Journal of Computer Science 8 (5): 780-788, 2012
ISSN 1549-3636
© 2012 Science Publications

A Dynamic Resource Allocation Method
for Parallel DataProcessing in Cloud Computing

Yenkatesa Kumar, V. arf®. Palaniswami
'Department of Computer Science and Engineering,
Anna University of Technology Coimbatore, Coimbator
Faculty of Information and Communication Enginegrin
“Department of Electrical Engineering,
Government College of Technology, Coimbatore
Faculty of Electrical Engineering

Abstract: Problem statement: One of the Cloud Services, Infrastructure as @i&ei(laaS) provides

a Compute resourses for demand in various applitatike Parallel Data processing. The computer
resources offered in the cloud are extremely dynand probably heterogeneous. Nephele is the first
data processing framework to explicitly exploit thgnamic resource allocation offered by today’s
laaS clouds for both, task scheduling and executiarticular tasks of processing a job can be
assigned to different types of virtual machinesalihare automatically instantiated and terminated
during the job execution. However, the current athms does not consider the resource overload or
underutilization during the job execution. In tetsidy, we have focussed on increasing the efficdicy
the scheduling algorithm for the real time Cloudn@ating servicesApproach: Our Algorithm
utilizes the Turnaround time Utility effiecientlyykdifferentiating it into a gain function and a $os
function for a single task. The algorithm also gssihigh priority for task of early completion adeds
priority for abortions/deadlines issues of realditasksResults: The algorithm has been implemented
on both preemptive and Non-premptive methods. ™me@mental results shows that it outperfoms
the existing utility based scheduling algorithmsdaalso compare its performance with both
preemptive and Non-preemptive scheduling meth@dmculsion: Hence, a novel Turnaround time
utility scheduling approach which focuses on batthtpriority and the low priority tasks that arréve
for scheduling is proposed.

Key words: Cloud computing, task scheduling, resource utiliza

INTRODUCTION type with its own characteristics (hnumber of CPU
cores, amount of main memory) and cost.
Since the VM abstraction of laaS clouds fits the
1farchitectural paradigm assumed by the data prowessi
rameworks described above, projects like Hadoop
he Apache Software Foundation, 2011 (White,
010), a popular open source implementation of
SGoogle’s MapReduce framework, already have begun
promote using their frameworks in the cloud

Cloud computing has the potential to
dramatically change the landscape of the current |
industry (Armbrustet al., 2009; Goldberg, 1989) For
companies that only have to process large amounts
data occasionally running their own data center i
obviously not an option. Instead, Cloud computirg h

_emerged as a promising approach to rent a large .I White, 2010) Only recently, Amazon has integrated
infrastructure on a short-term pay-per-usage basiqyaqoop as one of its core infrastructure services
Operators of so-called laaS c!ouds, like Amazon 'ECZ(AWSLLC, 2011b). However, instead of embracing its
(AWSLLC, 201la), let their customers allocate, dynamic resource allocation, current data procgssin
access and control a set of Virtual Machines (VMs)frameworks rather expect the cloud to imitate tiagic
which run inside their data centers and only charggature of the cluster environments (Dornemanal.,
them for the period of time the machines are atleda 2009) they were originally designed for, e.g., la t
The VMs are typically offered in different typessohh moment the types and number of VMs allocated at the

Corresponding Author: Venkatesa Kumar, V., Department of Computer Saera Engineering,
Anna University of Technology Coimbatore, Coimbrato
780

J. Computer <ci., 8 (5): 780-788, 2012

beginning of a compute job cannot be changed inthe We believe that, to improve the performance of
course of processing, although the tasks the jokloud computing, it is important to not only measur
consists of completely different demands on thethe profit when completing a job in time, but also
environment. As a result, rented resources may baccount for the penalty when a job is aborted or
inadequate for big parts of the processing job,ctvhi discarded. Note that, before a task is aborted or
may lower the overall processing performance andiiscarded, it consumes system sources including
increase the cost. network bandwidth, storage space and processing
One of an laaS cloud’s key feature is thepower and thus can directly or indirectly affece th
provisioning of compute resources on demand. Thgystem performance. This is especially true foudlo
computer resources available in the cloud are y_nghlcomputing in considering the large possibility of
dynamic and possibly heterogeneous. Nephele is thgigration of a task within the clouds for reasonshsas
first data processing framework to explicitly explthe the economy considerations (Casati and Shan, 2001).
dynamic resource allocation offered by today's laaS; job is deemed to miss its deadline with no pasiti
clouds for both task scheduling and execution.i®8&lf semantic gain, a better choice should be one that c
tasks of a processing a job can be assigned tereliff getect it and discard it as soon as possible.
types of virtual machines which are automatically Recently, (Yuet al., 2010) proposed a task model

