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Abstract: Problem statement: Cloud is purely a dynamic environment and the existing task 
scheduling algorithms are mostly static and considered various parameters like time, cost, make span, 
speed, scalability, throughput, resource utilization, scheduling success rate and so on. Available 
scheduling algorithms are mostly heuristic in nature and more complex, time consuming and does not 
consider reliability and availability of the cloud computing environment. Therefore there is a need to 
implement a scheduling algorithm that can improve the availability and reliability in cloud 
environment. Approach: We propose a new algorithm using modified linear programming problem 
transportation based task scheduling and resource allocation for decentralized dynamic cloud 
computing. The Main objective is to improve the reliability of cloud computing environment by 
considering the resources available and it’s working status of each Cluster periodically and 
maximizes the profit for the cloud providers by minimizing the total cost for scheduling, 
allocation and execution cost and minimizing total turn-around, total waiting time and total 
execution time. Our proposed algorithm also utilizes task historical values such as past success 
rate, failure rate of task in each Cluster and previous execution time and total cost for various 
Clusters for each task from Task Info Container (TFC) for tasks scheduling resource allocation for 
near future. Results: Our approach TP Scheduling (Transpotation Problem based) responded for 
various tasks assigned by clients in poisson arrival pattern and achieved the improved reliability 
in dynamic decentralized cloud environment. Conclusion: With our proposed TP Scheduling 
algorithn we improve the Reliability of the decentralized dynamic cloud computing. 
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INTRODUCTION 
 
 Cloud computing refers to Internet based 
development and utilization of computer technology 
and hence, cloud computing can be described as a 
model of Internet-based computing and a subscription-
based service where you can obtain networked storage 
space and computer resources and so on. Cloud 
Computing, dynamically scalable (and mostly 
virtualized) resources are provided as a service over the 
Internet. With the promotion of the world’s leading 
companies, cloud computing is attracting more and 
more attention for providing a flexible, on demand 
computing infrastructure for a number of applications.
 The actual cloud computing definition (Badger et 
al., 2011; An and Neuman, 2011) by the national 
institute of standards and technology is: “Cloud 
computing is a model for enabling convenient, on-mand 

network access to a shared pool of configurable 
computing resources (e.g., networks, servers, storage, 
applications and services) that can be rapidly 
provisioned and released with minimal management 
effort or service provider interaction”. The goal of 
cloud computing in general is to provide services to 
users with greater flexibility and availability as is 
often described as “taking everything as a service” 
(XaaS) (An and Neuman, 2011). 
 Demand (Goudarzi and Pedram, 2011) for 
computing power has been increasing due to the 
penetration of information technologies in our daily 
interactions with the world both at personal and public 
levels, encompassing business, commerce, education, 
manufacturing and communication services. At 
personal level, the wide scale presence of online 
banking, e-commerce, SaaS (Software as a Service), 
social networking and so on produce workloads of great 
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diversity and enormous scale. At the same time 
computing and information processing requirements of 
various scientific researches (Hoffa et al., 2008), public 
organizations and private corporations have also been 
increasing rapidly. Examples include digital services 
and functions required by the various industrial sectors, 
ranging from manufacturing to housing, from 
transportation to banking. Such a dramatic increase in 
the computing demand requires a scalable and 
dependable IT infrastructure comprising of servers, 
storage, network bandwidth, physical infrastructure, 
electrical grid (Deelman et al., 2003), IT personnel and 
billions of dollars in capital expenditure and operational 
cost (Yang et al., 2008) to name a few 
 For consumers, it is illusion of infinite 
computing resources available on demand (Armbrust 
et al., 2008) and computing resources become 
immediate rather than persistent (Dillon et al., 2010) 
there are no up-front commitment and contract as 
they can use them to scale up whenever they want 
and release them once they finish scaling down. 
Moreover, resources provisioning appears to be 
infinite to them, the consumption can rapidly rise in 
order to meet peak requirement at any time. In 
practice, physical resources of clouds are limited and 
a performance bottleneck will eventually develop.  
 Scheduling (Senkul et al., 2002; Sakellariou and 
Zhao, 2004) is fundamental to the achievement of high 
performance in parallel and distributed systems. 
Scheduling problems, which are concerned with 
searching for optimal (or near-optimal) real-time 
(Srikanth et al., 2012) and predictive schedules subject 
to a number of constraints (Zhang et al., 2009, Yu and 
Shi, 2008), are mostly NP-hard. In general, problem of 
determining whether there is an assignment of tasks to 
servers so that each task's demand may be satisfied by 
the available resources is NP-complete (Heger, 2010) 
(unlikely to be solvable in an amount of time that 
reflects a polynomial function). Even if resources are 
available to meet a certain demand, to correctly 
mapping the set of demands with a set of resources may 
be too complex to solve within an acceptable time-
frame. In cloud computing, delivering services and 
resources on demand over a network requires 
addressing numerous technological issues, including 
automated provisioning, dynamic virtual server 
migration, or network security problems. Further, in a 
cloud environment, not all the resources (virtualized 
server systems) may actually be available to all 
customers, due to network latency, commercial 
agreements, or some security policy issues. 
 A cloud resource scheduler (Bautista et al, 2012,  
Dillon et al., 2010) should make full use of all kinds of 
resources on Internet such as computing, network 
bandwidth and storage resource. However, most of jobs 
that cloud computing needs to deal with are small 

