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Abstract: Problem statement: Many optimization problems of practical interest are encountered in 
various fields of chemical, engineering and management sciences. They are computationally 
intractable. Therefore, a practical algorithm for solving such problems is to employ approximation 
algorithms that can find nearly optimums within a reasonable amount of computational time. 
Approach: In this study the hybrid methods combining the Variable Neighborhood Search (VNS) and 
simplex’s family methods are proposed to deal with the global optimization problems of noisy continuous 
functions including constrained models. Basically, the simplex methods offer a search scheme without 
the gradient information whereas the VNS has the better searching ability with a systematic change of 
neighborhood of the current solution within a local search. Results: The VNS modified simplex method 
has a better searching ability for optimization problems with noise. The VNS modified simplex method 
also outperforms in average on the characteristics of intensity and diversity during the evolution of design 
point moving stage for the constrained optimization. Conclusion: The adaptive hybrid versions have 
proved to obtain significantly better results than the conventional methods. The amount of computation 
effort required for successful optimization is very sensitive to the rate of noise decrease of the process 
yields. Under circumstances of constrained optimization and gradually increasing the noise during an 
optimization the most preferred approach is the VNS modified simplex method.  
 
Key words: Modified simplex, weighted centroid simplex, super modified simplex, variable 

neighborhood search, Taguchi signal to noise ratio 
 

INTRODUCTION 
 
 Global optimization problems consist of functions 
on an open and compact set containing some problem 
variables. In various cases of practical interest the 
global optimization is very difficult because there is the 
presence of many local optima. The number of which 
tends to exponentially increase with the problem 
dimension. There are two general algorithms for finding 
the global optimum. Firstly, a set of random starting 
design points is generated for a use of conventional 
algorithms to approach the optimum via enumerative 
search strategies. A large number of starting design 
points have to be tried in order to achieve a sufficiently 
large probability of finding the global optimum. 
These sequential procedures are time consuming and 
become intractable as there is an increase of the 
dimensionality of the problem. Secondly, the 
algorithms perform the new design points to avoid 
entrapments in local optimum and continue search to 
approach near-optimal solutions. The methods of this 
type include simplex’s family and Variable 
Neighborhood Search (VNS) methods.  

 The simplex’s family methods are robust to lower 
levels of inaccuracies or stochastic perturbations in 
function values. It only uses the ranks of the function 
values to determine the next move, not from the 
function values. However, the global optimization 
searching ability depends on whether the initial design 
point is located on the nearby of the design point or not. 
They own the merit of a better search speed for a local 
optimization problem and results in the deficiency of 
globally searching ability. The VNS is a technique that 
exploits the idea of neighborhood structure change in a 
systematic way, both in the descent to local optima and 
in the escape from the valleys which contain them tries 
to escape from a local optimum by changing the 
neighborhood structure. After obtaining a neighboring 
solution to the current solution, the VNS executes a 
local search until a local optimum is reached and moves 
to it if there has been an improvement in modifying the 
neighborhood structure. Otherwise, there is a systematic 
change in the neighborhood. 
 Effective optimization algorithms depend on their 
accuracy and their searching ability for global optimum. 
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The VNS has been applied to the computer science 
field in order to enhance the global optimization 
searching ability (Aungkulanon and Luangpaiboon, 
2010). While the simplex’s family methods and the 
VNS are both categorized into the primitive stage, that 
is, both of them are a direct search scheme without 
gradient information. Thus, it has a fast searching 
ability and has been widely applied to improve the 
design point of the global optimization problems (Gao 
et al., 2008). However, there are some disadvantages 
among both methods. The better searching ability for 
the global optimization problem and the characteristics 
of intensity and diversity during the sequential 
procedures are then expected after the integration. 
 The objective of this study is to investigate the 
choice of the best simplex design based method with 
the fine-tuning characteristic of the VNS for 
optimization of nonlinear continuous unconstrained 
functions and constrained models. This study describes 
various selected simplex’s family methods of the 
modified simplex, super modified simplex and 
weighted centroid simplex including the variable 
neighborhood search method. Experimental results and 
analyses are performed to compare the performance of 
the proposed variable neighborhood simplex search 
methods. The conclusion is also summarized and it is 
followed by acknowledgment and references.  
 