instantiated and terminated during the job exeoutio : ;
Nephele is the first data processing framework tc;[hat considers both the profit and penalty thaystesn

explicitly exploit the dynamic resource allocation may- incur whe_n executing a Fask. Accprdmg to this
offered by today’s IaaS clouds for both, task sciied model,_ a task is associated with two different TUFs
and execution. Particular tasks of a processingcaob @ Profit TUF and a penalty TUF. The system takes a
be assigned to different types of virtual machinegprofit (determined by its profit TUF) if the task
which are automatically instantiated and terminateccompletes by its deadline and suffers a penalty
during the job execution. (determined by its penalty TUF), if it misses its
While there exist different interpretations anddeadline or is dropped before its deadline. It is
views on cloud computing (Armbrust al., 2009) it is tempting to use negative values for the penalines a
less disputable that being able to effectively etghe thus combine both TUFs into one single TUF.
computing resources in the clouds to provideHowever, a task can be completed or aborted and
computing service at different quality levels iseistiall hence can produce either a profit value or a pgnalt
to the success of cloud computing. For real-timeygye. Mathematically, if there exists such a sngl
applications and services, the timeliness is & majofnction, it would imply that a single value in its
criterion in judging the quality of service. Due e jomain was mapped to two values in its range,
nature of real- time applications over the I_ntemlate violating that it is a function. Therefore, one lityi
timeliness here refers to more than the deadliaeagtee function cannot accurately represent both the profi

as that for hard real-time systems. In this regam, and penalty information when executing a task. &her

important performance metric for cloud computingn ca !
: o . are also some other penalty related models propased
thus be the sum of certain value or utility thadsrued by . .)
the literature. For example, studied the on-line

processing all real-time service requests. hedull bl h lties h b id f
To improve the performance of cloud computing,SC eduling problem when penalties have to be pau

one approach is to employ the traditional Utility "6/6Cted jobs. This model, however, does not adcoun
Accrual (UA) approach first proposed to associate©f the penalty to drop the task before its deadlin
each task with a Time Utility Function (TUF), which However Nephele does not consider resource
indicates the task’s importance. Specifically, THeF overload or underutilization during the job exeonti

describes the value or utility accrued by a sys&m automatically. In this study, a novel Turnarounddi
the time when a task is completed gial., 20086). utility algorithm is proposed for scheduling thealre

Based hi del. th h b . time cloud computing services. The most unique
ased on this model, there have been exiensiVe,, qcteristics of this approach is that, differrom

research results published on the topic of UAgqgitional utility accrual approach that works endne
scheduling. While Jensen’s definition of TUF allows single Time Utility Function (TUF), which have two
the semantics of soft time constraints to be morgjifferent functions called a Gain and a loss Flomt
precisely specified, all these variations of UA-ava associated with each task at the same time, to Intioele
scheduling algorithms imply that utility is accruedly real-time applications for cloud computing. To care
when a task is successfully completed and the edbort the performance of cloud computing, the traditional
tasks neither increase nor decrease the accrued valUtility approach is deployed in both Non-Preemptive
or utility of the system. and Preemptive scheduling.

781

J. Computer <ci., 8 (5): 780-788, 2012

This study includes further details on schedulingEach of these application types has different caitipa,
strategies and extended experimental results. fily s configuration and deployment requirements. Quantfy
is structured as follows: First it starts with désing the performance of provisioning (scheduling and
the basic concept of cloud and present the ar¢hiec allocation) policies in a real Cloud computing
of the Nephele and outline how jobs can be desdribeénvironment (AEC2, 2011), Microsoft Azure, 2011
and executed in the cloud. Followed by our scheguli Google App Engine (2011) for different application
approach in explained in detail. Then we preseat thmodels.

experiment setup used for the evaluation and discus _ Cloud computing also describes applications that
the results. Finally, we conclude the study are extended to be accessible through the Internet.