granularity jobs (Liu et al., 2011), which means to need 
longer waiting-time, consume more resources and lead 
to lower flexibility and other drawbacks. Under cloud 
computing environment, in regard to multi-user and 
large amounts of small granularity concurrent job 
requirements, how to properly dispatch jobs to different 
slave nodes to avoid underutilization and how to deal 
with workload unbalance are the bottlenecks which 
importantly influence system performance. 
 The existing scheduling algorithms (Bala and 
Chana, 2011) consider various parameters like time, 
cost, make span, speed, scalability, throughput, 
resource utilization, scheduling success rate and so on. 
but, for a multiple workflows (Yang et al., 2008), 
metrics like reliability and availability (Bamiah and 
Brohi, 2011) should also be considered. Existing 
scheduling algorithms does not consider reliability and 
availability. Therefore there is a need to implement a 
workflow scheduling algorithm that can improve the 
availability and reliability in cloud environment.  

 
Related work: There are plenty of research is going 
for resource scheduling for improving various factors 
in cloud computing. Normally all research is based 
on the heuristic based algorithm where we requires 
lot iterations to achieve the optimal cost and 
minimizing the waiting time and turn-around time. 
No scheduling algorithm considers the important 
parameters such as reliability, Availability and 
improving the scalability. And also complex algorithm 
makes the cloud scheduler as more complex.  
 Gu et al. (2012) proposed a genetic algorithm 
based scheduling and considers the historical data 
and current states of VM,  uses tree structure to do 
the coding in genetic algorithm, proposes the 
correspondent strategies of selection, hybridization 
and variation also puts some control on the method 
so that it has better astringency.  
 Chen and Zhang, 2009, Yang et al. (2008) proposed 
an Ant colony based task scheduling architecture to 
improve the scheduling behavior, better utilize (balance) 
the available resources, lower aggregate task execution 
time and hence, minimize cost.  
 Heger (2010) proposed an ANN based task 
scheduling architecture to improve the scheduling 
behavior, better utilize (balance) the available 
resources, lower aggregate task execution time and 
hence, minimize cost.  
 Henzinger et al. (2010) proposed a method known 
as “flexible provisioning of resources in a cloud 
environment, (Flex PRICE) where the cloud 
(provider) and the users build a symbiotic relationship. 
Instead of renting focuses on allocation of resources 
across tasks using a set of specific resources, the user 
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simply presents the job to be executed to the cloud. 
The cloud has an associated pricing model to quote 
prices of the user jobs executed.  
 Tayal (2011) proposed a centralized scheduler 
(master node) a choice by referring to a global view of 
the whole system with fuzzy setting based on GA 
parameters. Their idea was the adaptation of the GA 
operator’s value (selection; crossover; mutation) during 
the run of the GA. The fuzzy control is applied if the 
condition of fuzzy adaptation is true. This Model 
described the information related to processors which 
includes slot information, data replication information 
and workload information of processors.  
 Senkul et al. (2002) presented a logical framework 
for scheduling work-flow under resource allocation 
constraints. The framework is based on Concurrent 
Constraint Transaction Logic (CCTR) and integrates 
Concurrent Trans-action Logic with Constraint Logic 
Programming. They presented an algorithm that took 
the initial work flows specification and a set of resource 
allocation constraints and returns a new work-flow and 
a resource assignment, such that every execution of that 
workflow is guaranteed to satisfy the constraints.  
 Clark et al. (2012) introduced an Intelligent Cloud 
Resource Al-location Service (ICRAS). ICRAS supports 
the consumer with (1) discovering all available resource 
con-figurations, (2) choosing the desired configuration, 
3) negotiating a service agreement with the CSP, (4) 
monitoring the service agreement for violations and 5) 
assisting in the migration of services between CSPs.  
 Ramamritham et al. (1989) was among the first 
to propose the use of distributed algorithms to 
schedule tasks with time and resource restrictions. 
They give different algorithms for this purpose and a 
comparison of their performance. They claim that 
their solution is effective even in hard real-time 
environments. However, their approach requires each 
node to have full knowledge of the rest of the 
system, which naturally limits its scalability. 
 Zhong and Zhang (2010) proposed an optimized 
scheduling algorithm to achieve the optimization or 
sub-optimization for cloud scheduling. In this algorithm 
an Improved Genetic Algorithm (IGA) is used for the 
automated scheduling policy. It is used to increase the 
utilization rate of resources and speed.  
 Selvarani and Sadhasivam (2010) proposed an 
improved cost-based scheduling algorithm for making 
efficient mapping of tasks to available resources in 
cloud. This scheduling algorithm measures both 
resource cost and computation performance, it also 
Improves the computation/communication ratio.  

