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Abstract: Problem statement: Many optimization problems of practical interes¢ &ncountered in
various fields of chemical, engineering and manag@msciences. They are computationally
intractable. Therefore, a practical algorithm fotving such problems is to employ approximation
algorithms that can find nearly optimums within @asonable amount of computational time.
Approach: In this study the hybrid methods combining theisfale Neighborhood Search (VNS) and
simplex’s family methods are proposed to deal withglobal optimization problems of noisy continsou
functions including constrained models. Basicalhg simplex methods offer a search scheme without
the gradient information whereas the VNS has thtebeearching ability with a systematic change of
neighborhood of the current solution within a losehrchResults: The VNS modified simplex method
has a better searching ability for optimizationtpemns with noise. The VNS modified simplex method
also outperforms in average on the characterisficg#ensity and diversity during the evolutiondgfsign
point moving stage for the constrained optimizatiGonclusion: The adaptive hybrid versions have
proved to obtain significantly better results tlihe conventional methods. The amount of computation
effort required for successful optimization is vegnsitive to the rate of noise decrease of theegm
yields. Under circumstances of constrained optitiitraand gradually increasing the noise during an
optimization the most preferred approach is the \ingglified simplex method.

Key words: Modified simplex, weighted centroid simplex, superodified simplex, variable
neighborhood search, Taguchi signal to noise ratio

INTRODUCTION The simplex’s family methods are robust to lower
S . ~levels of inaccuracies or stochastic perturbatioms
Global optlmlzatlon problems consist of functions function values. It 0n|y uses the ranks of the fiomc
on an open and compact set containing some problefpjues to determine the next move, not from the

variables. In various cases of practical interd® t fynction values. However, the global optimization
global optimization is very difficult because thésehe _searching ability depends on whether the initizigte

dimension. There are two general algorithms fadifig optimization problem and results in the deficierafy

the global optimum. Firstly, a set of random stayt aglobally searching ability. The VNS is a technighat

design points is generated for a use of convernition : ) . !
algorithms to approach the optimum via enumerativeeXpIOItS the idea of neighborhood structure change

search strategies. A large number of starting dnesig.SyStemat'C way, both in the desce.nt to Iocal oplaynd
points have to be tried in order to achieve a eigffitly in the escape from the vaIIeys_ which contain th_aest
large probability of finding the global optimum. {0 escape from a local optimum by changing the
These sequential procedures are time consuming arftfighborhood structure. After obtaining a neighigri
become intractable as there is an increase of th&olution to the current solution, the VNS executes
dimensionality of the problem. Secondly, the local search until a local optimum is reached amyes
algorithms perform the new design points to avoidto it if there has been an improvement in modifying
entrapments in local optimum and continue search t@ieighborhood structure. Otherwise, there is a aysie
approach near-optimal solutions. The methods & thichange in the neighborhood.

type include simplex’'s family and Variable Effective optimization algorithms depend on their
Neighborhood Search (VNS) methods. accuracy and their searching ability for globalitmoim.
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The VNS has been applied to the computer science
field in order to enhance the global optimization
searching ability (Aungkulanon and Luangpaiboon,
2010). While the simplex’s family methods and the
VNS are both categorized into the primitive staet

is, both of them are a direct search scheme without
gradient information. Thus, it has a fast searching
ability and has been widely applied to improve the
design point of the global optimization problemsa¢G E
et al., 2008). However, there are some disadvantages
among both methods. The better searching ability fo
the global optimization problem and the charactiess

of intensity and diversity during the sequential

procedures are then expected after the integration. . L
The objective of this study is to investigate the  Nelder and Mead (1965) modified a rigid simplex

choice of the best simplex design based method witfi€thod to allow various procedures to adapt to the
the fine-tuning characteristic of the VNS for 9global optimization much more readily. This mettied
optimization of nonlinear continuous unconstrainedreferred to modified simplex method (MSM). MSM
functions and constrained models. This study dessri allows the simplex to converge more rapidly towaads
various selected simplex’s family methods of theoptimum by expansion and multiple ways of simplex
modified simplex, super modified simplex and contraction along the line of conventional refleatin
weighted centroid simplex including the variable order to speed up the convergence (Fig. 1). When th
neighborhood search method. Experimental resulis arresult becomes more preferable, an expansion with a
analyses are performed to compare the performahce preset coefficient is performed, to stretch the enov
the proposed variable neighborhood simplex searcheyond the simple reflection.
methods. The conclusion is also summarized ang it i In some cases when the outcome is more desirable
followed by acknowledgment and references. than the worst one, but still worse than all the
remaining outcomes, a contraction with a preset
MATERIALSAND METHODS coefficient level is used to shorten the move in