These cloud applications use large data centers and
powerful servers that host Web applications and Web
MARERIALS AND METHODS services. Anyone with a suitable Internet connectiad

. . a standard browser can access a cloud application.
Cloud computing: The cloud is a metaphor for the PP

Internet and is an abstraction for the complexTask scheduling and load-balancing techniqueA
infrastructure it conceals. Cloud computing is adeio task is a (sequential) activity that uses a sebjits to
for enabling ubiquitous, convenient, on-demandProduce a set of outputs. Processes in fixed set ar
network access to a shared pool of configurabltatically assigned to processors, either at cantprie
computing resources (e.g., networks, servers, géora or at start-up (i.e., partitioning) avoids overhedidoad

aoplications and services) that can be rapidl balancing using these load-balancing algorithmse Th
PPIICE) PIAYGrid computing algorithms can be broadly categorize

: - .) e Nhs centralized or decentralized, dynamic or sw@tithe
effort or service provider interaction. It define three hybrid policies in latest trend. A centralized load
models Software as a Service (SaaS), Platform as ighlancing approach can support larger system. Hedoo
Service (PaaS), Infrastructure as a Service (ld@8lre system takes the centralized scheduler architecture
1 shows the architecture of the cloud computingu@l In static load balancing, all information is knovm
computing system scales applications by maximizingadvance and tasks are allocated according to ioe pr
concurrency and using computing resources moré&nowledge and will not be affected by the statehef
efficienty One must optimize locking duration, System. Dynamic load-balancing mechanism has to
statelessness, sharing pooled resources such las t@4ocate tasks to the processors dynamically gsatreve.

threads network connections bus, cache referente daﬁedistribution of tasks has to take place when some

and partition large databases for scaling sert@adarge processors become overloaded (Zalet@h, 2009).

ber of T . th i Ve idioa. In cloud computing, each applications of userd wil
nhumber of users. IT companies with innovative Ide&s 4 oy a virtual operating systems, the cloud syste

new application services are no longer requirethade gjstributed resources among these virtual systEvery
large capital outlays in the hardware and softwareypplication is completely different and is indepentd
infrastructures. By using clouds as the applicatiosting and has no link between each other whatsoever, For
platform, IT companies are freed from the trivadk of example, some require more CPU time to compute
setting up basic hardware and software infrastrastu complex task and some others may need more memory t
Thus they can focus more on innovation and creatfon Store data. Resources are sacrificed on actipiégiermed
business values for their application services.&ohthe ~ On each individual unit of service.

traditional and emerging Cloud- based application

services include social networking, web hostingitent Client
delivery and real time instrumented data processing Public network (Internet)
Cloud
Job manager
Private virtualized network &
] - d Storage chuste i T T |
Clowd client “!) l'|:.9\.\,,. = (f Task 4 Task 4 Task ,”(Task %‘
]D] l"[‘ ml“.;.gm,m,lh},,.;,,, ‘_ S fast \ manage | (manage) (manage I manage ;
= ey = [Efompuing N N N \h_, =
Clowd ¢hient %m‘., age cluster i I
Fig. 1: Cloud Computing Architecture Fig. 2: Nephele’s Architecture

782

J. Computer <ci., 8 (5): 780-788, 2012

In order to measure direct costs of applicationsdata the Nephele job is supposed to operate om As
every individual use of resources (like CPU costresult, we expect the cloud to offer persistentagje
memory cost, I/O cost) must be measured. When thglike, e.g., Amazon S3 (Amazon Web Services)). This
direct data of each individual resources cost hesnb persistent storage is supposed to store the joip'sti
measured, more accurate cost and profit analysis. data and eventually receive its output data. Ittrbes

accessible for both the Job Manager as well as for

Overview of Nephele architecture:Nephele is a new the set of Task Managers, even if they are condecte
data processing framework (Warneke and Kao, 2009,y a private or virtual network.

