
Journal of Computer Science 8 (3): 410-419, 2012
ISSN 1549-3636
© 2012 Science Publications

410

A Framework for Teaching Programming

on the Internet: A Web-Based Simulation Approach

Yousif Al Bastaki
Department of Computer Science,

University of Bahrain, Kingdom of Bahrain

Abstract: Problem statement: This research study describes the process of developing a web-based
framework for simulating programming language activities on the Internet, in an interactive way, by
enabling executable programs to perform automatically their function. Approach: The interaction
process is played using Java applets. It emphasizes the importance of building the web-based
architecture of the proposed simulation model. Results: The research concentrates on developing
programming courses on the Internet to contribute to the distribution of education for the benefit of
learners. We emphasize on introducing interactivity between the user and the programming
environment. Conclusion: The project is at its first phase and is still under development but we hope
that the design of the course and the interactivity that the Java applets provides by simulating the run of
an executable C++ code will appeal to our users.

Key words: Web-based, simulation, interactivity, java and internet

INTRODUCTION

 Building abstracted models that simplify
programming language constructs is considered an
essential activity in today teaching processes.
Abstracted models enable learners and trainers to
practice and visualize actual activities of the underlying
programming concepts. The spread of web-based
technologies and satellite stations played a major role in
spreading news, information and education. From the
other side, the outbreak of the Internet enabled the
various news, information, technology and education
to reach private homes at the speed of light by a click
of a mouse. The Internet and the web-based
technologies have become popular in a very short
period of time and have become part of the
information system of many firms, banks, various
institutes and agencies as well as many homes all
around the world. Services provided by the Internet
like the World Wide Web, the electronic mail, the file
transfer protocol, education and entertainment are a
major attraction on the net. Hence, the Internet
performs vital roles in our business world.
 This research addresses teaching programming
constructs on the Internet in an interactive way by
simulating runs for the executable codes on the web
using Java applets. Java has been used because of its
web-based attractive qualities such as the capability of
expressing applications in an object-oriented
mechanism that is simple, secure and robust and most

importantly Java is platform independent language.
This means that just like how HTML files can be read
on any platform, Java applets can be executed on any
platform that supports Java capable browser. This
feature and the built-in interactivity enable Java to
provide valuable tools that should be used on the Web.
The research also discusses the importance of
educational courses on the Internet and the importance
of interactive learning process.
 The motivation behind building a simulation model
is because the proposed system has a complex structure,
which cannot be easily described using mathematical
models. In addition, computer programs can easily
represent the operations of the simulated models.
 The remainder of this study is organized as
follows. First it provides information on the importance
of educational programs on the web. Then reviews the
related work that illustrates the drawbacks of the
existing educational programs and provides information
supporting our approach in directing the research in this
article. It also presents the basic of programming
language concepts and shows how they are expressed as
finite automaton constructs and describes the
architecture of the proposed model. This study explains
the importance of Java programming language as a tool
for implementing the proposed model and performance
and reliability issues of the proposed model are
outlined. Finally, presents conclusions and outlines
possible future work.

J. Computer Sci., 8 (3): 410-419, 2012

411

MATERIALS AND METHODS

The importance of educational programs on the
web: The roots of the web are growing very fast and
are now on the doorsteps of every home. It is
considered a perfect host for spreading education.
Through the Internet, educational programs can reach
everyone, from those who are at schools, universities
and at work to those who are at homes whether they are
students taking up self-study programs, housewives or
disabled people who cannot leave their homes or
elderly people who are interested in learning new
disciplines.
 Classroom Internet can now be accomplished
through the Web since the Web has an inviting
graphical screen layout which supports multimedia
provides simplified access and searching of databases
that makes learning more accessible. The Internet
classroom has also made it possible for universities to
teach courses when the instructor was on leave. It has
enabled those universities to teach courses to students
that need the courses for graduation or as prerequisites
even if the university does not intend to offer the course
in that semester.
 The search engines available with the WWW, the
advertisements and the newsgroup can help and guide
learners to sites where they can find educational
programs of their own requirements. Therefore, the
Internet is an efficient media for those who are
interested in expanding their knowledge and
progressing in their academic life. In addition, the
programs available on the web can always be updated,
so each time a learner or trainer approaches these
educational sites can receive up to date information
(provided the creators of those programs do some
upgrading).
 Also some of these educational programs allow
users to email them assuming continuous upgrading is
maintained when they have encountered problems (for
example, www.cs.uow.edu.au/people/nabg/ABC/
ABC.html) and encourage users to provide comments
on these programs and to make suggestions for
improving the viability of these sites.