 An and Neuman (2011) proposed a scheduling 
algorithm which takes cost and time. The simulation 
has demonstrated that this algorithm can achieve 
lower cost than others while meeting the user 
designated deadline.  
 Liu et al. (2010) presented a novel compromised-
time-cost scheduling algorithm which considers the 
characteristics of cloud computing to accommodate 
instance-intensive cost-constrained workflows by 
compromising execution time and cost with user input 
enabled on the fly.  
 Pandey et al. (2010) presented a Particle Swarm 
Optimization (PSO) based heuristic to schedule 
applications to cloud resources that takes into account 
both computation cost and data transmission cost. It is 
used for workflow application by varying its 
computation and communication costs. The experimental 
results show s that PSO can achieve cost savings and 
good distribution of workload onto resources.  
 Lin and Lu, (2011) proposed an SHEFT workflow 
scheduling algorithm to schedule a workflow elastically 
on a Cloud computing environment. The experimental 
results show that SHEFT not only outperforms several 
representative workflow scheduling algorithms in 
optimizing workflow execution time, but also enables 
resources to scale elastically at runtime. 
 Wu et al. (2011) proposed a market-oriented 
hierarchical scheduling strategy which consists of a 
service-level scheduling and a task-level scheduling. 
The service-level scheduling deals with the Task-to-
Service assignment and the task-level scheduling deals 
with the optimization of the Task-to-VM assignment in 
local cloud data centers.   
 Xu et al. (2009) worked on multiple workflows and 
multiple QoS. They had a strategy implemented for 
multiple workflow management system with multiple 
QoS. The scheduling access rate is increased by using 
this strategy. This strategy minimizes the make span 
and cost of workflows for cloud computing platform.
 Varalakshmi et al. (2011) proposed OWS 
algorithm for scheduling workflows in a cloud 
environment. The scheduling algorithm finds a solution 
that meets all user preferred QoS constraints. With this 
algorithm, a significant improvement in CPU utilization 
is achieved. Parsa and Entezari-Maleki (2009) proposed 
a new task scheduling algorithm RASA. It is composed 
of two traditional scheduling algorithms; Max-min and 
Min-in. RASA uses the advantages of Max-min and 
Min-min algorithms and covers their disadvantages. The 
experimental results show that RASA is outperforms the 
existing scheduling algorithms in large scale distributed 
systems (Xu et al., 2009). 
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Inconveniences with existing methods: In practice, 
cloud computing is highly dynamic and tasks are not 
always executed in the same style. For this type of 
problem, genetic algorithms have difficulty dealing with 
"deceptive" fitness functions (Melanie, 1998), those 
where the locations of improved points give misleading 
information about where the global optimum is likely to 
be found. ANN, ant colony (Yang et al., 2008) PSO 
(Liu et al., 2010) and honey bee algorithms are heuristic 
and need lot of considerable time to get trained and 
react on the situation. As the cloud, dynamic style, 
more new clients and new tasks introduces, same type 
of task may not be very much frequent.  
 