Ravindraret al., 2005) for cloud environment that takes
up many ideas of previous processing frameworks bubn-line non-preemptive utility:

refines them to better maich the dynamic and Opaquﬁfficciency Scheduling: The on-line non-preemptive

nature of a cloud. . S o
Nephele’s architecture follows a classic master-SChedu“ng method which is used to maximize the

worker pattern as illustrated in Fig. 2. eﬁic_i_ency gai_n. Since the execution of a task rgain
Before submitting a Nephele compute job, a useposttive profit or suffer penalty an_d t.hl.JS deg“‘me.
must start a VM in the cloud which runs the soezall overall computmg performance, jgdlClous decisions
Job Manager (JM). The Job Manager which receive§ust be made with regard to executing a task, dngpp
the client's jobs, is responsible for schedulingnth ~ Or aborting a task and when to drop or abort a task
and coordinates their execution. It is capable ofationale of our approach is very intuitive, i.etask
communicating with the interface the cloud operatorcan be accepted and executed only when it is
provides to control the instantiation of VMs. Wellca statistically promising to bring positive gain and
this interface the Cloud Controller. By means o th discarded or aborted otherwise. Before we introduce
Cloud Controller the Job Manager can allocate Othe details of our scheduling approach, we first

deallocate VMs according to the current job exeruti jntroduce two useful concepts, the expected gain
phase.. We vv_|II comply with common Cloud utility and the critical point.

computing terminology and refer to these VMs as

instances for the remainder of this study. The ter C - .
instance type will be used to differentiate betwé&és ”:I;]heteX£ected gtf""” ltj.t'“ty.and 'f[hke cntu:zijl riomt._S_ln(_:e
with different hardware characteristics. For exampl € lask execution ime 1S not known eerm'”'ﬂma
the instance type “mL.small’ could denote VMs vatre W€ do not know if executing the task will lead to
CPU core, one GB of RAM and a 128 GB disk while thePOSitive gain or loss. To solve this problem, we ca
instance type “cl.xlarge” could refer to machinggg@ employ a metric, i.e., the expected gain utility help
CPU cores, 18 GB RAM and a 512 GB disk. us make the decision.

The actual execution of tasks which a Nephele job Given a taskT with arrival time of @ let its
consists of is carried out by a set of instancehE predicted starting time be. fThen the potential Gain
instance runs a so-called Task Manager (TM). A Taslp,(t) to execute T can be represented as the integratio
Manager receives one or more tasks from the JoBfthe summation of gain over timeand the difference

Manager at a time, executes them and after that ¢ {he starting time of the process and the arriiae
the Job Manager about their completion or possible ha process.

errors. Unless a job is submitted to the Job Manage
expect the set of instances (and hence the seasi T o-(1.-at)
Managers) to be empty. Upon job reception the JolP (t)= [R(t+(t- at))f (1t
Manager then decides, depending on the job’s peatic -
tasks, how many and what type of instances the job - . — .
should be exeé/uted on an%ip when the respectjive Similarly, the potential IOSS{L'(T)) to executeTi
instances must be allocated/deallocated to ensure G@n be represented as:
continuous but cost-efficient processing. The newly
allocated instances boot up with a previously céeapi ity =Li) | f (et
VM image. The image is configured to automatically a=(i-ai)
start a Task Manager and register it with the Job
Manager. Once all the necessary Task Managers . -
have successfully contacted the Job Manager, it Therefore, the expected increased efficieq(y)
triggers the execution of the scheduled job. to executeli can be represented as:

Initially, the VM images used to boot up the Task
Managers are blank and do not contain any of theél(T)=R(t) -Li(t)

783

J. Computer <ci., 8 (5): 780-788, 2012

A task can be accepted or chosen for execution In algorithm 1, when the time reaches the critical
whenn(T)>0, which means that the probability of to point of the current task, the current active task
obtain positive gain is no smaller than that touma jmmediately discarded and the task with the highest

loss. We can further limit the task acceptance by,nected efficiency is selected to be executednpe
imposing a threshold] to the expected accrued utility, finish of the current task, the task with the higthe

i.e. atask is accepted or can be chosen for drecit - . _
P(T)2p P expected efficiency is selected for execution. Aftee