Related study: Numerous studies have been conducted
on teaching programming languages using the Web-
based technologies but many of these studies focus on
developing taught material, case studies and the use of
Internet for general educational purposes.
 Few years ago, the development of computer
software and hardware were directed toward education,
teaching and learning processes. They have had a
tremendous impact on course delivery (Glahn and Glen,

2002; Katz, 2003) in which higher education has been
witnessed fundamental changes from courses delivered
in the traditional face-to-face method to those delivered
via video cassette and television, to a proliferation of
courses and course content delivered via computer
technologies. In recent years, the use of Internet
resources (i.e., web pages) in course and curriculum
development has made a significant impact on
teaching and learning. The use of the Internet has
evolved from the display of static and lifeless
information to a rich multimedia environment that is
both interactive, dynamic and user friendly (Powell
and Gill, 2003). As a result, the use of the Internet in
higher education settings has become a more accepted
and widely used tool in academia (Glahn and Glen,
2002; Katz, 2003; Angelo, 2004; Hawkins et al.,
2004; Maslowski et al., 2000).
 Most recently, the development and refinement of
university and commercially developed Course
Management Systems (CMS) like Blackboard, WebCT,
have resulted in the proliferation of web use in higher
education (Morgan, 2003; Angelo, 2004). These
technologies have made it possible to easily and
efficiently distribute course information and materials
to students via the Internet/Intranet and have enabled
greater online communication and interaction to occur
(Stith, 2000). While these tools were initially developed
for use in distance education pedagogies, their use in
on-campus classroom setting to compliment traditional
courses is now considered a viable and often a preferred
option. As a result, many academic departments are
struggling to keep pace with the demand for CMS
supported course sites for traditional face-to-face
courses.
 CMS have shown significant increase in student
involvement in many aspects of course manipulation
(Stith, 2000). The ability of instructors to control access
to a variety of course materials-syllabi, lecture notes,
outlines and images, allows students access to such
material from virtually any location. For the instructor,
a multitude of options exist for developing,
implementing, revising and delivering course content.
At the department level, these tools can have a
profound effect on faculty teaching and student
learning, departmental communication and faculty
workload.
 Numerous studies have been conducted on
computer-aided learning. Many of these studies focus
on technical topics (Chen and Honavar, 1999;
Khanjari et al., 2002; Brusilovsky, 1994), case studies
(Chorfi and Jemni, 2002) and the use of educational
packages (Mani et al., 1999). Many computer-aided
learning packages are implemented in most of higher

J. Computer Sci., 8 (3): 410-419, 2012

412

education institution around the world (Chrysostomou
and Papadopoulos, 2005). Some of the well-known
course management learning systems includes
Blackboard and WebCT. There are many other
packages used by academic institution and industries
including coursekeeper, multibook, A tutor and many
other systems listed in IMS 2008.
 Most of the computerized learning systems tend to
facilitate the distribution of structured online courses
(Angelo, 2004; Chrysostomou and Papadopoulos,
2005) Making use of modern information and
communication have made it easier for faculty to reach
out to students at any time, in any place.
 Detailed the success of a Computer-Mediated
Asynchronous Learning (CMAL) program of graduate
studies in Educational Leadership and Higher
Education offered through the University of Nebraska-
Lincoln. It details the evolution of the concept
focusing on an integrated sequence of high-quality
learning to:

• Enhance student learning experiences
• Provide greater accessibility by removing barriers

of time and space
• Deliver learning opportunities to participants

around the world on a conventional university
semester schedule

• Develop learning cohorts representing many
cultures and nationalities

• Foster active and substantial participation in the
learning process

• Provide multiple pathways to learning
• Facilitate the development of a worldwide

community of learners

 As one can see from the related work that there are
no much work has been conducted on using simulation
to teach programming languages on the Internet.
 Some of the educational programs available on the
Internet are a monotonous piece of text associated with
some attraction features which are sometimes
discourage learners or trainers from getting the benefit
of the available teaching material.
 For example, the educational program at
www.swcp.com/~dodrill/cppdoc /cpplist.htm provides a
very good explanation of the functions and constructs
of C++ but does not provide any coded example, which
will make it difficult for the user to follow the
instructions. It also tends to be boring since the web
page comprises of a white page with black text
displayed all over the page so the user reads a set of
explanations as if were reading a text book. This can be
seen in Fig. 1, which was copied from the above site.

