
Journal of Computer Science 8 (3): 389-392, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Ganesh, N., Department of Computer Science and Engineering, Anna University of Technology,
 Coimbatore, India

389

Lessons Learned in Transforming

from Traditional to Agile Development

1Ganesh, N. and 2S. Thangasamy

1Department of Computer Science and Engineering,
Anna University of Technology, Coimbatore, India

2Department of Research and Development,
Kumaraguru College of Technology, Coimbatore, 641 049, India

Abstract: Problem statement: This article presents the biggest challenge that the organization faces
in transitioning the mindset of the team from that of a waterfall model to an agile thought pattern.
Approach: The study is conducted from a real time live project, carried out in a software organization.
Results: The software team found a major difference in their work culture resulting in collective
ownership, forming a balanced self organized team, getting frequent feedback from the customer and
making continuous deliverables. Conclusion: The main finding when implementing an agile
software development is to respond to the changing needs or requirements, thereby satisfying the
customer needs rather than following a specific set of practice.

Key words: Agile adoption, waterfall model, agile coach, team

INTRODUCTION

 The ability to shorten software development times,
to bring visibility into the development process and
hopefully to better satisfy customers have led to a wide
adoption of agile development practices in many
companies. Many of the companies have seen the rise
of software processes, where various improvements in
software development have been pursued by adding
more processes. Adoption of agility can be seen as a
counterforce to the software process movement and
software engineering in general.
 Transition to agile processes can be used as an
argument to remove nearly all existing processes that
are available in the traditional methods. Initially, the
development teams will enjoy this freedom. Later they
find out that the large-scale use of agile processes
requires techniques that are not so different from more
traditional approaches. The key challenges seem to be
managing a large number of agile teams, dividing work
among those teams, achieving the system-wide
properties of the software and guaranteeing the
simultaneous releases of cross-cutting features.
 Transition to the agile development explains the
key practices of requirements engineering and their
importance. The article shows the lack of these
practices that hinders industrial product development.
 In Extreme Programming (XP), Beck and Andres
(2005) has said that the traditional way of getting

requirements does not allow change and it is plan
driven. Scrum (Schwaber and Beedle, 2008) is one of
the most popular agile method in industry. In scrum the
requirements are kept as a list of backlog items. A
backlog contains a prioritized list of all product
requirements (Schwaber and Beedle, 2008). This means
that a typical backlog contains items that vary on the
abstraction level, detail, focus and on how much design
information they contain. Backlog items are
implemented during a sprint that is usually a 15-day or
shorter iteration cycle.

Literature study: Agile process is used in cases where
speedy action is given importance. An agile approach
provides a more flexible means of responding to change.
Getting early release in an iterative development
approach of the product, to the customer will have an
impact on performance resulting in variation in product
quality. Larman (2004) classified many issues
pertaining to waterfall approaches as follows:

• Waterfall works best for projects with minimal

change and low complexity
• In Waterfall, the high-risk and difficult elements

are taken up during the end of the project
• Waterfall is not suitable to deal with changing

requirements
• Integration is done at the last in waterfall

J. Computer Sci., 8 (3): 389-392, 2012

390

• Schedules and estimates are not reliable

 Harrison and Coplien (1996) found patterns of
organization that led to high productivity, the key factor
is said to be an iterative approach. Some of the
examples of traditional model include the waterfall
model, the spiral model, the RAD model and the
prototyping model.

Research context: The research can be characterized
as constructive research, in which a case study forms
the basis for further development and evaluation of the
proposed agile deployment model and the methods
integrated in it.
 The case study taken in this article was conducted
at a software firm in Chennai, India. The study is made
to a banking domain team. The customer was a large
player catering to various banking needs. The project
involved enhancing and maintaining the existing
systems that was carried out in a language called OO
COBOL with DB2 as the backend. The entire work of
the project was carried out on a mainframe server, with
a planned production release of every 60-90 days. The
10-member team followed a waterfall cycle in the
previous releases.
 As an initial step of transitioning, a meeting was
conducted which in agile called as a retrospective
meeting that speaks about the current development
process and the following problems were put forth:

• The team was overworking during the last few

weeks preceding the release, which is the usual
mentality of software engineers

• The team did not stick to the release date due to
delays in development and testing

• The customer was not satisfied with the defects
that he/she faces during the acceptance testing

 The above problems was resolved to an extent after
the team was given training on agile, rather than
explaining them the exclusive agile practices. As that
was the first time, the team was given the freedom to
choose the set of required agile practices which would
sort the above said problems. After all the interventions,
the team decided to have the following activities:
 The release would have two 4-week iterations,
wherein the team believed the length of iteration could
not be reduced any further. They felt that having a demo
midway in the release would help them get early feedback.
 The team manager decided to have complete
draft of their work for 4 weeks with complete
supporting documents.

 As the mindset of the people in the team could not
be changed by a single discussion, they were not forced
to use any stringent agile practices which they were not
comfortable with. Although it was in the mode of
transition, the team was motivated by the need of doing
early testing to solve the problems. Apart from this,
the team was asked to create weekly builds from the
second week of the iteration, wherein iteration is
demarcated fortnightly.
 The team manager was made responsible for
explaining the business and technical challenges, which
in agile practice called as time-boxing. Daily standup
meetings was conducted for 10-15 min in a day, usually
in the morning hours to find the work that they have
completed the previous day, the work that is still
pending and other issues in completing the work. Apart
from this, interactive sessions were conducted week to
week, which is again called as retrospectives in the
agile practices.

Transitioning the project to agile:
Initial days of the project: The team was assigned
specific tasks, usually called as stories in agile term.
These stories were discussed during the stand-up
meetings, which is a practice that is followed in scrum
framework. A story board was kept on the room which
was helpful in tracking stories and in disseminating the
information to the entire team. The board depicted the
status to showcase whether a particular story has been
started or not and the present status of the story. Apart
from the sticky boards, a white board was kept at the
center of the room, wherein unsolved pending issues
were listed so that any volunteer could come forward to
take and solve them.
 During the second week of the work, the team was
not able to coop up with the weekly build. Immediately,
a retrospective meeting was conducted and some strong
decisions were taken in terms of having only relevant
documentation and to have a simple design
decisions. It was also shared to the customer and was
also agreed. The entire work was carried out in the
presence of an agile coach wherein the coach
explained the importance of test driven development.
So, the team agreed to write tests first.
 As the team was transitioning their mindset from
waterfall to agile, they had an ideology of speaking in
terms of design and coding. It was the agile coach who
explained the concept of parallel design and coding and
it was tracked together on a story board, which was also
accepted by the so-called dynamic agile team.

Forthcoming weeks: After the intervention of agile
coach, the team was back on track with respect to plan.

J. Computer Sci., 8 (3): 389-392, 2012

391

A retrospective meeting was conducted and certain
characteristics with respect to agile practices were
identified such as self-discipline was emphasized,
which means the team had become self-organized, in
the meaning that they were able to identify their
problems and bring out solutions on them, by two team
members pairing together. The team started their testing
from the fourth week of the inception of the project.
The story board played a vital role rather than following
the already available built-in project plan.
 As the build frequency was made weekly,
exclusively during the midweek, the team was not sure
about the correct fixing of defects. Therefore, the team
realized to have more frequent builds to check the
efficacy of their work and the frequency was increased
to thrice a week.
 The agile coach focused on the concept of
collective ownership, wherein the team would bring in
more realistic estimates and it would pave way to
complete the iteration on time.
 The team later agreed that pairing during an
analysis phase would have reduced the defects and
started to understand the benefits of agile.
 The visibility of collective ownership resulted in
fulfilling the development work and system integration
testing was said to be the prime focus. The build
frequency was made to be a daily activity, which in turn
increased the testing effort and the team members were
able to identify defects earlier in the life cycle.