selection of the new task in both of the two cafles,

We call p as the Efficiency threshold:Furthermore, expected efficiency for the rest of the tasks a@e T
since the task execution time is not known a pricg, calculated. The tasks with the expected efficiency
need to decide whether to continue or abort theémaller than the threshold value are discarded.
execution of a task. The longer we execut the tdmsk, ,
closer we are to the completion point of the tagkthe ~ Algorithm 2: Sort the ready queue based on the
same time, however, the longer the task executes tf€calculated expected gain
higher penalty the system has to endure if the task
cannot meet its deadline. To determine the appatori 1: Input: Let Tr={t1,t2, ..., tk} be the acdepl tasks
time to abort a task, we employ another metric, e in the ready queue, letitri = 1, ..., k represent their
critical point specific arrival times. Let current time be t anglbe
Let taskTi starts its execution at, then the potential the task currently being executed.

profit Ti >t (i.e.,n(T)) can be represented as the integratiorf: QUtput: The list of tasks in the ready queus={"
of the maximum gain ad the the difference of thel 1. T2, ... Tk SO”GF’ pas:ed on their expedigain.
completion of the task. The Potential loss of aancan S 1start = expected finishing time of + ¢
be calculated by theintegration of its completinetto 4 for ':9_ tok do _ _
the max time. Hence, the expected efficiemcys the Ti = Tj where TH Tris the task with the
difference believes the gain of a task and thedbastask. |argest expected gain assuming it starts at Tstart

If we substituten to be tequal to 0, we can see that®: Remove Tjfrom Tr; o
the gains & loss are found to be equal in executitesk. /- 1Start = Tstart + expected execution time gf T

As time increases, thedecrease and after a critical point 8 Calculate the following task's expected utiliy

at deadline more loss incurs then gain. time Tstart;
9: end for
Algorithm 1: For non-preemptive scheduling: When a new job comes, it is first inserted at the

Consider K accepted Task in Ready Queue and thge a4 of the ready queue, assuming its expecteiingtar

Current Time t. time would be the expected finishing time of therent
P.arameterz Kin th bt { 11 12 active task. Based on this starting time, we than c
1: Accepted Task in the Queue Le {t,12, .., compare its expected utility with the rest of thekss in

tk}Ar be the Arrival Time A [T= 1 to K] : A
X th CIf it ted utilit I thart thiath
2: Let Currently Running Task may be at T=0. Show © queus. T Its expecied ULy 15 fess tha c

. followi it, -i t this job to th
the task with Tand the Thershold Valug, At =Ao, one following 1, we re-insert this job fo the geeu

3: Conditions The Current Job is in Critical, Thimort according to its new expectegl utilty. We (_:alculttte
. new expected utility according to Algorithm 2, by
the execution of ¢

4:0Otherwise New Task enrolled in the end process. estimating its new expected starting time as the st

5: Calculation of efficiency of task and rescheduke tdsk the expected executing time of the leading tagkshe

based on the Utility value and load into the re@dgue. ready queue. This procedgre continues until_ th@eent
6: Start the Execution from T1. The utility valueléss ready queue becomes a list ordered according fo the

then the Thershold value then remove the process fr expected utilities. We remove the ones with expicte
ready queue else the current process and stexeitsition utility lower than the threshold.

On-line preemptive scheduling: The Preemptive

; P ; ; scheduling algorithm belongs to a new family ofl+ea
The scheduling algorithm: Our scheduling algorithm time service oriented scheduling problems. As the

works at scheduling po.lnts that include: the atrofaa complementarily of our previous non-preemptive
new task, the completion of the current task arel thalgorithm (Liu et al., 2010), real time tasks are
critical point of the current task. The detailedalthm scheduled preemptively with the objective of
is described in algorithm 1. maximizing the total utility time.

784

J. Computer <ci., 8 (5): 780-788, 2012

The preemptive scheduling heuristics is to The details of our scheduling are described in
judiciously accept, schedule and cancel real-timedlgorithm 3. There are five main parts in the

services when necessary to maximize the efficiencyScheduling. They are the preemption checking,
The new scheduling algorithm has much bettetfeas'b'“ty checking, task selecting, schedulinginpo

erformance than an earlier scheduling approacbadas checking and critical point checking. When new $ask
P o 9 app are added in to ready queue, no matter whethee iker
on a similar model does.