Fig. 1: Explanation of C++ functions

Fig. 2: Interface of some educational environment

 Another example is a commercially sold CD for C
and C++ tutoring called “C/C++ Interactive Reference
Guide” which has an explanation for C and C++
instructions and commands in one section and coded
examples in another section. This way a user has to
switch from section to section to follow how the
instructions are used. Also, the background color is too
bright for the user to read the text from for a long
period of time.
 The environment in which a person is learning in is
as important as the quality of the educational material
provided. This is because the psychological state a
person is in while studying has a tremendous effect on
the amount of material he or she will absorb. In any
classroom, you will find that a student who participates
in class learns more than a student who doesn’t. So we
have to somehow create a friendly and effective
environment for students/users in which they can
interact with the program. Figure 2 shows an
educational environment, which does not support
friendly interfaces.

J. Computer Sci., 8 (3): 410-419, 2012

413

 Another problem with some books and educational
programs are that the text is written in some very
difficult technical terms, which the user fails to
comprehend which is obviously a total turn off since
the commuting property is lost. Other than that, the
users should feel that they are learning something
useful which will further encourage the user. Therefore,
an interactive educational environment with a
comprehendible language is necessary.
 The emphasis is to write programs that were
intended to be read by humans rather than computers.
This concept was first coined by Knuth (1992) under
the term “literate programming”. A program should
explain to human what they want the computer to do
and to convey to readers the thought processes that led
to the program. The proposed architecture aims to
automatically extract the main features and mechanisms
of programs and displayed to learners. In this way, a
learner does not want to go and read information about
program from auxiliary documents as programmers
usually do (Cordes and Brown, 1991). Therefore, in
order to set the stage we need first to look at
programming language aspects.

Programming languages and finite automata:
Several aspects of programming languages need to be
specified. These include (Watt, 1993):
 Syntax is concerned with the form of programs. A
language’s syntax defines what tokens (symbols) are
used in programs and how phrases are composed from
tokens and sub-phrases. Examples of phrases are
commands, expressions, declaration and complete
program.
 Contextual constraints (sometimes called static
semantics) are rules such as scope rules that determine
the scope of each declaration and can locate the
declaration of each identifier. Type rules enable to infer
the type of each expression and thus to ensure that each
operation is supplied with operands of the correct types.
Contextual constraints are so called because a phrase,
such as an expression, depends on its context.
 Semantics is concerned with the meanings of
programs. There are various points of view on how one
can specify semantics. One can take the meaning of a
program to be a mathematical function, mapping the
program’s inputs to its outputs or can take the meaning
of a program to be its behavior when it is run on
machine.
 We can define the grammar of a programming
language, G, as a 4-tuple G = (∑, N, S, P), where ∑ is
an alphabet, N is a collection of nonterminal symbols, S
is some particular nonterminal called the start symbol
and P is a collection of replacement rules, called

productions, of the form A → w, where A ∈ N and w is
some string over ∑ ∪ N satisfying:

• W contains at most one nonterminal
• If w contains a nonterminal, then it appears as the

rightmost symbol of w

 From the definition we must have that the right-
hand side of any production is a string in ∑* (N ∪ ∈).
Thus the pair (x, y) in N × ∑* (N ∪ ∈) represents the
production x → y.
 We can consider the syntax of statements theory,
expressed in a terminology that resembles ANSI C/C++
as follows (Okhotin, 2004):