MATERIALS AND METHODS 
 
Modified Simplex Method (MSM): The simplex 
algorithm is based on the geometry and the simplex 
design is composed of a k-dimensional polyhedron with 
k+l equidistant design points or linearly independent 
vertices. For k equal to two, this simplex is an 
equilateral triangle composed of 3 vertices in 2-
dimension space, for k equal to three any four design 
points in a different plane can form a tetrahedron. 
Therefore, according to the k-dimensional problem, a 
simplex is a geometrical figure consisting, in k 
dimensions, of (k+1) design points and then, the 
objective function of those design points can be 
obtained and compared. After each step, decisions 
are required to determine in which direction the 
simplex must move.  
 The new symmetrical simplex consists of one new 
point and k design points from the previous simplex or 
discarding the worst point and replacing it with a new 
point. Repetition of simplex reflection and objective 
function measurement form the basis for the most 
elementary simplex algorithm. This iterative process is 
based on gradually moving away from the experiment 
with the worst result in a simplex toward the optimum. 
The rigid simplex method appears to have been first 
proposed by Spendley et al. Many modifications to the 
original simplex method have been developed.  

 
 
Fig. 1: Different simplex moves from the rejected trial 

condition (W). C = Centroid, R = Reflection, E 
= Expansion, PC = Positive Contraction and NC 
= Negative Contraction 

 
 Nelder and Mead (1965) modified a rigid simplex 
method to allow various procedures to adapt to the 
global optimization much more readily. This method is 
referred to modified simplex method (MSM). MSM 
allows the simplex to converge more rapidly towards an 
optimum by expansion and multiple ways of simplex 
contraction along the line of conventional reflection in 
order to speed up the convergence (Fig. 1). When the 
result becomes more preferable, an expansion with a 
preset coefficient is performed, to stretch the move 
beyond the simple reflection. 
 In some cases when the outcome is more desirable 
than the worst one, but still worse than all the 
remaining outcomes, a contraction with a preset 
coefficient level is used to shorten the move in 
comparison to the reflection. Moreover, massive 
contractions are performed when the new result gets 
worse than any of the previous ones. In this case the 
size of the simplex is reduced by contracting each of 
its edges to one half of its previous length toward the 
vertex producing the best outcome. A new simplex is 
thus generated with k new measurements and the 
sequential optimization procedures are repeated. 
When the contraction approaches to the convergence 
criterion, this replacing process stops, that is, the 
iteration stops (Fig. 2).  
 
Weighted Centroid Simplex Method (WCSM): Ryan 
et al. introduced the weighted centroid simplex method. 
In order to reflect the different influence or different 
design points of the simplex, each point is assigned a 
weight, which is equal to the ratio of the difference of 
objective function values to their geometrical distance 
between this point and the point to be reflected. In doing 
so, each point is treated differently according to its 
contribution to the potential reduction of the objective 
function. In general, for a k-variable problem, the 
direction for the next search is obtained by combining 
those weights in the simplex. WCSM proceeds in a 
manner entirely analogous to MSM (Fig. 2) with the 
only exception of WC. 
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Fig. 2: Pseudo code of the MSM 
 

 
 
Fig. 3: Pseudo code of the SMSM sub-procedure 
 
The centroid C is replaced by the weighted centroid 
WC of hyperface opposite W in the reflected 
equation by: 
 

R(i) R(W) i
WC

R(i) R(W)

−
=

−
∑
∑

 

 
where, R(i) represents the response at the point i and 
R(W) represents the response at the weakest point W. 
Notice that the point W is not included in either 
summation. 
 