Modified Simplex Method (MSM): The simplex comparison to the reflection. Moreover, massive
algorithm is based on the geometry and the Simme;gontrac'uons are performed.when the new .result gets
design is composed of a k-dimensional polyhedrah wi WO'S€ than any of the previous ones. In th's chee t
k+| equidistant design points or linearly indepemtde S'%€ of the simplex is re_duced by contracting eath
vertices. For k equal to two, this simplex is anltS €dges to one half of its previous length towtrel
equilateral triangle composed of 3 vertices in o_vertex producing the best outcome. A new simplex is

dimension space, for &qual to three any four design thus generated with k new measurements and the

points in a different plane can form a tetrahedronS€duential optimization procedures are repeated.

Therefore, according to the k-dimensional problam, W_her_1 the cc_)ntractior] approaches to the convergence
simplex is a geometrical figure consisting, in k criterion, this replacing process stops, that f& t

dimensions, of (k+1) design points and then, thd!€ration stops (Fig. 2).

objective function of those design points can be\Neighted Centroid Simplex Method (WCSM): Ryan
gt)etmrneedm?endd t%orgg?er:argi.ngftﬁ]r v?/ﬁicchh Sa?fe’ct(ijgﬁ'i'ﬁggt al. introduced the weighted centroid simplex method.
d In order to reflect the different influence or difént

simplex must move. ; X . T
The new symmetrical simplex consists of one newflesign points of the simplex, each point is assigae

point and k design points from the previous simmex Weight, which is equal to the ratio of the diffezenof
discarding the worst point and replacing it witmeawy ~ Objéctive function values to their geometrical alse
point. Repetition of simplex reflection and objgeti between this point and the point to be reflectadiding
function measurement form the basis for the mosBO, €ach point is treated differently according it®
elementary simplex algorithm. This iterative praces ~ contribution to the potential reduction of the afijee
based on gradually moving away from the experimenfunction. In general, for a k-variable problem, the
with the worst result in a simplex toward the optim  direction for the next search is obtained by corimgn
The rigid simplex method appears to have been firsthose weights in the simplex. WCSM proceeds in a
proposed by Spendley al. Many modifications to the manner entirely analogous to MSM (Fig. 2) with the
original simplex method have been developed. only exception of WC.
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ig. 1: Different simplex moves from the rejectelt
condition (W). C = Centroid, R = Reflection, E
= Expansion, PC = Positive Contraction and NC
= Negative Contraction
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Procedure of the MSM ()
While (termination criterion not satisfied) — (line 1)
Schedule activities:
Reflection of least yield W is processed;
Compute R and f(R):
Compare objective function:
If f(R) is highest then
Extension E will be processed:
Else
If R and f{(R) continue to be the least then
Reflect backward to prior point or;
Recalculate W and f{W) or:
Contraction (either PC or NC) or:
Shrinking S will be processed:
Recalculate £f{C) or f(S):
Else
Go to line 3:
End if:
End if;
End schedule activities:
End while;
End procedure;

Fig. 2: Pseudo code of the MSM

Sub-Procedure of the SMSM ()
Compute Bopr:
If Bopr is in a safety interval then
Determination of a second order polynomial curve is processed;
Else
Reflection of least yield W is processed:
End if;
End sub-procedure:

Fig. 3: Pseudo code of the SMSM sub-procedure

polynomial curve through the W, C and R verticeg.(F

3) and further extrapolates the curve beyond thestwo
and reflected design points by a percentage of\th&
vector. SMSM procedures thus allow the new vertex
the freedom of design point at a nearly the vector
joining W and R plus the extensions of the vector a
dictated by the expansion coefficient
Of Bopr = R(R)= 4R(C) SRW) 0 W_R vector of is
2R(R)- 4R(CH 2R(W)

terminated at the design point where the boundary
constraint is intersected by the vector and thdgdes
point is then considered an effective R (R’). Theld/

is evaluated at R’, the second polynomial curvigtisd
through the yields at W and R’ and the new vertex
location determined.