Expr → tId
Expr → tNum
Expr → tLeftPar Expr tRightPar
Expr → ExprFunctionCall
ExprFunctionCall → tId tLeftPar ListOfExpr tRightPar
ListOfExpr → ListOfExpr1
ListOfExpr → ε
ListOfExpr1 → ListOfExpr1 tComma Expr | Expr
Expr → Expr BinaryOp Expr
Expr → UnaryOp Expr
Expr → tId tAssign Expr
 Statement → ExprSt | CompoundSt | VarSt | CondSt|
 IterationSt | ReturnSt
 ExprSt → Expr tSemicolon
 CompoundSt → tLeftBrace Statements tRightBrace
 Statements → Statements Statement | ε
 VarSt → tVar – ListOfIds tSemicolon
 CondSt → tIf tLeftPar Expr tRightPar Statement |
tIf tLeftPar Expr tRightPar Statement tElse Statement
IterationSt → tWhile tLeftPar Expr tRightPar Statement
ReturnSt → tReturn Expr tSemicolon
FunctionHeader → tId FunctioArguments
FunctioArguments → tLeftPar ListOfIds tRightPar |
 tLeftPar tRightPar
ListOfIds → ListOfIds tComma tId | tId
Function → FunctionHeader CompoundSt &
 tId tLeftPar all-variables-defind &
 FunctionHeader returns-a-value
Functions → Functions Function | ε

 The proposed architecture provides a number of
applets that describe a program structure by displaying
a set of the grammar of the language. Applets shows
instantiated variable from none instantiated ones. The
grammar is used also to return information regarding
object constructs. It displays which object inherits

J. Computer Sci., 8 (3): 410-419, 2012

414

which and what are the components of objects. For
example, the statement, FunctionHeader → tId
FunctionArguments.
 Can return any items of information to the readers.
It can return the identifier name i.e., function name
through Id and/or details of Function Arguments. This
will enhance the understandability of users and enable
them to interact effectively with the proposed system.
Extracting information from the source code and
inserted into a database will enable learners to have a
control of the source code. We define a number of basic
concepts (Reinfelds, 2002):

• Assignment table σ as a set of slot variables x1, x2,

…, xn that are partitioned into sets of equal
unbound variables and variables bound to a
number, record, or procedure.

• An environment table E as a mapping from
variable identifiers to table variables, {<x>1 → x1,
…, <x>n → xn}

• A semantic statement as a pair (<s>, E) where <s>
is a statement and E is an environment

• An execution state as a pair (ST, σ) where ST is a
stack of semantic statements

• A computation is a sequence of execution states
starting from an initial state: (ST0, σ0) → (ST1, σ1)
→ (ST2, σ2) → …

 Each clause of the above can return information as
much as required by the viewer of a program. A
variable X, for example, has a scope that determines
where in the program this variable is valid. X may
meaningfully exist unbound to any value or may be
bound to a value via some reference mechanism. X has
a name with which programmers refer to it.
 An assignment statement links a variable to a
value. This definition includes all paradigms. All
programming languages have variables. Variables may
be linked to values or may be unbound. The difference
between paradigms is in the linking rule For example,
in imperative languages variables may be linked to
values in any place in the program, any number of
times. In functional languages a variable may be linked
to a value exactly once. In logical programming,
variables may be re-linked to values at specific points
(choice points) in the program.

Programming aspects of OO concepts: The OO
paradigm offers a rich set of problem solving concepts.
For example, objects are model entities of the problem
area and methods define behaviors that these entities
should exhibit. Of course, one can also view objects as

bundles of functional behavior whose specific actions
are influenced by the internal data of the object. From
the programmer's point of view, an object has a global
existence that transcends the particular place in the
program where the object was created. An object may
be passed as an argument and returned as a value. Once
created, an object can exist for the duration of the
execution of a program. Of course, for storage
efficiency, objects that cannot be accessed by any part
of the running program are deleted via garbage
collection. It is common though not always essential to
link objects to variables. These variables have the same
block-based scope of definition as all the other named
entities of the program, so if a programmer asks the
question: “Where can I use a variable that is bound to
an object?” the answer is “According to the same block
scope rules as for any other entity that is bound to a
value.” It is important to recognize that the scope of the
object, which is global, is not the same as the scope of
any particular variable that may be used to refer to the
object. If a programmer asks the question: “What
methods are available for this object?” the block-based
scope does not apply, but an extension of the scope
concept does. Whenever it is necessary to decide
whether an object may call a particular method, the
programmer has to look at the scope of method names
of the class from which that object was constructed. In
this sense, the scope concept extends to method calls.