preemption or not, the feasibility checking will kato
check if the new ready queue is feasible or noanl
Algorithm 3: On-line preemptive efficiency scheduling task cannot meet the requirement, it will be rendove
method: from the ready queue. Scheduling point checkingesak
1: Input: Let{T1, T2,..., Tk } be the acceptedka in sure all the left tasks in the expected accruelityuti
the ready queue and lef lee the expected execution density task to run when the server is idle. Thicat
time of Ti . Let current time be t and let TO be task Point checking will always monitor the current rimp

currently being executed. Let the expected utilit task's state to prevent the server wasting timetfen
niy g ' b ynon—profitable running task. The preemption chegkin
density threshold be p.

works when there is a prosperous task wants tanpee

2:]]) the current task. The combination of these parts
3: ifanewtask ie.,farrives then guarantees to judiciously schedule the tasks for
4: Check if T, should preempt the current task or not; achieving high accumulated total utilities. It i®nthy

5. if Preemption allowed then to talk more about the preemption checking part in
6: T, preempts the current task and starts beingletails, because improper aggressive preemptioh wil
executed; worsen the scheduling performance. From Algorithm.4
7. endif we can see that if a task can be finished sucdbssfu
8: if Preemption not allowed then before its deadline even in its worst case, thedaling

will protect the current running task from being
preempted by any other tasks. Otherwise, if a
o U prosperous task has an expected accrued utilitgityen
10: ReJeCtI'f%>&; which is larger than the current running task’s

9: Accept T, if Yp(&) pe;
&

) ® conditional expected utility density by at leastaue
11:end if equals to the pre-set preemption threshold, the
12: Remove [in the ready queue iFs(%) > preemption is permitted.

e
13: end if ' Algorithm 4: Verification of Preemptive method
14: 1: Input: Let T be the task currently being executed
15: if At preemption check point then and T, be the task wants to preempf €urrent time be
16: PREEMPTION CHECKING: t, U(To, t) be the conditional expected utility density of
17: end if T, at time t, g is the remaining expected time of. T
18: Up(t) be the expected utility density of;T

2. if the expected density is greater, then
3: Check what is s worst case finish time;
4. if To can be finished before its deadline even in the

19: if To is completed then
20: Choose the highest expected utility densitk tat®

run. worst case then
21: Remove lin the ready queue Mw; 5. Preemption is not allowed,;
& 6: end if
22: end if 7. if To's worst case will miss as its deadline then
23: 8: Preemption allowed;
24: if t = the critical time of0 then 9: end if
25: Abortt0 immediately; 10: end if
26: Choose the highest expected utility densitk tés The feasibility check is one more part deserves
to run. s detail description. In this part, scheduling sinesathe
27: Removej in the ready queue -HigC_i) < real execution sequence for the left tasks in repohue
Cj and check following this sequence, if all of theemc
28: end if satisfy the requirement or not. The thing need$do

785

J. Computer <ci., 8 (5): 780-788, 2012

discussed is how to determine the sequence ofethe | RESULTS
tasks. From equation (1), (2) and (3), we can bfessre
that the expected utility of running a task dependslo evaluate the performance of the algorithms,
heavily on variable T, i.e., the time when the task certaip investigations were done using different
start. If we know the execution order and thus thefXPerimental setup.
expected starting time for tasks in the ready quewse
will be able to quantify the expected utility detgsof
each task more accurately. In algorithm.5, we shaw
utility metric based on a speculated execution oaofe
the tasks in the ready queue.

The general idea to generate the speculate

Experiment set up: The test cases in our experiments

were randomly generated. Specifically, B, W and D

were randomly generated such that they are uniforml

distributed within interval of [1, 10], [30, 50] dr{40,

0], respectively. The execution time of a task is
) : . ssumed to be evenly distributed between interfal o

execution order is as follows. We first calculake t

expected utility density for each task in the regdgue [B, W], i.e. f (t) = !
based on the expected finishing time to the current)) W-)
running task. Then the task with the largest one idinear functions, i.e., G (t) = 4 - D) in the range of [0,
assumed to be the first task that will be execatiter D] and L(t) = &. The gradient for G (t) and L (1), i.eq a
the current task is finished. Based on this assiempt and awere randomly picked from the interval of [4, 10]
we then calculate the expected utilities for thet @& and [1, 5], respectively. Task release times’ wdty
the tasks in the ready queue and select the nekt ta follow the exponential distribution with p = 2. The
This process continues until all tasks in the requiyue utility threshold p is set to 0. We conducted three
are put in order. When completed, we essentiallydifferent groups of experiments to study and compar
generate a speculated execution order for the tiasks the performance of different approaches under riffe

the ready queue and, at the same time, calcul&e tlzonditions. The results are reported as follows.
corresponding expected utility density for eacktas

