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Abstract:  Problem statement: Over the last two decades, Fault Diagnosis (FD) has a major 
importance to enhance the quality of manufacturing and to lessen the cost of product testing. Actually, 
quick and correct FD system helps to keep away from product quality problems and facilitates 
precautionary maintenance. FD may be considered as a pattern recognition problem. It has been 
gaining more and more attention to develop methods for improving the accuracy and efficiency of 
pattern recognition. Many computational tools and algorithms that have been recently developed could 
be used. Approach: This study evaluates the performances of three of the popular and effective data 
mining models to diagnose seven commonly occurring faults of the steel plate namely; Pastry, 
Z_Scratch, K_Scatch, Stains, Dirtiness, Bumps and Other_Faults. The models include C5.0 decision 
tree (C5.0 DT) with boosting, Multi Perception Neural Network (MLPNN) with pruning and Logistic 
Regression (LR) with step forward. The steel plates fault dataset investigated in this study is taken 
from the University of California at Irvine (UCI) machine learning repository. Results: Given a 
training set of such patterns, the individual model learned how to differentiate a new case in the 
domain. The diagnosis performances of the proposed models are presented using statistical accuracy, 
specificity and sensitivity. The diagnostic accuracy of the C5.0 decision tree with boosting algorithm 
has achieved a remarkable performance with 97.25 and 98.09% accuracy on training and test subset.  
C5.0 has outperformed the other two models. Conclusion: Experimental results showed that data 
mining algorithms in general and decision trees in particular have the great impact of on the problem 
of steel plates fault diagnosis. 
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INTRODUCTION  
 
 A fault may be defined as an unacceptable 
difference of at least one characteristic property or 
attribute of a system from acceptable usual typical 
performance. Therefore, fault diagnosis is the 
description of the kind, size, location and time of 
discover of a fault. The main purpose of any fault 
diagnosis system is to determine the location and 
occurrence time of possible faults on the basis of 
accessible data and knowledge about the performance 
of diagnosed processes. Manual fault diagnosis system 
is the traditional way where an expert with electronic 
meter tries to obtain some information about relevant 
operational equipment, check the maintenance manual 
and then diagnosed the probable causes of a particular 
fault.  However, intelligent fault diagnosis techniques 
can provide quick and correct systems that help to keep 
away from product quality problems and facilitates 
precautionary maintenance.  These intelligent systems 
have been used different artificial intelligent and data 

mining models and they should be simple and efficient. 
Decision tree, support vector machine, fuzzy logic 
algorithm, neural network and statistical algorithms are 
alternative approaches that are commonly employed 
nowadays in the industrial context to detect the 
occurrence of failure or faults (Seng-Yi and Chang, 
2011). The numbers of fault diagnosis papers that are 
published in the sciencedirect database in 2010, 2011 
and 2012 (in press) are 512, 732 and 39 studys 
respectively (searching date 31-10-2011). Faults 
diagnosis problems are representing challenging and 
attracting applications for experts and researchers. 
Recent reviews articles can be found in (Faiz and 
Ojaghi, 2009; Venkatasubramanian et al., 2003a; 
2003b; Zhang and Jiang, 2008; Ma and Jiang, 2011; 
Maurya et al., 2007).  
 This study evaluates the performances of three of 
the popular and effective data mining models to 
diagnose seven commonly occurring faults of the steel 
plate namely; Pastry, Z_Scratch, K_Scatch, Stains, 
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Dirtiness, Bumps and Other_Faults.  The models 
include C5.0 decision tree (C5.0 DT) with boosting, 
Multi Perceptron Neural Network (MLPNN) with 
pruning and logistic regression (LR) with step forward. 
DTs focus on conveying the relationship among the 
rules that expressed the results. They have expressive 
design and allow for non-linear relations between 
independent attributes and their outcomes and isolates 
outliers. The C5.0 DT model is a recent invented DT 
algorithm; it includes discretization of numerical 
attributes using information theory based functions, 
boosting, pre and post-pruning and some other state-of-
the-art options for building DT model. Logistic 
Regression (LR), also known as nominal regression, is a 
statistical technique for classifying records based on 
values of input attributes. It is similar to linear regression 
but takes a categorical target field instead of a numeric 
one. LR works by building a set of equations that relate 
the input attribute values to the probabilities associated 
with each of the output attribute categories. Once the 
model is generated, it can be used to estimate probabilities 
for new data. For each record, a probability of membership 
is computed for each possible output category. The target 
category with the highest probability is assigned as the 
predicted output value for that record (Maalouf, 2011). A 
neural network, sometimes called a multilayer perception, 
is basically a simplified model of the way the human brain 
processes information. It works by simulating a large 
number of interconnected simple processing units that 
resemble abstract versions of neurons. The processing 
units are arranged in layers. There are typically three 
parts in a neural network: an input layer, with units 
representing the input fields; one or more hidden layers 
and an output layer, with a unit or units representing the 
output field (s). The units are connected with varying 
connection strengths or weights.  
 