However, the predicted optimum should occur at or
very near the Centroid (C) of the new vertex. Asth
point it would reduce the dimensionality of the q&ss
and would virtually terminate any further progrexs
the simplex design in one or more dimensions. Thus,
safety interval controlling such a move is usetbtate
the new vertex with a percentage of the factor doma
away from the centroid.

Variable Neighborhood Search (VNS): In order to
solve the problem presented in this study, the
simplex’s family methods are modified and designed
by the metaheuristic strategies of Variable
Neighborhood Search (VNS) initially introduced by
Mladenovic and Hansen (1997). The solutions
obtained with these hybrid methods are comparel wit
the ones obtained with what may be the conventional
methods for obtaining the optimum (Imras al.,
2009). The strategy for the VNS involves iterative

The centroid C is replaced by the weighted centroicexploration and tries to escape from a local optimu
WC of hyperface opposite W in the reflected by changing the neighborhood structure in a

equation by:

=Z|R(i)—R(W)|i

WC
IR -R(W)|

where, R(i) represents the response at the poamdi
R(W) represents the response at the weakest point
Notice that the point W is not included in either

summation.

Super Modified Simplex Method (SMSM): It was

systematic way to approach the optimum.

Each time in a local search routine for optimiaati
the basic idea of VNS meta-heuristic is to use more
than one neighborhood structure and to proceed to a
systematic change of them within a local searchSVN
remains in the same design point until anothertgwiu

Vpetter than the incumbent is found and then jumps

there. The method, without forbidden moves, then
escapes from the current solution to a new one.
Neighborhoods are usually ranked in such a way that
intensification of the survey around the currensige

created by Routkt al. The SMSM determines the new point is naturally followed by diversification caatled
design point in the same manner of the MSM withsom by a set of parameters. VNS also allows a contlolle

exceptions before the normal reflection of W. Hoemrv

increase during the iterative improvement. The geeu

the SMSM takes advantage of fitting a second ordetode of the VNS is shown in Fig. 4.
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Procedure the VNS Metaheuristic ()
Begin;
Initialise algorithm parameter:
KMAX: the preset number of neighborhoods

optimization run uses independent random number
streams. Secondly, four constrained mathematical
models are applied to determine the best parameter
choice as follows.

Initialise a set of neighborhood structures:
Find an initial solution of x and choose a stopping condition:
Setk =1;
Repeat the following steps until the stopping condition is met;
Forj=1to KMAX
Randomly generate a solution of X' from the k-th neighbourhood
of x: sin® (2rx )sin(atx )
Apply some local search method with x' as the initial solution MIN Z = 1 2
and denote the so obtained local optimum as x":
If x" is better than the incumbent then update x=x" and set k=1;

Constrained model # 1:

3
+
xl (xl X 2)

Else S.T.
Set k=k+1:
End if: x?-x +1<0
End for; 1 2
End, 1-x —(x -4y <0
End procedure: 1 2

Fig. 4: Pseudo code of the VNS metaheuristic Constrained model # 2:

1 1

Test models. Three simplex’s family methods with
some modifications from the VNS can be applied to
engineering optimization problems with continuous ST.

design variables. Several examples taken from the 0.01x2x3_1+0.01>g+ 0.0005x
standard benchmark engineering optimization litesat 1< % %. %.<100

are used to show how the proposed approaches work T ners s
(Zzhao et al., 2009). These examples have been .
previously solved using a variety of other techegu Constrained model # 3:

which is wuseful to demonstrate the validity,

effectiveness and robustness of the proposed varian MIN, = -x, +0.4x,0.67X, - 0.67
on the variable neighborhood simplex search.r@he ST.

are 100 realizations in each model. For each maidel, 0.05882x x + 0.1x< 1

Key Performance Indices (KPI) of central tendency,
dispersion and robustness are represented by the
Average (Av), Standard deviations (Sd) of these
objective function values and the Taguchi Signal to
Noise ratio (SN). Signal to Noise ratio will presen Constrained model # 4:
sensitivity of response to noises or uncontrollable
factors. This ratio is used to point out stabilify the
design system and quality of chosen design’s factor
The minimum (Min) and maximum (Max) of the yields
are also included for the constrained models.