Linear Programming (LP or linear optimization): 
Linear Programming (LP or linear optimization) is a 
mathematical method for determining a way to achieve 
the best outcome (such as maximum profit or lowest 
cost) in a given mathematical model for some list of 
requirements represented as linear relationships. Linear 
programming is a specific case of mathematical 
programming (mathematical optimization). 
 More formally, linear programming (Liu et al., 
2010) is a technique for the optimization of a linear 
objective function, subject to linear equality and/or 
linear inequality constraints. It is feasible region is a 
convex polyhedron, which is a set defined as the 
intersection of finitely many half spaces, each of which is 
defined by a linear inequality. Its objective function is a 
real-valued affine function defined on this polyhedron. 
 
The Transportation problem: There is a type of linear 
programming problem (Reeb and Leavengood, 2002, 
Liu et al., 2010) that may be solved using a simplified 
version of the simplex technique called transportation 
method. Because of its major application in solving 
problems involving several product sources and several 
destinations of products, this type of problem is 
frequently called the transportation problem. It gets its 
name from its application to problems involving 
transporting products from several sources to several 
destinations. The two common objectives of such 
problems are either (1) minimize the cost of shipping m 
units to n destinations or (2) maximize the profit of 
shipping m units to n destinations. Let us assume there 
are m sources supplying n destinations. Source 
capacities, destinations requirements and costs of 
material shipping from each source to each destination 
are given constantly.  
 
Proposed system: 
Overview of proposed system: In our proposed 
system, the clients can assign their tasks with priority 

value between 1 and 5 where 1 has the highest priority 
and charges more per unit of time and 5 has the lowest 
priority with least charges per unit of time. Sometimes 
the priority value can be automatically assigned to the 
client’s task based on the Service Level Agreements 
(SLA) (Buyya et al., 2011) with client. Our System 
receives the tasks from clients with Flexible Quantum 
of buffer time. This buffer time to receive can be 
extended based on the inter-arrival time of tasks. After 
receiving set of tasks, that is transferred to scheduler. 
The scheduler gets all necessary information from other 
phases like workload predictor and Historical 
information from Task Info Container such as Expected 
Execution Time (EET), Expected Worst-case execution 
Time (EWT), Success Score within Expected Time 
(SSEET), Success Score within Worst-case Time 
(SSWT), Resources-Required (RR) and Cost for the 
task execution for each Cluster. With that information 
preprocessing is done to build the Transportation 
Problem Table (Table 3). The Column Minima (which 
gives the least cost for the execution in particular 
Cluster of resource from set of Cluster) method is used 
for efficient scheduling plan, which provide as much 
tasks scheduling as possible with minimum total cost 
for allocation.  After the Scheduling, the Allocator 
generates a queue (execution Sequence order) of 
scheduled tasks based on EET and EWT time in 
ascending order for available resources at an every 
instance of time and allocates resources in the order. 
Resources availability can be periodically predicted 
with Resource predictor. Figure 1 shows the 
decentralized dynamic cloud scheduler. 
 With this system we can persevere and enhance 
the Reliability by considering the available fault-free 
resources for allocation of tasks and we also take the 
historical values for scheduling. So the task 
Execution failure because of resources is prevented. 
So the reliability can be preserved. Also our system 
considered the minimum cost and maximum profit to 
the cloud providers. 
 
Proposed System Architecture: Our proposed 
system Architecture is shown in Fig. 2. It consists of 
7 different phases to produce the scheduling and 
allocation of tasks with reliability. The concept 
behind the each phases of our system are  
 
Task initiator: Our cloud environment is decentralized 
scheduling and task allocation, dynamic in nature, the 
clients can assign task to the cloud at any point of time. 
The tasks are assigned to the cloud is in poisson arrival 
pattern and tasks are independent with other tasks.  
 The task initiator has the following functions. 
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Fig. 1: Our decentralized dynamic cloud environment model 
 

 
 

Fig. 2: The proposed system architecture 
 
 
 This phase maintains the necessary condition for 
the Linear Programming problem Transportation 
problem where Σ Sources =   Σ Destinations by 
receiving the tasks from various clients’ task 
assignment in which the sum of resources required 
should be equal to readily available Cluster resources at 
an instance of time. 
 Task initiator contains the Flexible Quantum 
Time Slice (FQTS) as tasks receiving buffer time. By 
default it has a fixed slice of time to receive the 
clients’ tasks say 5 sec. If more tasks are assigned by 
clients and the inter-arrival time is too short say less 
than or equal to 200 ms then the time slice extended 
up to the inter-arrival time maintained to 200 
millisecond. When FQTS completed and no tasks 
arrived with less than equal to 200 millisecond then 
tasks are transferred to TP scheduler.  