MATERIALS AND METHODS 
 
Steel plate’s faults dataset: The Steel Plates Faults 
Data Set used in the study comes from the UCI 
Machine Learning Repository (Frank and Asuncion, 
2010). Steel Plates Faults Data Set is one of the datasets 
in the Repository, which classifies steel plates’ faults 
into 7 different types: Pastry, Z_Scratch, K_Scatch, 
Stains, Dirtiness, Bumps and Other_Faults. The goal 
was to train machine learning for automatic pattern 
recognition. The dataset includes 1941 instances, which 
have been labeled by different fault types. Table 1 
shows class distribution and list of attributes. The 
detailed information and the whole dataset can be 

accessed from 
http://archive.ics.uci.edu/ml/datasets/Steel+Plates+Fau
lts. The dataset was donated by Semeion, Research 
Center of Sciences of Communication, Via Sersale 
117, 00128, Rome, Italy. The first used of the dataset 
in July 2010 (Buscema et al., 2010). Each instance of 
the dataset owns 27 independent variables and one 
fault type. 
 
Literature review: Artificial Intelligence (AI) tools are 
introduced for enhancing the accuracy of faults 
identification.  In (Leger et al., 1998) the author 
examined the feasibility of applying cumulative 
summation control charts and artificial neural networks 
together for fault diagnosis. Simani and Fantuzzi (2000) 
proposed a two-stage faults diagnosis method to test a 
neural network model of a power plant. Lo et al. (2002) 
tried to address the problem of fault diagnosis via 
integration of genetic algorithms and qualitative bond 
graphs. Hung and Wang (2004) presented a novel 
cerebellar model articulation controller neural network 
method for the fault diagnosis of power transformers. 
Dong et al. (2008) combined rough set and fuzzy 
wavelet neural network to diagnose faults of power 
transformers, concluding that the diagnosis accuracy 
may be limited by the hidden layer numbers and 
correlated training parameters of neural networks. Lau 
et al. (2010) presented an adaptive neuro–fuzzy 
inference system for online fault diagnosis of a gas-
phase polypropylene production process. Eslamloueyan 
(2011) proposed a hierarchical artificial neural network 
for isolating the faults of the Tennessee–Eastman 
process, which was proved efficient. 
 
Classification models:  
Decision tree: DT models are powerful classification 
algorithms. They are becoming increasingly more 
popular with the growth of data mining applications 
(Nisbet et al., 2009). As the name implies, this model 
recursively separates data samples into branches to 
construct a tree structure for the purpose of improving 
the classification accuracy. Each tree node is either a 
leaf node or decision node. All decision nodes have 
splits, testing the values of some functions of data 
attributes. Each branch from the decision node 
corresponds to a different outcome of the test. Each leaf 
node has a class label attached to it. General algorithm 
to build a DT is as follows: 
 