5 G, L were assumed to be

DISCUSSION
Algorithm 5: Verification of Preemptive method i _
1: Input: Let T ={t1, t2, ..., tk} be the acteq tasks in We first constructed 1000 task sets, each of which
the ready queue, let i represent the arrival time and consists of 20 tasks. Figure 1-3 plot the accrudityy
expected execution time of ti. Let the current tived. accrued profit, as well as the accrued penaltytioee

2. Output: The new list T' = {t'1, t2,..., tk} iith the different approaches: Non Pre—gmptive, Preemptick a

Nephele. For ease of presentation, we only shoset®
9t results in the figures. The horizontal axishs tndex
of the experiment sets.

speculate execution order and their correspondin
expected utility density(T'j) for vj, 1<j <k.

3: ifatask pis being executed then The graph in Fig. 3 shows that the variation
4 T=pt+ey; between the total utility and the experiment sEtem
5 else that we can know, how the values of total utilityllw
6: T=t increased to the corresponding values Qf experiment
7. en d, if sets. Anc_i this graph _s_hows that, preemptive re_an&s

, . . having higher total utility than the Non preemptaed
8: WhileT is not emptx list do) execution graph of the Nephele.
o for Each task e in T do the list The graph in Fig. 4 shows that the variation
10: Calculate gaibased on Eq. 1-3; between the total profit and the experiment setsmF
11: end for that we can know, how the values of total profitl wi
12: Select tj with the highest priority; increased to the corresponding values of experiment
13: Add tj to the end T the list; sets. And this graph shows that, preemptive resuéts
14: Excecution time = Excecution time(t)+excecutinghaving higher profit than the Non preemptive and
time for task. execution graph of the Nephele.

This graph in Fig. 5 shows that the variation
between the total penalty and the experiment Eetsn
that we can know, how the values of total penalily w
increased to the corresponding values of experiment
The investigations and the comparison of thesets. And this graph shows that, Non preemptiveltes
performance of the algorithms have been studied andre having higher profit than the preemptive and
simulated under a variety of conditions. execution graph of the Nephele.
786

15: Remove tfrom list;
16: end

J. Computer <ci., 8 (5): 780-788, 2012

Total utility Vs experimentsets possibility to automatically allocate/deallocatetwal

machines in the course of a job execution, can ttelp
improve the overall resource utilization and,
consequently, reduce the processing cost. Thenen-li

1000
200
800
700
600

/

- == Honprecpive real-time service system should be compatible with
Z 40 == Presiptive preemption in respect that it is necessary andttingfi
bt Nephele for nowadays’ service requests. Our experimental

lﬁ:,' results clearly show that our proposed preemptive

0 scheduling algorithm is effective in this regard.

10 20 30 40

h

Experimentsets In this study, we present a novel Turnaround time
utility scheduling approach which focuses on bdté t
Fig. 3: Utility gain high priority and the low priority takes that aeifor
scheduling. This study can be viewed as the exténde
i Lotal profitVeexperiment sety version of Nephele (Warneke and K&011). It is also

900
800
700
600
500

a significant improvement compared to non-preeneptiv
scheduling (Liuet al., 2010) in which, the preemptive
g fiom procangiive approaches better than the neseimptive counterpart.
44 8 Precmptive Our extensive experimental resuftearly show that our
200 Nephele proposed preemptive method can outperform the non-

n preemptive approach.

Total profit

\

=
=1

:O I:errij:,em sets 0 ’ REFERENCES

Fig. 4: Profit gain AEC2, 2011. Amazon Elastic Compute Cloud.
. Amazon EC2.
1000 ey oo Armbrust, M., A. Fox, R. Griffith, A.D. Joseph afd
i Katz et al., 2009. Above the clouds: A berkeley
700 view of cloud computing. Miscellaneous.
—— Non preemptive AWSLLC 201la. Amazon elastic MapReduce.