Super Modified Simplex Method (SMSM): It was 
created by Routh et al. The SMSM determines the new 
design point in the same manner of the MSM with some 
exceptions before the normal reflection of W. However, 
the SMSM takes advantage of fitting a second order 

polynomial curve through the W, C and R vertices (Fig. 
3) and further extrapolates the curve beyond the worst 
and reflected design points by a percentage of the W–R 
vector. SMSM procedures thus allow the new vertex 
the freedom of design point at a nearly the vector 
joining W and R plus the extensions of the vector as 
dictated by the expansion coefficient 

of OPT

R(R) 4R(C) 3R(W)

2R(R) 4R(C) 2R(W)

− +β =
− +

. The W–R vector of is 

terminated at the design point where the boundary 
constraint is intersected by the vector and the design 
point is then considered an effective R (R’). The yield 
is evaluated at R’, the second polynomial curve is fitted 
through the yields at W and R’ and the new vertex 
location determined. 
 However, the predicted optimum should occur at or 
very near the Centroid (C) of the new vertex. At this 
point it would reduce the dimensionality of the process 
and would virtually terminate any further progress of 
the simplex design in one or more dimensions. Thus, a 
safety interval controlling such a move is used to locate 
the new vertex with a percentage of the factor domain 
away from the centroid.  
 
Variable Neighborhood Search (VNS): In order to 
solve the problem presented in this study, the 
simplex’s family methods are modified and designed 
by the metaheuristic strategies of Variable 
Neighborhood Search (VNS) initially introduced by 
Mladenovic and Hansen (1997). The solutions 
obtained with these hybrid methods are compared with 
the ones obtained with what may be the conventional 
methods for obtaining the optimum (Imran et al., 
2009). The strategy for the VNS involves iterative 
exploration and tries to escape from a local optimum 
by changing the neighborhood structure in a 
systematic way to approach the optimum.  
 Each time in a local search routine for optimization 
the basic idea of VNS meta-heuristic is to use more 
than one neighborhood structure and to proceed to a 
systematic change of them within a local search. VNS 
remains in the same design point until another solution 
better than the incumbent is found and then jumps 
there. The method, without forbidden moves, then 
escapes from the current solution to a new one. 
Neighborhoods are usually ranked in such a way that 
intensification of the survey around the current design 
point is naturally followed by diversification controlled 
by a set of parameters. VNS also allows a controlled 
increase during the iterative improvement. The pseudo 
code of the VNS is shown in Fig. 4.  
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Fig. 4: Pseudo code of the VNS metaheuristic 
 
Test models: Three simplex’s family methods with 
some modifications from the VNS can be applied to 
engineering optimization problems with continuous 
design variables. Several examples taken from the 
standard benchmark engineering optimization literature 
are used to show how the proposed approaches work 
(Zhao et al., 2009). These examples have been 
previously solved using a variety of other techniques, 
which is useful to demonstrate the validity, 
effectiveness and robustness of the proposed variants 
on the variable  neighborhood  simplex  search. There 
are 100 realizations in each model. For each model, the 
Key Performance Indices (KPI) of central tendency, 
dispersion and robustness are represented by the 
Average (Av), Standard deviations (Sd) of these 
objective function values and the Taguchi Signal to 
Noise ratio (SN). Signal to Noise ratio will present 
sensitivity of response to noises or uncontrollable 
factors. This ratio is used to point out stability of the 
design system and quality of chosen design’s factors. 
The minimum (Min) and maximum (Max) of the yields 
are also included for the constrained models. 
 On the first scenario, eight stochastic non-linear 
unconstrained mathematical functions in the context of 
response surface with two variables were used to test 
performance measures of the related methods whilst 
searching for the maximum. They consist of Parabolic 
(PA), Shekel (SH), Rosenbrock (RO), Branin (BR), 
Camelback (CA), Goldstein-Price (GO), Rastrigin (RA) 
and Styblinski (ST) functions. Each of these test 
functions has a unique nature. The test functions were 
randomized by adding a normal and independent 
distributed error term or noise with zero mean and 
standard deviation of 0.0, 1.0, 2.0 and 3.0. Each 

optimization run uses independent random number 
streams.  Secondly, four constrained mathematical 
models are applied to determine the best parameter 
choice as follows.  
 