• Start with the entire training subset and a vacant 

tree 
• If all training samples at the current node n are of 

the same class label c, then the node becomes a leaf 
node with label c 
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• Or else, select the splitting attribute x that is the 
most important in separating the training samples 
into different classes. This attribute x becomes a 
decision node 

• A branch is created for each individual value of x 
and the samples are partitioned accordingly 

• The process is iterated recursively until a certain 
value of specified stopping criterion is achieved   

 
 Different DT models use different splitting 
algorithms that maximize the purity of the resulting 
classes of data samples. Popular DT models include 
ID3, C4.5 (Quinlan, 1986; 1993), CART (Breiman, 
1984), QUEST (Loh and Shih, 1997), CHAID (Berry 
and Linoff, 1997) and C5.0. Common splitting 
algorithms include Entropy based information gain 
(used in ID3, C4.5, C5.0), Gini index (used in CART) 
and Chi-squared test (used in CHAID).  This study uses 
the C5.0 DT algorithm which is an improved version of 
C4.5 and ID3 algorithms.  It is a commercial product 
designed by Rule Quest Research Ltd Pty to analyze 
huge datasets and is implemented in SPSS Clementine 
workbench data mining software. C5.0 uses information 
gain as a measure of purity, which is based on the 
notion of entropy as in Eq. 1 and 2. If the training 
subset consists of n samples (x1,y1),…,(xn,yn), xi∈Rp is 
the independent attributes of the sample i and yi is a 
predefined class Y={c1,c2,…,ck}. Then the entropy, 
entropy(X), of the set X relative to this n-wise 
classification is defined as: 
 

n

i 2 i
i 0

entropy(X) ( p log p )
=

= −∑   (1) 

 
where, pi is the ratio of X fitting in class ci.   
 Information gain, gain(X, A) is simply the 
expected reduction in entropy caused by partitioning 
the set of samples, X, based on an attribute A:  
 

( ) ( ) v
v

v values(A)

X
gain X,A entropy X entropy(X )

X∈

= − ∑  (2) 

 
where, values(A) is the set of all possible values of 
attribute A and Xv is the subset of X for which attribute A 
has the attribute value v, i.e., Xv = {x ∈ X | A(x) = v}. 
 Boosting, winnowing and pruning are three 
methods used in the C5.0 tree construction; they 
propose to build the tree with the right size (Berry and 
Linoff, 1997). They increase the generalization and 
reduce the over fitting of the DT model.  Boosting is a 
method for combining classifiers; it works by building 
multiple models in a sequence. The first model is built 

in the usual way. Then, the second model is built in 
such a way that it focuses on the samples that were 
misclassified by the first model. Then the third model is 
built to focus on the second model's errors and so on 
(Nisbet et al., 2009). When a new sample is to be 
classified, each model votes for its predicted class and 
the votes are counted to determine the final class. 
Winnowing method investigates the usefulness of 
predictive attributes before starting to build the model 
(Lau et al., 2010). This ability to pick and choose 
among the predictive attributes is an important 
advantage of tree-based modeling techniques. 
Winnowing method preselect a subset of the attributes 
that will be used to construct the tree. Attributes that are 
irrelevant are excluded from the tree-building process. 
 In case of the current steel plate dataset, only 13 
attributes have been selected to build the tree. Pruning 
is the last method used to increase the performance of 
the C5.0 DT model here. It consists of two steps; pre-
pruning and post-pruning (Eslamloueyan, 2011).  Pre-
pruning step allows only nodes with minimum number 
of samples (node size). Post-pruning step reduces the 
tree size based on the estimated classification errors.  
 