Workload predictor: This phase provide the necessary 
information to the Tasks arrived into decentralized 
cloud environment for execution. Those information are 
such as (i) Expected Execution Time (EET) which 
gives the average case execution time for the task with 
given input parameters, (ii) Expected Worst case 
Execution Time (EWT) for the task with given input 
parameters. This phase also predicts an important 
attribute such as (iii) Resources-Required (RR) to 
complete the task in an efficient manner.  
 We have an assumption that the resources 
available in the Cluster of the cloud have same 
capacity and same capability but it has different 
quantity of resources available at instance of time. 
To minimize the prediction time, the Workload 
Predictor calculates EET, EWT and Resources-
Required for only the tasks assigned for the first time 
to our cloud environment, if the task is already 
introduced, then those information such as EET, EWT 
and RR can be retrieved from the Task Info Container 
which was updated by the Log and Info Updater. 
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Task info container: The Task Info Container is 
storage with controller that keeps all the historical 
information about already assigned task. The 
Historical information is such as Task id, EET, EWT 
and Resource-Required those can be predicted at the 
first time by work load predictor and can be utilized 
for the near future execution. And other Historical 
data such as Success Percentage of a Task within 
EET called SSET, Success Percentage of a task 
within EWT called SWET and execution cost for 
task in each Cluster represented by Costij where i 
stand for Cluster and j represents the Task. 
 When the task is assign to the cloud, Task Info 
Container provides all the historical information to 
the TP scheduler for scheduling. For the new task 
these information’s are newly generated and stored 
into the Task Info Container. 
 
Log and info update: This phase keeps-on updating all 
activities within cloud environment into the log as well 
as updating of task information in the appropriate 
storage. The functions of this phase are: 
  
• Provide the status of all Clusters and its resources 

by periodically collected from Cluster 
• Update the success and failure percentage of each 

task executed with EET and EWT represented as 
SSET, SSWT 

• Update the Cost information of a task in each 
execution for appropriate Cluster 

• This Phase helps the Resource availability 
predictor by providing periodic status 

• Update unallocated task details and reasons for that 
such as resource unavailability, resource failure 
during the execution, Task failure during the 
execution time and when the Task exceeds the EWT 

• Provide all the above information to the TP 
scheduler on demand 

 
TP task scheduler: The objectives of TP task 
scheduler are: 
 
• Efficiently allocate more tasks within available 

Resources at an instance of time 
• To maximize the reliability of the cloud environment 

and to maximize the profit for cloud provider  
• To minimize the execution cost within Clusters and 

load of the resources of the Cluster 
• To maximizing the success percentage of task 

either in EET or in EWT 
• The TP scheduler has control over the Task 

Scheduling based on the following constrains 
• Selection of Tasks which are all satisfying the 

necessary conditions on the TP at instance of the time 
• Priority queue maintained for the Tasks by priority 

value given either by client for the Task or as in the 
Service Level Agreement (SLA) with the client. 

• Scheduling the highest Success Percentage of the 
task either within EET or cumulative success 
percentage of EET and EWT (Percentage of 
successful Task completion updated by Log and 
Info Updater) 

• The lowest cost for task-Cluster combination 
(predicted from historical values) 

 
 With the above constrains, this phase formulate 
LPP based TP table and generate schedule plan with the 
lowest execution cost and make allocation queue based 
on smallest to highest value of EET. 
 
Task allocator: This phase receives the schedule plan 
for the tasks from the TP task scheduler. The allocator 
makes the queue or allocation order of tasks for each 
Cluster with appropriate Tasks by ascending order 
based on EET. The task allocator allocates all tasks or 
some possible task to the Cluster resources as per the 
scheduler plan generated by the scheduler. Sometimes 
the task allocator may not allocate the entire task to the 
Cluster because of the unavailability of resources. 
These tasks are kept in separate queue and allocate 
when resources are released from the task already 
allocated. One additional queue is maintained where all 
new tasks which do not have the necessary information 
such as SSET, SSWT cost for all clusters, will be 
allocated to the freely available resources in any 
clusters with near future. 
 
