEE Trans. Parallel
Distributed Syst., 22: 985-997. DOI:
10.1109/TPDS.2011.65

White, T., 2010. Hadoop: The Definitive Guide. 2nd
Edn., O’Reilly Media, Beijing, ISBN: 1449389732,
pp: 600.

Yu, Y., S. Ren, N. Chen and X. Wang, 2010. Profit and
penalty aware (PP-aware) scheduling for tasks with
variable task execution time. Proceedings of the
2010 ACM Symposium on Applied Computing,
Mar. 22-26, ACM, Sierre, Switzerland, pp: 334-
339. DOI: 10.1145/1774088.1774159

Zaharia, M., D. Borthakur, J.S. Sarma, K. Elmeleegy
and S. Shenker et al., 2009. Job scheduling for
multi-user mapreduce clusters. EECS Department,
University of California, Berkeley.