Multilayer perceptron neural network: Artificial 
Neural Networks (ANNs) are normally known as 
biologically motivated and highly sophisticated 
analytical techniques. They are capable of modelling 
extremely complex non-linear functions. Formally 
defined, ANNs are analytic techniques modelled after 
the processes of learning in the cognitive system and 
the neurological functions of the brain and capable of 
predicting new patterns (on specific attributes) from 
other patterns (on the same or other attributes) after 
executing a process of so-called learning from existing 
data (Haykin, 2009). Multilayer Perceptron Neural 
Network (MLPNN) with back-propagation is the most 
popular ANN architecture. MLPNN is known to be a 
powerful function approximator for prediction and 
classification problems. MLPNN’s structure is 
organized into layers of neurons input, output and 
hidden layers. There is at least one hidden layer, where 
the actual computations of the network are processed. 
Each neuron in the hidden layer sums its input 
attributes xi after multiplying them by the strengths of 
the respective connection weights wij and computes its 
output yj using Activation Function (AF) of this sum. 
AF may range from a simple threshold function, or a 
sigmoidal, hyperbolic tangent, or radial basis function 
Eq. 3: 
  

i ij iy f ( w x )= ∑  (3) 

 
where, f is the activation function 
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Fig. 1: Three-layer neural network for steel plates 

faults diagnosis 
 
 Back-Propagation (BP) is a common training 
technique for MLPNN. BP works by presenting each 
input patterns to the network where the estimated 
output is computed by performing weighted sums and 
transfer functions. The sum of squared differences 
between the desired and estimated values of the output 
neurons E is defined as: 
 

2
dj j

i

1
E (y y )

2
= −∑  (4) 

 
where, ydj is the desired value of output neuron j and yj 
is the estimated output of that neuron. 
 In Equation 3, each weight wij  is adjusted to reduce 
the error E of Eq. 4 as fast, quickly as possible. BP 
applies a weight correction to reduce the difference 
between the network estimated outputs and the desired 
ones; i.e., the neural network can learn and can thus 
reduce the future errors (Quinlan, 1993; Berry and 
Linoff, 1997).  
 Figure 1 shows the architecture of three layers 
perceptron neural network used for the diagnosis of 
Steel plates faults. Although, BP is standard, simple to 
implement and in general it works well, it has slow 
convergence approach and can get stuck in local 
minima (Haykin, 1994). Another drawback of MLPNN 
models is that they require the initialization and 
adjustment of many individual parameters to optimize 
their performance. In this study, the network is trained 
using the pruning approach to find the optimal network 
structure (Chaudhuri and Bhattacharya, 2000; Thimm et 
al., 1996). The network starts with a large network and 
removes (prunes) the weakest neurons in the hidden and 
input layers as training proceeds. 
 
Logistic regression: Logistic Regression (LR) is a 
generalization of linear regression (Maalouf, 2011). It is 
a nonlinear regression technique for prediction of 
dichotomous (binary) class attribute in terms of the 
predictive ones. The class attribute represent the status 
of the consumer (creditworthy, y = 1 or Not 

creditworthy, y = 0). Actually, the algorithm does not 
predict the class attribute but predicts the odds of its 
occurrence.  The expected probability of a positive 
outcome P(y=1) for the class attribute is modeled as 
follows: 
 

 

n
0 i ii 1

(B B x )

1
P(y 1)

1 e =
− +

= =
∑+

 (5) 

 
where, xi, i = 1,…,n are the predictive attributes with 
real values, Bi are the corresponding regression 
coefficients and B0 is a constant, all of which contribute 
to the probability. 
 While LR is a very powerful modeling tool, it 
assumes that the class attribute (the log odds, not the 
event itself) is linear in the coefficients of the predictive 
attributes (Bewick et al., 2005). Eq. 5 is reduced to a 
linear regression model for the logarithm of Odds Ratio 
(OR) of positive outcome, i.e.: 
 

 

n
i 10 i i

P(y 1)
ln B B x

1 P(y 1)
=

 = = +∑ − = 
 (6) 

 
 However, the right inputs must be chosen with 
their functional relationship to the class attribute. 
 