Resource predictor: This phase periodically collects the 
status of each resources of the Cluster and keeps them 
update for helping the task allocator. Thus the task 
allocator can allocate the tasks as available in the queue. 
Also this phase monitors and collects the working status 
of the resources available in the Cluster, which can be 
used to avoid the resource failure before it occurs. 
 
Mathematical formulation: The mathematical 
formulation of cloud resource scheduling and allocation 
using the modified Transportation problem consist of 
present and historical values. The cloud reliable 
scheduling and allocation using Transportation problem 
CRSATP can be defined as: 
  
TP_Schedular = {T, C, S, D, TP, CO, EET, EWT, 
SSEET, SSWT, CH} 
 
Where: 
 
T = Set of TASKS from various Requesters defined as 

Tj with j = 1, 2 ,…, n 
C = Set of Clusters of the cloud with various number 

of equal capability resources, defined as Ci with i 
= 1, 2 ,…, m 
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Table1: Initial problem formulation table 

 T1  T2  T3  T4 
 --------------------------- ---------------------------- ------------------------------ ------------------------- 
 TP I (Task Priority) TP 2 (Task Priority) TP 3 (Task Priority) TP 4 (Task Priority) 
 EET1 EWT1 EET1 EWT1 EET1 EWT1 EET1 EWT1 Source  

C1 COST 1, 1 SSWT (1,1) COST 1,2 SSWT (1,2) COST 1,3 SSWT (1,3) COST 1,4 SSWT (1,4) Available 
 SSEET Allocation SSEET Allocation SSEET Allocation SSEET Allocation resources at 
 (1,1)  (1,2)  (1,3)  (1,4)  instance of time S1  
C2 COST 2, 1 SSWT (2,1) COST 2,2 SSWT (2,2) COST 2,3 SSWT (2,3) COST 2,4 SSWT (2,4) Available 
 SSEET Allocation SSEET Allocation SSEET Allocation SSEET Allocation resources at 
 (2,1)  (2,2)  (2,3)  (2,4)  instance of time S2 
C3 COST 3,1 SSWT (3,1) COST 3,2 SSWT (3,2) COST 3,3 SSWT (3,3) COST 3,4 SSWT (3,4) Available 
 SSEET Allocation SSEET Allocation SSEET Allocation SSEET Allocation resources at  
 (3,1)  (3,2)  (3,3)  (3,4)  instance of time 3  
C4 COST 4,1 SSWT (4,1) COST 4,2 SSWT (4,2) COST 4,3 SSWT (4,3) COST 1,1 SSWT (4,4) Available 
 SSEET Allocation SSEET Allocation SSEET Allocation SSEET Alloc resources at  
 (4,1)  (4,2)  (4,3)  (4,4) ation instance of time S4  
Desti Resources required Resources required Resources required Resources required 
nation for Task 1  for Task 2  for Task 3  for Task 4 
CHA Charges / Unit of Time Charges / Unit of Time Charges / Unit of Time Charges / Unit of Time 
RGES As per Priority or SLA As per Priority or SLA As per Priority or SLA As per Priority or SLA 

 

Table 2: Cost score calculation table 

 SS Value TP = 1 TP = 2 TP = 3 TP = 4 TP = 5 

SSEET > 90 0 0.442 0.884 1.326 1.768 2.21 
SSET + SSWT > 90 1 1.442 2.884 4.326 5.768 7.21 
SSET + SSWT BETWEEN 80 - 90 2 2.442 4.884 7.326 9.768 12.21 
SSET + SSWT BETWEEN 70 - 80 3 3.442 6.884 10.326 13.768 17.21 
SSET + SSWT BETWEEN 60 - 70 4 4.442 8.884 13.326 17.768 22.21 
SSET + SSWT BETWEEN 50 - 60 5 5.442 10.884 16.326 21.768 27.21 
SSET + SSWT BELOW 50 10 10.442 20.884 31.326 41.768 52.21 
NEW EXECUTION (SAME AS ABOVE) 10 10.442 20.884 31.326 41.768 52.21 

 
Table 3: Actual transportation problem table 

 T1  T2  T3  T4 
 --------------------------- ------------------------ ------------------------- ----------------------- 
 EET1 EWT1 EET2 EWT2 EET3 EWT3 EET4 EWT4 Source 