Encapsulation, orthogonality and polymorphism:
Understanding of the fundamental elements of the
programmer’s theory of programming will be of little
value without a vision of how these elements can and
should be composed to form a complete program that is
organized in a coherent fashion and capable of being
extended in the future. Although it is not easy to solve
problems using programs, it is even more difficult to
solve problems in a fashion that permits these programs
to be adapted cleanly to handle future problems or
additional requirements. The essence of program design
is to create a program that is so well organized that
adaptations are straightforward. Three key concepts are
central to quality program design: Encapsulation,
orthogonality and polymorphism. The practical
usefulness of a programming language is often
determined by the degree to which these concepts are
supported. The coherence of a program or family of
related programs is likewise determined by the degree
to which these concepts are utilized. Encapsulation
involves capturing some aspect of programming
knowledge into an entity that is named and reusable.
Here are some simple object-oriented examples: Similar
first class entity with almost no effort. To take Java as a

J. Computer Sci., 8 (3): 410-419, 2012

415

specific example, items 1, 2, 4 and 6 provide first class
encapsulations. Methods and functions (item 3) are
definable via declarations but are not first class. This is
a major source of annoyance in using Java and
workarounds, also known as design patterns, are needed
to overcome this gap. Finally, contracts (item 5) are
only weakly supported in Java so contracts must often
be specified in comments not code. Orthogonality is a
term borrowed from mathematics to describe the ability
of some entity to be varied independently along several
axes of parameters. Orthogonality is desirable in
programs since it allows the programmer to make
independent changes to decisions and settings. Data
orthogonality is the ability to modify or substitute data
values independently as long as the meaning of the
program requires no mutual constraints. Data
orthogonality is widely supported in programming
languages. Functional or algorithmic orthogonality is
the ability to vary functions or algorithms. This type of
orthogonality is not so widely supported and so it
often becomes important to develop patterns that
enable such orthogonality to be achieved in spite of
the language. Suppose, for example, that an algorithm
is embedded inline in the body of a method in a Java
class. It is not altogether easy to change that
algorithm. The most common solution to this problem
is to define a derived class in which the method in
question is overridden to use a different algorithm.
This inheritance mechanism may be acceptable if
there are only one or a few possible replacement
algorithms but becomes unwieldy if there are many
possible options. Moreover, if there are two methods
with separate algorithms each of which may possibly
be replaced, the entire process of inheritance breaks
down in excessive complication. A second solution is
to use inline definitions that combine the definition of
an object with the replacement of one or more of its
algorithms.
 By modeling the syntax of programming languages
and exploring their behavior we can strengthen our trust
in understanding of the definitions, concepts and
thought processes of large systems (Meyer, 2001; Roy
and Haridi, 2002).

RESULTS

The proposed architecture: The proposed system,
which teaches programming languages at run time
level, uses client/server architecture. The system resides
on a server and responds to requests from multiple
clients (learners) over the Internet, as shown in Fig. 3.
 On the client side, the system (application) is
hosted by a browser. The application’s user interface

takes the form of HTML pages that are interpreted and
displayed by the client’s browser.
 On the server side, the system runs under Internet
Services IIS. The Internet service manages the system,
passes requests from clients to the application and
returns the application’s responses to the client. These
requests and responses are passed across the Internet
using HTTP.

System platform: ASP.NET is used as the platform to
create the system and its services that run under Internet
services. ASP.NET provides a high level of consistency
across Web application development. ASP.NET is part
of the. NET Framework and is made up of several
components.
 A Web application consists of three parts: Content,
program logic and Web configuration information.
Table 1 summarizes these parts and gives examples of
where they reside in an ASP.NET Web application.
 The Web form is the key element of a Web
application. A Web form is a cross between a regular
HTML page and a Windows form. It has the same
appearance as and similar behavior to an HTML page,
but it also has controls that respond to events and run
code, like a Windows form.
 In a completed Web application, the executable
portion of the Web form is stored in an assembly (.dll)
that runs on the server under the control of the
ASP.NET worker process (asp_wp.exe), which runs in
conjunction with IIS. The content portion of the Web
form resides in a content directory of the Web server, as
shown in Fig. 4.
 When a user navigates to one of the Web forms
from his or her browser, the following sequence occurs:

• IIS starts the ASP.NET worker process if it is not

already running. The ASP.NET worker process
loads the assembly associated with the Web form

Fig. 3: System architecture

J. Computer Sci., 8 (3): 410-419, 2012

416

Table 1: Parts of an ASP.NET Web application
Part Types of files Description
Content Web forms, HTML, images, Content files determine the appearance of a Web application.
 audio, video, other data They can contain static text and images as well as elements
 that are composed on the fly by the program logic (as in the case of a database query).
Program logic Executable files, scripts The program logic determines how the application responds to user actions. ASP.NET Web
 applications have a dynamic- link library (DLL) file that runs on the server and they can
 also include scripts that run on the client machine.
Configuration Web configuration file, The configuration files and settings determine how the application runs on the server, who has
 style sheets, IIS settings access, how errors are handled and other details.

Fig. 4: ASP.NET Web application parts on a Web server

Fig. 5: How the parts interact

• The assembly composes a response to the user

based on the content of the Web form that the user
requested and any program logic that provides
dynamic content

• IIS returns the response to the user in the form of
HTML

 Once the user gets the requested Web form, he or
she can enter data, select options, click buttons and use
any other controls that appear on the page. Some
controls, such as buttons, cause the page to be posted
back to the server for event processing and the
sequence repeats itself, as shown in Fig. 5.

Screen shoots: In order to demonstrate the viability of
the proposed architecture, we run the system and
capture a snap shoot of screens as shown in Fig. 6.

Fig. 6: Screen snap shoot

 The proposed approach is a collection of Java
packages designed specifically to create executable
programming examples. The architecture is made up of
a number of components:

• Code viewer
• Terminal emulator
• Variable display component
• Parser of the underlying language
• Information retrieval component

 The program execution starts as follows (Reinfelds,
2002):

• The initial execution state is ([(<s>, φ)], φ). The

initial semantic statement is (<s>, φ) with an empty
environment and the initial table is empty

• At each execution step, the first element of ST is
popped and execution proceeds according to the
form of the element

• The final execution state is one in which the
semantic stack is empty (if it does exist)

• The semantic stack can be in one of three run-time
states: Running in which ST can do an execution
step, terminated in which ST is empty and
suspended in which ST is not empty but cannot do
a step

J. Computer Sci., 8 (3): 410-419, 2012

417

 Adding above theory execution concepts to the
atmosphere of a teaching process will enhance the
proposed system with more attractive and more
dynamic. This can be achieved by exploiting the
multimedia features, employing a graphical screen
layout, decorating the pages or the classroom walls with
GIF files (graphical interface files) and maybe some
sound in the background which can all be transmitted
by the Internet. A number of attributes such as colorful
environments, moving pictures and music should be
considered to stimulating learners. At the same time the
text should be clear and the music level should be
appropriate.
 The language should be easy to comprehend or else
the whole purpose of the educational program is lost,
i.e., the users will not find the program useful which
will in turn make them seeking other useful material.
 Introduce certain degree of interactivity between
the course/program and the learner will make the
teaching process more effective. Interaction almost
always yields good results as far as the learners’ gain of
knowledge is concerned. With interaction a learner
concentrates more on the flow of information provided.
The following section discusses how programming
languages can be taught in an interactive way on the
Internet.
 There are many programming courses provided on
the Internet and many others commercially produced on
CDs, which use various teaching methods. The study
material in most of these courses is comprised of very
rich and informative text that provides the learner with
most required information.
 But these programs get monotonous as time passes
by and the reading process becomes tedious with
limited interactivity and mainly depends on the
learners’ enthusiasm. On the other hand, educational
materials available on CDs and the Internet have
various techniques of executing procedures and
multimedia features.
 We, at the Department of Computer Science at the
University of Bahrain are developing a programming
course that provides a friendly and lively atmosphere
for our users, a readable and comprehendible text which
will definitely use loads of example, which is a very
effective of teaching students. The text describes the
steps in programming and immediately after each step
some coded example will be provided and most
importantly these can be run online. Yes, the user will
run the example online and this will be done using a
java code, which yields the same result as the code of
the language being taught.
 We are going to teach C++ as a prototype of our
teaching technique on the Internet and for the first time

our users can run a simulation of C++ programs online.
This will give our users a better understandability and a
more enthusiastic approach to programming. Since java
is a modified C++ language the codes of both the
languages are going to be similar. The next section
briefly describes why Java is used.