Constrained model # 1:  
 

3
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Constrained model # 2:  
 

1 2 1 2
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Constrained model # 3:  
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2 4 2 4 2 3
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Constrained model # 4:  
 

1 2 3 4

2
5 i
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5
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=
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+ + ≤
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 It is assumed that an initial design point of 
variables which satisfies all the constraints is available. A 
design point selected must satisfy the explicit constraints, 
but need not satisfy all the implicit constraints. If an 
implicit constraint is violated or a design point is found 
to be infeasible, a new design point is created using the 
previously generated feasible design points. 
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RESULTS 
 
 The hybrid algorithms of simplex’s family methods 
and the VNS are compared with respect to accuracy, 
consistency and computational effort. For all stochastic 
functions and for the manufacturing models, there is an 
overall significant difference between the hybrid 
optimization methods with respect to accuracy for both 
the smallest errors and higher levels of the errors of the 
optimization runs. For the manufacturing models the 
Variable Neighbourhood Simplex Search (VNSS) 
based methods of VMSM (I), VWCSM (II) and 
VSMSM (III) were tested using both one large 
simulation run and have smaller simulation runs to 
evaluate a design point. There is no statistically significant 
difference  in  accuracy or consistency among them. The 
results for the stochastic functions with respect to the 
accuracy, consistency and computational effort of the 
hybrid methods when considering the errors at the 
lowest and highest levels of 0.0 and 3.0 are shown in 
Table 1 and 2, respectively. The overall results on all 
hybrid methods are summarized in Table 3. 
 
Table 1: Results for continuous functions without noise  
Method/KPI PA SH RO BR CA GO RA ST 
I Av 12.00 18.90 80.00 3.70 10.00 9.52 74.1 353.00 
 Sd 0.00 0.17 0.00 0.01 0.66 0.00 1.95 0.88 
 SN 21.50 25.50 38.10 11.40 19.90 19.60 37.3 50.90 
II Av 12.00 18.80 80.00 3.70 9.91 9.50 76.3 351.00 
 Sd 0.00 0.30 0.00 0.00 0.76 0.06 1.87 4.47 
 SN 21.50 25.50 38.00 11.30 19.80 19.50 37.6 50.90 
III Av 11.90 18.30 79.90 3.70 9.77 8.69 77.0 353.00 
 Sd 0.01 0.45 0.00 0.02 0.17 0.50 1.85 0.33 
 SN 21.50 25.20 38.00 11.30 19.70 18.70 37.7 50.90 

 
Table 2: Results for continuous functions with the noise standard 

deviation of 3.0 
Method/ KPI PA SH RO BR CA GO RA ST 
I Av 11.90 18.80 79.90 3.68 9.71 9.40 75.80 353.00 
 Sd 0.01 0.08 0.06 0.04 0.61 0.14 2.43 0.87 
 SN 21.50 25.50 38.00 11.30 19.70 19.40 37.50 50.90 
II Av 11.90 18.80 79.90 3.56 9.72 9.21 76.60 351.00 
 Sd 0.04 0.16 0.10 0.35 0.35 0.51 4.03 4.50 
 SN 21.50 25.50 38.00 10.80 19.70 19.20 37.60 50.90 
III Av 11.90 18.50 79.90 3.64 9.74 7.54 76.10 353.00 
 Sd 0.06 0.39 0.08 0.15 0.43 1.46 2.26 0.16 
 SN 21.50 25.30 38.00 11.10 19.70 17.00 37.60 50.90 