On the first scenario, eight stochastic non-linear
unconstrained mathematical functions in the contéxt
response surface with two variables were useddb te
performance measures of the related methods whilst
searching for the maximum. They consist of Paraboli
(PA), Shekel (SH), Rosenbrock (RO), Branin (BR),

MIN Z =0.5x,X, ~ =X, =5X,

7

0.1< X, %, , %, X%,< 10

5
~15x-10y- 05, %
i=

ST.6x + 3%+ 3x+ 2%+ %< 6.5
10x, +10x,+ y< 20
Osxisl;izl,...,Syz 0

4%,x, 7+ 2x, - 0.71X! + 0.05882%- 1.3x<

MINZ =-10.5x, - 7.5x, - 3.5% — 2.5

It is assumed that an initial design point of

Camelback (CA), Goldstein-Price (GO), Rastrigin {RA variables which satisfies all the constraints iilable. A
and Styblinski (ST) functions. Each of these testdesign point selected must satisfy the explicitstiaints,
functions has a unique nature. The test functioaeew but need not satisfy all the implicit constraints.an
randomized by adding a normal and independenimplicit constraint is violated or a design poistfound
distributed error term or noise with zero mean ando be infeasible, a new design point is createdgutiie
standard deviation of 0.0, 1.0, 2.0 and 3.0. Eaclpreviously generated feasible design points.
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RESULTS When there is no noise the selected performance

measures of hybrid methods are not statistically
The hybrid algorithms of simplex’s family methods different when compared. Generally, the average),(Av
and the VNS are compared with respect to accuracyhe sample Standard deviation (Sd) and the Signal t
consistency and computational effort. For all sastic ~ Noise ratio (SN) of actual objective function vadue
functions and for the manufacturing models, therari ~ deteriorate when there is an increase of noisehen t
overall significant difference between the hybrid object|v_e lfunﬁ'uon 2\6‘31'8?320‘;‘; ihown ':" 56969 57,

optimization methods with respect to accuracy fothb respectively (Lan, ' » Kumat al., ).

. However, on all performance measures the VMSM
the smallest errors and higher levels of the embitsie performs better than other versions of VNSS based

optimization runs. For the manufacturing models theyethods. When the Sd and SN performance measures
Variable Neighbourhood Simplex Search (VNSS)are considered the preferred methods seem to be the
based methods of VMSM (I), VWCSM (ll) and vSMSM and VWCSM, respectively.

VSMSM (lll) were tested using both one large Moreover, the controllable parameters of the
simulation run and have smaller simulation runs tosimplex’'s family methods such as the simplex size,
evaluate a design point. There is no statisticagpificant ~ an increase of simulation size or replicates, cane
difference in accuracy or consistency among thEne  be chosen in such a way that the hybrid methods
results for the stochastic functions with respecte  perform substantially better than the conventional
accuracy, consistency and computational efforthef t Method with respect to accuracy and conststen
hybrid methods when considering the errors at the, .. 4. Results for the constrained model #1

lowest and highest levels of 0.0 and 3.0 are shiown Yield
Table 1 and 2, respectively. The overall resultsatin

Execution time

. f . KPI/Method | Il I I Il n
hybrid methods are summarized in Table 3. Av -0.131  -0.083 -0.086 149.550 1043.900 148.880
Sd 0.000 0.005 0.004 1.200  29.443  1.021
Table 1: Results for continuous functions withooise SN 17.598 21.553 21.302 - - -
Method/KP! PA _ SH RO BR CA GO RA ST Min -0.132  -0.088 -0.088  147.600 1023.400 147.210
I Av 1200 1890 8000 370 1000 952 741 353.00 & 0132 -0.074 0075 151530 1103.500 150.520