Java as a tool: Java is a new object oriented language
that is based on C++ with some modifications. Unlike
C++, Java does not have any pointer and pointer
arithmetic, dynamic memory allocation or overriding
operator that makes the language simpler and at the same
time robust since these features are the cause of many
run-time errors. However, the most attractive feature in
Java is that it is portable or platform-independent, that is,
Java programs can be moved between different computer
architectures. This is possible because compiled Java
programs are in the form of bytecodes, which are a set of
instructions that look like machine code but are not
specific to any processor.
 Java programs are basically of two types:
applications which are like any general program and
applets which is a dynamic and interactive program that
is run on a Java capable browser like Netscape 2.0.
Applets are inserted into HTML pages just like images
but unlike images, applets are dynamic and interactive
and can create animation, multimedia presentation, real-
time video games, multi-user networked games and real
interactivity those allow users to input data and
communicate. The browser downloads the applet to the
local system and executes it (Lemay and Perkins, 1996;
Tittel and Brogden, 1997).
 Hence Java applets have the advantage of being
able to be run online unlike other languages like C/C++
or Pascal. So Java is an excellent tool that can
implement interactivity and can be run on HTML pages
and therefore can be used to build interactive Web
pages. Its portability and interactivity makes it a perfect
tool for our prototype since we can create a simulation
of an executable code of C++ online. This will save our
users from the hassle of typing down codes, executing
them and then running them. The interactivity that Java
provides in this way will make our teaching process
easier to understand and more appealing to the users
since the users will be able to visualize what programs
look like and what their outputs are.

DISCUSSION

Performance and reliability issues: The Java
programming language and the web browser,
implementing the Java virtual machine, are still
relatively new.

J. Computer Sci., 8 (3): 410-419, 2012

418

Fig. 7: Opening screen

Fig. 8: Welcome message

 The course is divided into three levels for users at
the introductory level, intermediate level and at the
advanced level. The course uses a lot of coded
examples to illustrate the use of the various instructions
and ore importantly the user can run most of these
examples. The executable examples are actually Java
applets, which yield the same result as an executable
C++ program.
 So our user will have an explanation of the C++
instructions in a clear and comprehendible language
followed by coded examples for that instruction and a
run for the example all on the same web page. The
coded examples and the run helps the user in
understanding the instructions in a simple way and
having them on the same page enables the user to
follow what is happening without having to refer to
another page or section to see the coded examples.
 The opening page of the course is a web page
containing the title of the course and is decorate with

entertaining GIF animations and with background
music embedded using MIDI files which can be seen in
Fig. 7. This page is linked to the “overview” page
(Fig. 8) that contains an outline of the course and the
user then links to any of the three levels (introductory,
intermediate or advanced) he/she chooses to take. Each
level is divided into a number of lessons, which the user
can link to from the “Content” page of each level. The
introductory level is for learners who are new to C and
C++ and will cover the basic command such as the
keywords, simple input and output, data types,
arithmetic and logical operators and their precedence,
expressions and assignment statements and conditional
statements. The intermediate level has been designed
for those of you who are familiar with C++ or C and we
will start with the different types of looping in C and
C++. Then we will move on to functions, arrays,
pointers and strings, files and structures. The advanced
level will start with classes and objects, then we will
move on to linked lists and we come back to cover
some special features of classes.
 All the pages are decorated with animated GIF files
and have background music, which are mainly MIDI
files to make the pages more appealing to our users.

CONCLUSION

 This study described the processes of building a
web-based framework for simulating programming
language activities on the Internet in an interactive way
through the dynamic running of executable programs
using Java applets. The approach emphasizes the
importance of building the web-based architecture of
the proposed simulation model for online learners.
 Although learning on the Web is not a new idea
and there is a variety of educational programs available
on the Internet, many of these programs do not appeal
to users due to lack of interactivity and the absence of a
user-friendly interface. In addition to that these
courses/programs tend to become “boring” which could
discourage the user from continuing with it due to lack
of proper code visualization.
 This new methodology is aimed to developing
programming courses on the Internet to contribute to
the distribution of education for the benefit of all
learners. We emphasize on introducing proper
interactivity between the user and the program.