 
Table 3: Overall results for continuous functions where there is an 

increase of noise 
 Av   Sd   SN 
 ----------------------- ---------------------- --------------------  
KPI I II III I II III I II III 
PA  �   � �  � � 
SH � �  � �  � � 
RO � �  �   � 
BR �  � �   � 
CA � �   � � � � 
GO � �  � �  � � 
RA  � �  � �  � � 
ST �  �   � 

 When there is no noise the selected performance 
measures of hybrid methods are not statistically 
different when compared. Generally, the average (Av), 
the sample Standard deviation (Sd) and the Signal to 
Noise ratio (SN) of actual objective function values 
deteriorate when there is an increase of noise on the 
objective function values as shown in Fig. 5-7, 
respectively (Lan, 2010; 2011; Kumar et al., 2009). 
However, on all performance measures the VMSM 
performs better than other versions of VNSS based 
methods. When the Sd and SN performance measures 
are considered the preferred methods seem to be the 
VSMSM and VWCSM, respectively.  
 Moreover, the controllable parameters of the 
simplex’s family methods such as the simplex size, 
an increase of simulation size or replicates, can even 
be chosen in such a way that the hybrid methods 
perform substantially better than the conventional 
method with  respect  to  accuracy   and  consistency. 
 
Table 4: Results for the constrained model #1 
 Yield   Execution time 
 ------------------------------------ ------------------------------------- 
KPI/Method I II III I II III  
Av -0.131 -0.083 -0.086 149.550 1043.900 148.880 
Sd 0.000 0.005 0.004 1.200 29.443 1.021 
SN 17.598 21.553 21.302 - - - 
Min -0.132 -0.088 -0.088 147.600 1023.400 147.210 
Max -0.132 -0.074 -0.075 151.530 1103.500 150.520 

 

 
 
Fig. 5: Av on Goldstein-price function 
 

 
 
Fig. 6: Sd on Goldstein-Price function 
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Fig. 7: SN on Goldstein-price function 
 
Table 5: Results for the constrained model # 2 
 Yield   Execution time 
 ------------------------------------ ----------------------------------- 
KPI/Method I II III I II III 
Av -82.343 -63.191 -63.614 128.760 1054.600 149.890 
Sd 0.916 6.260 4.566 0.700 25.312 1.555 
SN 38.333 36.042 36.089 - - - 
Min -83.083 -75.961 -74.778 127.860 1040.200 147.610 
Max -79.667 -53.025 -56.508 129.970 1106.600 152.330 

 
Table 6: Results for the constrained model # 3 
 Yield   Execution time 
 ---------------------------------- ------------------------------------ 
KPI/Method I II III I II III 
Av -5.444 -0.336 -0.447 194.170 1043.700 194.230 
Sd 0.279 0.001 0.008 0.292 25.332 0.335 
SN 14.725 9.472 6.993 - - - 
Min -5.714 -0.338 -0.459 194.060 1031.200 194.080 
Max -4.706 -0.334 -0.434 195.200 1094.900 195.430 

 
Table 7: Results for the constrained model # 4 
 Yield   Execution time 
 ------------------------------------ ---------------------------------  
KPI/Method I II III I II III  
Av -208.990 -200.550 -200.740 292.060 563.020 293.100 
Sd 3.004 0.691 0.455 0.746 2.542 1.021 
SN 46.403 46.045 46.053 - - - 
Min -212.710 -201.160 -201.330 291.560 558.770 291.600 
Max -204.150 -198.760 -200.070 293.860 568.040 293.920 