RESULTS 
 
 The classification performance of each model is 
evaluated using three statistical measures; classification 
accuracy, sensitivity and specificity which are 
described in Eq. 7, 8 and 9. These measures are defined 
using the values of True Positive (TP), True Negative 
(TN), False Positive (FP) and False Negative (FN).  A 
true positive decision occurs when the positive 
prediction of the classifier coincided with a positive 
prediction of the expert.  A true negative decision 
occurs when both the classifier and the expert suggested 
the absence of a positive prediction.  False positive occurs 
when the classifier labels a negative case as a positive one. 
Finally, false negative occurs when the system labels a 
positive case as negative one. Classification accuracy is 
defined as the ratio of the number of correctly classified 
cases and is equal to the sum of TP and TN divided by the 
total number of cases N: 
 

TP TN
Accuracy

N

+=  (7) 

 
 Sensitivity refers to the rate of correctly classified 
positive and is equal to TP divided by the sum of TP and 
FN.  Sensitivity may be referred as a True Positive Rate: 
 

TP
Sensitivity

TP FN
=

+
 (8) 
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 Specificity refers to the rate of correctly classified 
negative and is equal to the ratio of TN to the sum of 
TN and FP. False Positive Rate equals (100-
specificity): 
  

TN
Specificity

TN FP
=

+
 (9) 

 
 Sensitivity in Equation 8 measures the proportion 
of actual positives which are correctly identified as such 
while specificity in Eq. 9 measures the proportion of 
negatives which are correctly identified. Finally, 
accuracy in Eq. 7 is the proportion of true results, either 
true positive or true negative, in a population. It 
measures the degree of veracity of a diagnostic test on a 
condition.  Fig. 2 demonstrates the component nodes of 
the proposed stream. This stream is implemented in 
SPSS Clementine data mining workbench using Intel core 
2 Dup CPU with 2.1 GHz. Clementine uses client/server 
architecture to distribute requests for resource-intensive 
operations to powerful server software, resulting in faster 
performance on larger datasets. The software offers many 
modeling techniques, such as prediction, classification, 
segmentation and association detection algorithms.  
 Faults dataset node is connected directly to an 
Excel file that contains the source data. The dataset 
includes 1941 instances, which have been labeled by 
one of the prescribed 7 fault types: Pastry, “Z Scratch”, 
“K Scatch”, Stains, Dirtiness, Bumps and “Other 
Faults”. Each instance of the dataset owns 27 
independent variables and one fault type. The dataset is 
explored for incorrect, inconsistent or missing data. 
These predictive attributes are of mixed numeric types; 
flag or range, while the target class is of type nominal.  
Type node specifies the field metadata and properties 
that are important for modeling and other works in 
Clementine. These properties include specifying a 
usage type, setting options for handling missing values, 
as well as setting the role of an attribute for modeling 
purposes; input or output. The first 27 attributes in 
Table 1 are defined as input (predictive) attributes and 
the fault's type is defined as target class. Partition node 
is used to generate a partition field that splits the dataset 
into separate subsets for the training and test the models 
by the ratio of 70:30% respectively. The training subset 
is used to estimate the model parameters, while the test 
one is used to independently assess the individual 
model. These models are applied again to the entire 
dataset and to any new data. Logistic node is trained 
using forward method where the model is built by 
moving forward step by step. With this method, the 
initial model is the simplest model and only the 
constant and terms can be added to the model as in Eq. 
6. At each step, attributes not yet in the model are tested 
based on how much they would improve the model; and 
the best   of   those attributes is added to the model. 