600
500

Total penalty

\

a0 —8— Preemptive Amazon Web Services LLC.
23 Nephele AWSLLC, 2011b.Amazon simple storage service.
00 Amazon Web Services LLC.
= " o P Casati, F and Shan, M., 2001. Definition, Execution
Experimentsets Analysis and Optimization of Composite E-
Services. |IEEE Data Eng. Bull.
Fig. 5: Penalty cause Chaiken, R., B. Jenkins, P. Larson, B. Ramsey &nd

Shakib et al., 2008. SCOPE: Easy and efficient
parallel processing of massive data sets. Proc.

The popularity of the Internet has grown VLDB Endowment, 1. 1265-1276. DOL:
enormously, which has presented a great opportuni% 10.1145/1454159.1454166 .
for providing real-time services over the Internéte ornemann, T., E. Juhnke and B. Freisleben, 2009.
have discussed the challenges and opportunities for On-demand resource provisioning for BPEL
efficient parallel data processing (Chailetral., 2008) workflows using amazon's elastic compute cloud.
in cloud environments and presented Nephele, tie fi Proceedings of the 9th IEEE/ACM International
data processing framework to exploit the dynamic symposium Cluster Computing and the Grid, May

resource provisioning offered by today’s laaS ckud 18-21 IEEE X ; .)
. , - . , plore Press, Shanghai, pp: 140-147.
We have described Nephele's basic architecture and DOI" 10.1109/CCGRID.2009.30

presented a performance comparison to the well- : _ .
established data processing framework Hadoop. ThE©ldberg, D.E., 1989. Genetic Algorithms in Search,
performance evaluation gives a first impressiorhow Optimization and Machine Learning. 1st Edn.,
the ability to assign specific virtual machine type Addison-Wesley, Reading, MA., ISBN:
specific tasks of a processing job, as well as the 0201157675, pp: 412.

787

CONCLUSION

J. Computer <ci., 8 (5): 780-788, 2012

Li, P, H. Wu, B. Ravindran and E. D. Jensen, AprilWarneke, D and O. Kao, 2011. Exploiting Dynamic

2006. A utility accrual scheduling algorithm for resource allocation for efficient parallel data
real-time activities with mutual exclusion resource processing in the cloud. IEEE Trans. Parallel
constraints. IEEE Trans. Comput., 55: 454-469. Distributed Syst., 22: 985-997. DOI:
DOI: 10.1109/TC.2006.47 10.1109/TPDS.2011.65

Liu, S., G. Quan and S. Ren, 2010. On-line schaduli White, T., 2010. Hadoop: The Definitive Guide. 2nd

of real-time services for cloud computing. Edn., O'Reilly Media, Beijing, ISBN: 1449389732,
Proceedings of the 6th World Congress on Services, pp: 600.

Jul. 5-10, IEEE Xplore Press, Miami, FL., pp: 459-Yu, Y., S. Ren, N. Chen and X. Wang, 2010. Profd a
464. DOI: 10.1109/SERVICES.2010.109 penalty aware (PP-aware) scheduling for tasks with

Ravindran, B., E.D. Jensen and P. Li, 2005. Onmtece variable task execution time. Proceedings of the

advances in time/utility function real-time 2010 ACM Symposium on Applied Computing,
scheduling and resource management. Proceedings Mar. 22-26, ACM, Sierre, Switzerland, pp: 334-
of the 8th IEEE International Symposium on 339. DOI: 10.1145/1774088.1774159

Object-Oriented Real-Time Distributed Zaharia, M., D. Borthakur, J.S. Sarma, K. Elmeleegy
Computing, May 18-20, IEEE Xplore Press, USA., and S. Shenkeet al., 2009. Job scheduling for
pp: 55-60. DOI: 10.1109/ISORC.2005.39 multi-user mapreduce clusters. EECS Department,

Warneke, D and O. Kao, 2009. Nephele: Efficient University of California, Berkeley.

parallel data processing in the cloud. Proceedings
of the 2nd Workshop Many-Task Computing on
Grids and Supercomputers, Nov. 14-20, ACM,
Portland, OR, USA., pp: 1-10. ISBN: 978-1-60558-
714-1 DOI: 10.1145/1646468.1646476

788