 
The improvement found for any hybrid method depends 
on the nature of the objective function. On the rather 
complex function such as the combined multi-peak and 
curved ridge surface the hybrid methods perform better. 
For all hybrid methods, the improvement in accuracy 
and consistency is achieved at the cost of an increase in 
the computational effort. For most objective functions 
we found that the VMSM needs less additional 
computational  effort  than the  other  hybrid   methods. 
We conclude that the VMSM is effective modification 
of the simplex’s family methods in view of its accuracy 
and computational effort. 
 For a study of the constrained models, the 
numerical results are given in Table 4-7. Generally 
compared to the benchmark optimization and 
approximation algorithms, the VNSS based methods 

need more computational effort than the algorithms that 
use the same criterion but an increase of the number of 
simulation runs were mainly used to evaluate a vertex 
for the success of all the related constraints. We found 
that applying the VMSM can lead to substantially more 
accurate and consistent results without the cost of extra 
computational effort when compared to other hybrid 
methods. However, if optimizing the manufacturing 
models using the conventional algorithms would lead to 
at least the same results as optimizing with the VNSS 
based methods then there would be no point in using 
the hybrid algorithms. 
 

DISCUSSION 
 
 The proposed hybrid methods are the Variable 
Neighborhood Simplex Search (VNSS) based methods. 
These VNSS based methods adopt the design point 
evolution process of the VNS via the systematic 
neighbourhood change and introduce the searching 
mechanism of the simplex’s family methods for 
generating the new generation. With the VNS 
evolution, “in the descent to local minima and in the 
escape from the valleys”, the proposed hybrid methods 
combine the evolution method and the simplex design 
based methods with respect to their own merits to deal 
with the global optimization. 
 The VMSM is useful for the optimization of 
stochastic functions. However, the amount of noise in 
the functions largely determines the success of the 
optimization procedure. The study described in this 
research is designed to improve the performance of the 
VNSS based methods when applied to the optimization 
of very noisy functions. Several conventional adaptive 
extensions after Nelder and Mead which are the super 
modified simplex and weighted centroid methods are 
tested using stochastic functions and representative 
constrained models of simulated manufacturing 
processes. These conventional adaptive extensions 
include algorithms that combine the weights in the 
simplex and fit a second order polynomial curve 
through all relevant vertices during an optimization run. 
 We also compared the extended hybrid methods to 
benchmark algorithm based on the original methods. 
We found that a relatively simple extension of the 
VMSM simplex method is able to detect when noise 
obstructs the optimization process and consequently, 
indicate the moments when the evolution process of the 
VNS is needed to successfully continue the constrained 
models. For the constrained models and for most of the 
stochastic functions, gradually increasing the realization 
or the number of simulation runs used for a function or 
model evaluation, can lead to considerable 
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improvements in accuracy and consistency of the 
observed optimal design points.  
 The amount of computational effort required by all 
hybrid methods, which apply to constrained models, is 
less dependent on the number of constraints. The 
evaluation of manufacturing models is often very time-
consuming and the VMSM is to be preferred over the 
use of the original benchmark algorithm with the 
context of the Box complex method and an expensively 
large simulation size. In the tests described in this 
research a maximal number of evaluations to end the 
optimization process are applied.  
 However, in applications, the use of more 
sophisticated termination criteria should be concerned. 
Furthermore, the choice of the initial simplex size 
should be also considered. It could emphasize the fact 
that the simplex’s family methods are the local search 
method, no guarantee is given for finding the global 
optimum. Therefore, multiple starting design points 
and/or multiple searches from the same starting design 
point should always be tried. However, in this study 
there is no experiment on the effect of previous 
concerns, since the performance of single applications 
of the hybrid methods was primarily of interest. 
 