 
 
Fig. 2: Stream of fault diagnosis using three 

classification models: DT, MLPNN and LR 
 
When no more terms can be added, or the best 
candidate term does not produce a large-enough 
improvement in the model, the final model is generated. 
Two min and twenty four seconds are required to build 
this model for the steel plate’s faults dataset. However, 
LR system came out the second best classifier with 
classification accuracies of 73.26% of training and 
72.59% of the test samples. C5.0 node is a boosted 
decision tree model with C5.0 algorithm which is 
trained using pruning and winnowing methods to 
increase the model accuracy.  The number of trails of 
boosting algorithm is 10, the minimum number of 
samples per node is set to be 2 and the system uses 
equal misclassification costs. The high speed property 
is a notable feature of C5.0 DT model; it clearly uses a 
special technique, although this has not been described 
in the open literature. The classification accuracies 
without boosting algorithms are 90.57% of training 
subset and 90.57% for test one while these accuracies 
with boosting algorithms are 97.25 and 98.09%. 
Boosting with 10 trails enhances the accuracies of the 
tree to reach higher accuracies for training and test 
samples. The time required to build single C5.0 tree is 
below one sec. While boosting tree requires 11 seconds 
with ten trails. This model is the best one among the 
probability estimation classifiers. MLPNN classifier 
node is trained using the pruning method (Thimm et al., 
1996).  It begins with a large network and removes the 
weakest neurons in the hidden and input layers as 
training proceeds.  The stopping criterion is set based on 
time. The network is given two min for training.  Using 
the steel plate’s faults dataset, the MLPNN with pruning 
method has achieved 74.79 and 79.14% classification 
accuracies for training and test datasets. The resulting 
structure consists of four layers; one input, two hidden 
layers and the output one with 6, 20, 15 and 7 neurons 
respectively. Filter, Analysis and Evaluation nodes are 
used to select and rename the classifier outputs in order to 
compute the performance statistical measures and to graph 
the evaluation charts.  
 The steel plate's faults dataset is divided for 
training the models and test them by the ratio of 
70:30% respectively.  
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Table 1: Steel plates dataset; class distribution and predictive attributes     
Output class # of Cases ----------------------------------------------Predictive attributes------------------------------------------------------ 
Pastry 158 Attribute 1 X_Minimum Attribute 14 Steel_Plate_Thickness 
Z_Scratch 190 Attribute 2 X_Maximum Attribute 15 Edges_Index 
K_Scatch 391 Attribute 3 Y_Minimum Attribute 16 Empty_Index 
Stains 72 Attribute 4 Y_Maximum Attribute 17 Square_Index 
Dirtiness 55 Attribute 5 Pixels_Areas Attribute 18 Outside_X_Index 
Bumps 402 Attribute 6 X_Perimeter Attribute 19 Edges_X_Index 
Other_Faults 673 Attribute 7 Y_Perimeter Attribute 20 Edges_Y_Index 
  Attribute 8 Sum_of_Luminosity Attribute 21 Outside_Global_Index 
  Attribute 9 Minimum_of_Luminosity Attribute 22 LogOfAreas 
  Attribute 10 Maximum_of_Luminosity Attribute 23 Log_X_Index 
  Attribute 11 Length_of_Conveyer Attribute 24 Log_Y_Index 
  Attribute 12 TypeOfSteel_A300 Attribute 25 Orientation_Index 
  Attribute 13 TypeOfSteel_A400 Attribute 26 Luminosity_Index 
        Attribute 27 SigmoidOfAreas 

 

Table 2: Confusion matrices of individual models and their ensemble for test subset (997 data samples)  
  Output results 
  ------------------------------------------------------------------------------------------------------------------------  
Classifiers Desired results Pastry Z_Scratch K_Scatch Stains Dirtiness Bumps Other_Faults 
C5.0 Pastry 79 0 0 0 0 0 3 
 Z_Scratch 0 89 0 0 0 0 5 
 K_Scatch 0 0 191 0 0 0 1 
 Stains 0 0 0 47 0 0 0 
 Dirtiness 0 0 0 0 22 0 1 
 Bumps 1 0 0 1 1 203 4 
 Other_Faults 1 0 0 0 0 1 347 
MLPNN Pastry 34 4 0 0 2 18 24 
 Z_Scratch 0 84 0 0 0 1 9 
 K_Scatch 0 0 181 0 0 1 10 
 Stains 0 0 0 43 0 2 2 
 Dirtiness 0 0 0 0 16 4 3 
 Bumps 3 4 1 0 4 156 42 
 Other_Faults 12 14 2 0 2 44 275 
LOG Pastry 53 11 0 3 4 4 7 
 Z_Scratch 0 85 1 0 1 2 5 
 K_Scatch 1 1 173 7 1 4 5 
 Stains 0 0 0 46 0 1 0 
 Dirtiness 1 0 0 0 19 2 1 
 Bumps 13 26 1 12 8 112 38 
 Other_Faults 38 40 6 43 24 58 140 
 