Sprint week and the lessons learned from iteration:
Most of the planned stories were completed, with very
few known defects/issues. The demo was given to the
customer. The few defects were recorded and
assurance was given that it would be addressed in the
next iteration.
 The four-week tenure of the first iteration fixed
certain problems like not integrating early and not
delivering frequently. Automation was identified as
another area for improvement. They decided that
continuous integration and continuous delivery will
result in better quality. They decided to strengthen test
driven development. Tests would be written upfront and
would be updated as design and coding progressed.
 The team decided to own two stories by a pair,
wherein the analysis would be done in pairs and the
remaining tasks may or may not be paired, which
means collective responsibility and ownership. During
this meeting, it was proposed that the pair would need
to come up with the estimated effort for their stories.
 The team started to complete iteration two,
fulfilling the improvement actions identified during the
earlier retrospective. Then they decided to have pairing

continued beyond the analysis, wherein after a few
hours of coding, the pairs would meet again to verify
the code and test. The customer was literally satisfied
with the output that he was showcased with very few
suggestions from his end.
 For the future releases, the team started measuring
code complexity metrics that acted as the trigger for re-
factoring. And they decided to minimize the iteration
time to 2 weeks.
 Lessons learned from the team members:

• The team members should be willing to adapt or

welcome change.
• The team should have highly skilled people who

are good at gathering requirements and executing
them at ease.

• The team members should be a master in all trades
• The team members should have a social movement
• The team members should understand the values

and principles of agile, rather than its practices
• The team should be self-organized
• The team members should take up collective

responsibility, thereby should gain collective
ownership

• The team members should be willing to do
continuous integration, with continuous delivery
and should be willing to adapt/change towards the
continuous feedback from the customer end

 Lessons learned by the agile coach:

• Slow motivation is required when transitioning

from traditional to agile approach
• Handholding or mentoring is required from an

agile coach. Proper guidance is mandatory at every
initial stage

• Agile coach should act as a counselor and guide the
team in a constructive way

• The coach should be responsible for increasing the
rigor depending on the project needs

• Commitment of agile coach needs to be very high
during the initial weeks of transition

• It is the responsibility of the agile coach to choose
the measurements carefully, especially with respect
to builds

• Changing the mindset of the team members and the
project manager will be a challenge to the agile coach
till the completion of the project as it is very difficult
to satisfy all the needs of a particular person

• The agile coach should convene a meeting to have
a discussion with the project managers who are
willing to make a transition with the project
manager who is already practicing agile

J. Computer Sci., 8 (3): 389-392, 2012

392

CONCLUSION

 Waterfall development has been widely
condemned in the literature and research of software
development practices. But, even then transitioning
from waterfall to agile cannot be done overnight or in a
single step. It is very difficult for anyone to unlearn old
traditional practices and move towards agile. It would
be wise to remove unnecessary processes and tools
when making the agile transition than to start from
scratch and add new practices. Coaches need to be
patient, positive and persistent while bringing in this
change. Agile practices require people with a common
mindset. If few people are inflexible and refuse to
change their ways, it is best not to have these people in
an agile project. In this article, the agile adoption of one
project is summarized. The main suggestion to all
agile coaches is to respond to the changing needs of
the team rather than following a preconceived plan or
set of practices in adopting agile. It is after all
satisfying the customer needs rather than following a
specific set of practice.

REFERENCES

Beck, K. and C. Andres, 2005. Extreme Programming

Explained: Embrace Change. 2nd Edn., Addison-
Wesley, Boston, ISBN: 0321278658, pp: 189.

Harrison, N.B. and J.O. Coplien, 1996. Patterns of
productive software organizations. Bell Labs
Techn. J., 1: 138-145. DOI: 10.1002/1538-
7305(199622)1:1<138::AID-BLTJ2010>3.0.CO;2-M

Larman, C., 2004. Agile and Iterative Development: A
Manager's Guide. 1st Edn., Addison-Wesley
Professional, Boston, London, ISBN: 0131111558,
pp: 342.

Schwaber, K. and M. Beedle, 2008. Agile Software
Development with Scrum. 1st Edn., Pearson
Education, Limited, Upper Saddle River, NJ.,
ISBN: 0132074893, pp: 158.