Sd 0.00 0.17 0.00 0.01 0.66 0.00 195 0.88

SN 2150 2550 38.10 11.40 19.90 19.60 37.3 50.90 0.5
I Av 12,00 18.80 80.00 3.70 9.91 9.50 76.3 351.00 e e .
Sd 0.00 030 0.00 0.00 076 0.06 1.87 4.47
SN 2150 2550 38.00 11.30 19.80 19.50 37.6 50.90 901 Variable
I Av 1190 1830 79.90 370 9.77 869 77.0 353.00
sd 001 045 000 002 017 050 1.85 0.33 . —=— VMSM
SN 2150 2520 38.00 11.30 19.70 1870 37.7 50.90 x gs5{ . — - VWCSM
h : VSMSM
Table 2: Results for continuous functions with theise standard S
deviation of 3.0 8.0 R - — -
Method/KPl PA  SH RO BR CA GO RA ST ——
[ Av 1190 1880 79.90 3.68 9.71 9.40 75.80 353.00 751 . -
sd 001 008 0.06 004 061 014 243 0.87 0 1 2 3
SN 2150 2550 38.00 11.30 19.70 19.40 37.50 50.90 .
I Av 11.90 1880 79.90 3.56 9.72 9.21 76.60 351.00 Noise

Sd 0.04 0.16 0.10 035 035 051 4.03 4.50

SN 2150 2550 38.00 10.80 19.70 19.20 37.60 50.90 i . L. Lo .
I Av 1100 1850 79.00 364 974 754 7610 3830 Fig- 91 Avon Goldstein-price function

Sd 0.06 039 0.08 015 043 146 226 0.16

SN 2150 25.30 38.00 11.10 19.70 17.00 37.60 50.90 164
1.4 4 R
Table 3: Overall results for continuous functionkere there is an s - e
increase of noise o 7 Xf;;zl;fl[e
M . —
n > SN = 08 e — = - VWCSM
KPI | oo oo I I 06, 7 VSMSM
PA v v v v v 04’
SH Vv v v v v v 02
RO Vv v v v 00l "____H’—a-//‘
BR VvV v v v !
CA Y v v v v v 0 1 2 3
GO Vv v v v v v Noise
RA v v v v v v
ST vV v v

Fig. 6: Sd on Goldstein-Price function
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o5l need more computational effort than the algorittiinasg
use the same criterion but an increase of the nuwibe
901 Variable simulation runs were mainly used to evaluate aexert
) e VMSM for the success of all the related constraints. féved
z 85| = VWCSM that applying the VMSM can lead to substantiallyreno
h TN VSMSM accurate and consistent results without the cosiua
301 e computational effort when compared to other hybrid
Tl methods. However, if optimizing the manufacturing
751 T models using the conventional algorithms would lead
0 1 2 3 at least the same results as optimizing with theS8N
Noise based methods then there would be no point in using

the hybrid algorithms.
Fig. 7: SN on Goldstein-price function

DISCUSSION

Table 5: Results for the constrained model # 2

Yield Execution time The proposed hybrid methods are the Variable
KPI/Method | I Il | 1 il Neighborhood Simplex Search (VNSS) based methods.
Av -82.343 -63.191 -63.614 128760 1054.600 149.890 These VNSS based methods adopt the design point
Sd 0.916 6.260 4.566 0.700 25.312 1.555 H : :
oN 38333 30042  36.089 ) - ) evplunon process of the Vl\_IS via the systematic
Min -83.083 -75.961 -74.778 127.860 1040.200 14v.61 heighbourhood change and introduce the searching
Max -79.667 -53.025 -56.508 129.970 1106.600 152.33 mechanism of the simplex’s fam"y methods for