The training set is used to estimate the model 
parameters, while the test set is used to independently 
assess the individual model. These models are applied 
again to the entire dataset and to any new data.  The 
time required to build each model with the dataset is 
variable; ranging from few seconds up to two min for 
the neural network. In C5.0 DT model, boosting can 
significantly improve the accuracy of model, but it also 
requires longer training. It works by building multiple 
models in a sequence.  Cases are classified by applying 
the whole set of models to them and using a voting 
procedure to combine the separate predictions into one 
overall prediction. The predictions of all models are 
compared to the original classes to identify the values of 
true positives, true negatives, false positives and false 
negative. These values have been computed to construct 
the confusion matrix as shown in Table 2.  The values 
of the statistical measures (sensitivity, specificity and 
total classification accuracy) of the three models were 

computed and presented in Table 3 and 4. Sensitivity 
and Specificity approximate the probability of the 
positive and negative labels being true. They assess the 
usefulness of the algorithm on a single model. Using 
the results shown in Table 2, it can be seen that the 
sensitivity, specificity and classification accuracy of 
C5.0 DT model has achieved the best success of test 
samples classification.   
 The gain chart provides a visual summary of the 
usefulness of the information provided by the 
classification models for predicting categorical dependent 
attributes. The chart summarizes the utility that can be 
expected by using the respective predictive models, as 
compared to the baseline information only. The gain charts 
for Decision tree with C5.0, Logistic regression with 
forward method and neural network models trained in 
SPSS Clementine for training and test subsets are shown 
in Fig. 3.  The higher lines in the gain charts indicate better 
models, especially on the left side of   the chart.  
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Table 3: Values of the statistical measures of logistic regression, 
neural network and C5.decision tree for only test subsets 

 Desired Classification   Specificity Sensitivity 
Classifier results accuracy (%) (%) (%) 
LR Pastry 91.78 94.21 64.63 
 Z_Scratch 91.27 91.36 90.43 
 K_Scatch 97.29 99.01 90.10 
 Stains 97.29 93.16 97.87 
 Dirtiness 95.79 96.10 82.61 
 Bumps 83.05 90.98 53.33 
 Other_faults 73.42 91.36 40.11 
MLPNN Pastry 93.68 98.36 41.46 
 Z_Scratch 96.79 97.56 89.36 
 K_Scatch 98.60 99.63 94.27 
 Stains 99.60 100.00 91.49 
 Dirtiness 98.50 99.18 69.57 
 Bumps 87.56 91.11 74.29 
 Other_faults 60.18 86.11 12.03 
C5.0 Pastry 99.50 96.34 99.78 
 Z_Scratch 99.50 94.68 100.00 
 K_Scatch 99.90 99.48 100.00 
 Stains 99.90 100.00 99.89 
 Dirtiness 99.80 95.65 99.90 
 Bumps 99.20 96.67 99.87 
 Other_faults 98.40 99.43 97.84 

 
Table 4: Overall performance of the three classifiers 
 Testing  Training 
 ------------------------------- ----------------------------- 
Classifier Correct (%) Wrong (%) Correct (%) Wrong (%) 
LR 605.00 339.00 628.00 369.00 
 64.09 35.91 62.99 37.01 
MLP 706.00 238.00 789.00 208.00 
 74.79 25.21 79.14 20.86 
C5.0 DT 918.00 26.00 978.00 19.00 
 97.25 2.75 98.09 1.91 