REFERENCES

Angelo, J.M., 2004. New lessons in course

management. University Business.

J. Computer Sci., 8 (3): 410-419, 2012

419

Brusilovsky, P., 1994. Student model centered
architecture for intelligent learning environments.
Proceedings of the 4th International Conference on
User Modeling, Aug. 15-19, User Modeling Inc.,
Hyannis, MA, USA., pp: 31-36.

Chen, C.H. and V. Honavar, 1999. A neural-network
architecture for syntax analysis. IEEE Trans.
Neural Netw., 10: 94-114. DOI:
10.1109/72.737497

Chorfi, H. and M. Jemni, 2002. Evaluation and
perspectives of an innovative Tunisian e-learning
experimentation. Proceedings of the International
Advances in Infrastructure for e-Business, e-
Education, e-Science and e-Medicine on the
Internet, L'Aquila, Jul. 29-Aug. 04, Italy, pp: 1-7.

Chrysostomou, C.P. and G.A. Papadopoulos, 2005. An
evaluation of e-learning technologies and trends:
Establishing an object-oriented approach to
learning object design and development. The
Pennsylvania State University.

Cordes, D. and M. Brown, 1991. The literate-
programming paradigm. Computer, 24: 52-61.
DOI: 10.1109/2.86838

Glahn, R. and R. Glen, 2002. Progenies in education:
The evolution of internet teaching. Commun.
College J. Res. Prac., 26: 777-785. DOI:
10.1080/10668920290104868

Hawkins, B.L., J.A. Rudy and J.W. Madsen, 2004.
EDUCASE core data service. 2003 Summary Report.

Katz, R.N., 2003. Balancing technology and tradition:
The example of course management systems.
EDUCAUSE Rev., 38: 48-54.

Khanjari, Z.A., F. Masoud, K. Swami and M. Hatim,
2002. Plugging Software Tools in the Existing
eLearning Portals. Proceedings of the 2002
International Arab Conference on Information
Technology (ACIT2002), Qatar University, Qatar.

Knuth, D.E., 1992. Literate Programming. 1st Edn.,
Center for the Study of Language and Information,
Stanford, Calif., ISBN: 0937073814, pp: 368.

Lemay, L. and C. Perkins, 1996. Teach Yourself Java in
21 Days. 1st Edn., Sams. Net, Indianapolis, ISBN:
1575210975, pp: 527.

Mani, S., W.R. Shankle, M.B. Dick and M.J.
Pazzani, 1999. Two-Stage Machine Learning
model for guideline development. Artif. Intell.
Med., 16: 51-71.

Maslowski, R., A.J. Visscher, B. Collis and P.P.M.
Bloemen, 2000. The formative evaluation of a
web-based course-management system within a
university setting. Educ. Technol., 40: 5-19.

Meyer, B., 2001. NET is coming. IEEE Comput., 34:
92-97. DOI: 10.1109/2.940017

Morgan, G., 2003. Course management system use in
the university of wisconsin system. University of
Wisconsin System.

Okhotin, A., 2004. A Boolean grammar for a simple
programming language. Technical Report 2004–
478, School of Computing, Queen’s University,
Canada.

Powell, W. and C. Gill, 2003. Web content
management systems in higher education.
Educause Q., 43-50.

Reinfelds, J., 2002. Programming as an engineering
discipline. Proceedings of the 32nd Annual
Frontiers in Education, (AFE’02), IEEE Xplore
Press, pp: F2G-5-F2G-9. DOI:
10.1109/FIE.2002.1158173

Roy, P.V. and S. Haridi, 2002. Teaching programming
broadly and deeply: The kernel language approach.

Stith, B., 2000. Web-enhanced lecture course scores big
with students and faculty. T.H.E. J., 27: 20-22.

Tittel, E. and W.B. Brogden, 1997. Discover Java. 1st
Edn., IDG Books Worldwide, Inc., Foster City,
CA., ISBN: 0764580248, pp: 312.

Watt, D.A., 1993. Programming Language Processors:
Compilers and Interpreters. 1st Edn., Prentice Hall,
New York, ISBN: 013720129X, pp: 452.