Table 6: Results for the constrained model # 3 generating the new generation. With the VNS

evolution, “in the descent to local minima and et

Yield Execution time )
escape from the valleys”, the proposed hybrid ndtho
KPIMethod 1 I m__ 1 L n combine the evolution method and the simplex design
AV 5444 0336  -0.447 194170 1043.700 194.230 . . ;
Sd 0.279 0001 0008 0292 25332  o0a35 based methods with respect to their own meritsetal d
SN 14.725 9472 6.993 - - with the global optimization.
Min -5.714 -0.338 -0.459 194.060 1031.200 194.080 H F .
Max 4706  -0.334  -0434 195200 1094.900 195.430 The VMSM s useful for the optimization of
stochastic functions. However, the amount of naise
Table 7: Results for the constrained model # 4 the functions largely determines the success of the
Yield Execution time optimization procedure. The study described in this
KPIMethod | ; n | I n research is designed to improve the performandaeof
AV 208.990 -200.550 -200.740 292.060 563.020 a1 VNSS based methods when applied to the optimization
Sd 3.004 0691 0455 0746 2542 1.021 of very noisy functions. Several conventional adept
SN 46.403  46.045 46.053 - - - : i
Min 212710 -201.160 -201.330 291560 558.770 G, extensions after Nelder and Mead which are thersupe
Max -204.150 -198.760 -200.070 293.860 568.040 ZB. modified simplex and weighted centroid methods are

tested using stochastic functions and represestativ

The improvement found for any hybrid method dependgonstrained models of simulated manufacturing
on the nature of the objective function. On théneat processes. These conventional adaptive extensions
complex function such as the combined multi-peak aninclude algorithms that combine the weights in the
curved ridge surface the hybrid methods perforrtebet simplex and fit a second order polynomial curve
For all hybrid methods, the improvement in accuracythrough all relevant vertices during an optimizatian.
and consistency is achieved at the cost of anaseran We also compared the extended hybrid methods to
the computational effort. For most objective fuop8  benchmark algorithm based on the original methods.
we found that the VMSM needs less additionalwe found that a relatively simple extension of the
computational effort than the other hybrid tinoels. VMSM simplex method is able to detect when noise
We conclude that the VMSM is effective modification obstructs the optimization process and consequently
of the simplex’s family methods in view of its acaoy  indicate the moments when the evolution procesbef
and computational effort. VNS is needed to successfully continue the conwrhi

For a study of the constrained models, themodels. For the constrained models and for mothef
numerical results are given in Table 4-7. Generallystochastic functions, gradually increasing theizasibn
compared to the benchmark optimization andor the number of simulation runs used for a functo
approximation algorithms, the VNSS based methodsnodel evaluation, can lead to considerable
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improvements in accuracy and consistency of the In  additon to considering alternative
observed optimal design points. improvements of the variable neighborhood simplex
The amount of computational effort required by allsearch based methods, the question how this method
hybrid methods, which apply to constrained modisls, compares to other hybrid algorithms with recent
less dependent on the number of constraints. Thstochastic element of hunting search and harmony
evaluation of manufacturing models is often veryeti ~ search in the optimization of stochastic objective
consuming and the VMSM is to be preferred over thdunctions and constrained models remains to be
use of the original benchmark algorithm with the addressed as well. In addition to considering Hiybri
context of the Box complex method and an expengivelimprovements of the simplex’s family methods with
large simulation size. In the tests described iis th other recent metaheuristics, the question how these
research a maximal number of evaluations to end thsimplex’s family methods depend on the parameters
optimization process are applied. such as the process of the additional re-evaluation
However, in applications, the use of more measures of problem objective function values, the
sophisticated termination criteria should be conedr  multiple initial simplex design points and the pees of
Furthermore, the choice of the initial simplex sizeincreasing simulation size or number of replicates,
should be also considered. It could emphasize dahe f could be also investigated to deal with the dynamic
that the simplex’s family methods are the localrglea information during optimization runs.
method, no guarantee is given for finding the globa

optimum. Therefore, multiple starting design points ACKNOWLEDGMENT
and/or multiple searches from the same startinggdes
point should always be tried. However, in this stud This work was supported by the Higher Education

there is no experiment on the effect of previousResearch Promotion and National Research University
concerns, since the performance of single apptinati Project of Thailand, Office of the Higher Education
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