 

 
 

 
 
Fig. 3: The cumulative gain charts of the three models 

for training and test subsets 

 
 
Fig. 4: Sensitivity analysis of the twenty seven 

attributes with each classification model 
 
These charts depict that the performances of the 
decision tree with C5.0 learning algorithm is the best 
model for training and test subsets. Neural network 
model is the second best classifier and finally the 
logistic regression is the worst one. Sensitivity analysis 
helps to gain some insight into the predictive attributes 
used in the present classification problem. The analysis 
provides information about the relative importance of 
the predictive (input) attributes in predicting the output 
attribute(s). The basic idea is that the inputs to the 
classifier are perturbed slightly and the corresponding 
change in the output is reported as a percentage change 
in the output (Principe et al., 2000). The first input is 
varied between its mean plus (or minus) a user-defined 
number of standard deviations, while all other inputs 
are fixed at their respective means. The classifier output 
is computed and recorded as the percent change above 
and below the mean of that output channel. This 
process is repeated for each and every input attribute. 
The sensitivity analysis is performed for this study and 
presented in a graphical format in Fig. 4. Seven 
attributes have the most importance; X_Minimum, 
Steel_Plate_Thickness, TypeOfSteel_A400, Orientation 
Index, Maximum of Luminosity, Luminosity_Index and 
LogOfAreas. The MLPNN model uses only six 
attributes to predict the output, both LR and C5.0 DT 
models use 13 attributes.  
 

DISCUSSION 
 
 Experimental results have demonstrated that 
advanced data mining techniques can be used to 
develop models that possess a high degree of diagnostic 
accuracy. However, there are several issues involved 
with the data collection and data mining that warrant 
for further discussion.  The amount and quality of the 
data are key components of the diagnostic accuracy.  
The measuring process may contain many features that 
create problems for the data mining techniques. The 
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datasets could be consisted of a large volume of 
heterogeneous data fields which usually complicates the 
use data mining techniques. The main criticism about 
data mining techniques is that they are not following all 
of the requirements of classical statistics. They use 
training and testing data sets drawn from the same 
dataset. In classical statistics, it can be argued that the 
testing set used in this case is not truly independent and 
for that reason, the results may be biased.  
 Despite these criticisms, data mining can be an 
important tool in the fault diagnosis problem by 
identifying patterns within the large sums of data, data 
mining can and should, be used to gain more insight 
into the faults, generate knowledge that can potentially 
fuel lead to further research in many areas of 
manufacturing. The high degree of diagnostic accuracy 
of the models evaluated here is just one example of the 
value of data mining.  
 

CONCLUSION  
 
 The objective of this study was to demonstrate the 
application of classification techniques in the problem 
of steel plates fault diagnosis and to describe the 
strengths and weaknesses of the methods described. 
Three different classification models have been 
evaluated. These models are derived from different 
family namely; Multi-Layer Perceptron Neural 
Network (MLPNN), C5.0 Decision Tree (DT) and 
Logistic Regression (LR). These models are optimized 
using different methods. Pruning method was used to 
find the optimal structure of MLPNN model. The C5.0 
DT has been built using boosting algorithm with 10 
trails.  Finally, the LR model was constructed using the 
stepwise forward method to gradually build the system. 
The performance of these models were investigated 
using known sets of steel plates proven faults features 
obtained from the University of California at Irvine 
(UCI) machine learning repository. Experimental 
results have shown that the C5.0 decision tree gives 
better performance than the other models. Furthermore 
the boosting algorithm enhances the performance of 
C5.0 DT algorithm. Although data mining techniques 
are capable of extracting patterns and relationships 
hidden deep into large datasets, without the cooperation 
and feedback from the experts and professional, their 
results are useless. The patterns found via data mining 
techniques should be evaluated by professionals who 
have years of experience in Predicting steel plates faults. 
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