CONCLUSION 
 
 In this study, we present new approaches based on 
the variable neighborhood simplex search for solving 
both stochastic and simulated process models. The 
methodology combines and extends the attractive 
features of both simplex’s family methods and the 
VNS. There are two interesting issues to be 
investigated. Firstly, it is the determination of the 
robust-to-noise methods that apply their adaptive 
measures to all vertices used during iterative processes. 
Secondly, robust-to-constraint approach can also be 
chosen among modified methods. Heuristics main aims 
are to provide, in reasonable time, near-optimal 
solutions to stochastic, constrained or unconstrained 
optimization problems and to accelerate many steps via 
knowledge discovery and systematic systems.  
 Experimental results show that the VMSM is 
practically efficient to find the optimum on both 
interesting issues and may be very helpful in studying 
optimization problems in actual engineering systems. 
The VMSM adopts the search approach of the simplex 
method and introduces the variable neighborhood 
search concept and thus, this can have the greater 
populations for searching. Besides, the VMSM has the 
expansion and contraction operations with the reflection 
of the different influence or different design points to 
search for the global optimization so that the VMSM 
can provide designer various possible strategies.  

 In addition to considering alternative 
improvements of the variable neighborhood simplex 
search based methods, the question how this method 
compares to other hybrid algorithms with recent 
stochastic element of hunting search and harmony 
search in the optimization of stochastic objective 
functions and constrained models remains to be 
addressed as well. In addition to considering hybrid 
improvements of the simplex’s family methods with 
other recent metaheuristics, the question how these 
simplex’s family methods depend on the parameters 
such as the process of the additional re-evaluation 
measures of problem objective function values, the 
multiple initial simplex design points and the process of 
increasing simulation size or number of replicates, 
could be also investigated to deal with the dynamics 
information during optimization runs. 
 

ACKNOWLEDGMENT 
 
 This work was supported by the Higher Education 
Research Promotion and National Research University 
Project of Thailand, Office of the Higher Education 
Commission. An author gratefully acknowledges the 
computing assistance of Anantasak Sangchan in the 
early phase of this research. 
 

REFERENCES 
 
Aungkulanon, P. and P. Luangpaiboon, 2010. 

Hybridisations of variable neighbourhood search 
and modified simplex elements to harmony search 
and shuffled frog leaping algorithms for process 
optimisations. AIP Conf. Proc., 1285: 44-58. DOI: 
10.1063/1.3510568 

Gao, J., S. Linyan and G. Mitsuo, 2008. A hybrid 
genetic and variable neighborhood descent 
algorithm for flexible job shop scheduling 
problems. Comput. Operat. Res., 35: 2892-2907. 
DOI: 10.1016/j.cor.2007.01.001 

Imran, A., S. Salhi and N.A. Wassan, 2009. A variable 
neighborhood-based heuristic for the 
heterogeneous fleet vehicle routing problem. Eur. 
J. Operat. Res., 197: 509-518. DOI: 
10.1016/j.ejor.2008.07.022 

Kumar, R.S., N. Alagumurthi and R. Ramesh, 2009. 
Calculation of total cost, tolerance based on 
Taguchi’s, asymmetric quality loss function 
approach. Am. J. Eng. Applied Sci., 2: 628-634. 
DOI: 10.3844/ajeassp.2009.628.634  

Lan, T.S., 2010. Parametric deduction optimization for 
surface roughness. Am. J. Applied Sci., 7: 1248-
1253. DOI: 10.3844/ajassp.2010.1248.1253 



J. Computer Sci., 8 (4): 613-620, 2012 
 

620 

Lan, T.S., 2011. Fuzzy parametric deduction for 
material removal rate optimization. J. Math. Stat., 
7: 51-56. DOI: 10.3844/jmssp.2011.51.56 

Mladenovic, N. and P. Hansen, 1997. Variable 
neighborhood search. Comput. Operat. Res., 24: 
1097-1100. DOI: 10.1016/S0305-
0548(97)00031-2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nelder, J.A. and R. Mead, 1965. A simplex method for 
function optimization. Comput. J., 7: 308-313.  

Zhao, Q.H., D. Urosevic, N. Mladenovic and P. 
Hansen, 2009. A restarted and modified simplex 
search for unconstrained optimization. Comput. 
Operat. Res., 36: 3263-3271. DOI: 
10.1016/j.cor.2009.03.005 