C1 Cost score  Cost score  Cost score  Cost score  Available  
 (1,1)  (1,2)  (1,3)  (1,4)  no. of resources  
 Allocation   Allocation  Allocation   Allocation  at instance of time S1 
 or zero  or zero  or zero  or zero 
C2 Cost score  Cost score  Cost score  Cost score  Available no. 
 (2,1)  (2,2)  (2,3)  (2,4)  of resources at  
 Allocation  Allocation  Allocation  Allocation  instance of time 
 or zero  or zero  or zero  or zero  S2 
C3 Cost score (3,1)  Cost score (3,2)  Cost score (3,3) Cost score (3,4) Available no. of 
         resources at instance 
 Allocation or zero Allocation or zero Allocation or zero Allocation or zero of time S3 
C4 Cost score  Cost score  Cost score  Cost score  Available no. of 
 (4,1)  (4,2)  (4,3)  (4,4)  resources at instance 
 Allocation or zero Allocation or zero Allocation or zero Allocation or zero of time S4 
Destination Resources  Resources  Resources  Resources  Resources 
 Required for Task 1 Required for Task 2 Required for Task 3 Required for Task 4 Required for Task 1 
Charges Charges / / Unit of Time Charges / Unit of time Charges / Unit of Time Charges / Unit of Time Charges / Unit of Time 
 As per Priority or SLA As per Priority or SLA Unit of Time As per As per Priority or SLA As per Priority or SLA  
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S = Set of sources ie. Resources of equal 
capability available for each Cluster, defined 
as Si with i= 1,2,..m (Si is available 
resources at an instance of time for Cluster 
Ci) 

D = Set of destinations ie. Number of Resources 
of equal capability required to complete the 
Task, defined as Dj with j= 1, 2,n  

TP = Set of TASK Priority of a TASK specified 
by either Requester or as per SLA with 
Requester, defined as TPj with j = 1,2,…n 

CO = Set Of Processing COST for TASK 
processing each Cluster, defined as COij, 

where COij is the cost at clusteri for TASKj 
for one resource used in unit of time 

EET = Set of Expected Execution Time by 
workload Predictor for a TASK (Average 
case Time for N input) irrespective to the 
CLUSTER, defined as EETj, where 
Expected Execution Time for TASKj. 

Eewt = Set of expected execution worst case time by 
workload predictor for N input to a TASK 
irrespective to the cluster, defined as eewtj, 
where Expected Execution Time for TASKj.  

SSEET = Set of success score for EET (Percentage of 
Success in EET time at Clusteri for TASKj) 
by Historical Value to a TASK respective to 
the cluster, defined as SSEETij, where 
success score EETIJ at Clusteri for TASKj. 

SSWT = Set of success score for EWT(Percentage of 
Success within EWT Time for TASKi at 
Clusterj) by Historical Value to a TASK 
respective to the CLUSTER, defined as 
SSWTij, where SSWTij at Clusteri for 
TASKj. 

CH = Set of Charges for processing the TASK in 
any cluster for any number of resources for 
a Unit of Time, Defined as CHj  

 
Objective function: The main objective to this 
scheduling and allocation function is to minimize the 
total cost Min i m , j n

i 1 j 1 Xij Cij− −
= =∑ ∑ , failure percentage of 

execution of a Task Min i m , j m
i 1 j 1 Xij Fij− −
= =∑ ∑  and to 

maximize the profit and success percentage 
Max i m , j n

i 1 j 1 Pij− −
= =∑ ∑  . The initial table formulation is as 

given in Table 1. This table contains the tasks, Clusters  
sources, destinations and predicted execution time, 
success score calculated from the previous history vales 
and charges to each tasks completion. To formulate the 
following formula is used to find the single cost score 
to fit into the actual TP table, shown in Table 3:  
 
Cost score = ((COij / 1000) + SS Valueij) * TPj 

 The equivalent SS value for the SSET and SSWT 
is shown in Table 2, for example if the COij  = 442 then 
cost score is available in the Table 2 
 
Algorithm for our proposed TP scheduling:  
 
Step 1: Formulate the initial transportation table with 

available and received attributes and tasks as  
  Table 1 
Step 2: Find the cost score ij, cost score = (((COij/1000) 

+ SS Value ij) * TPj SS value = 0 if SSET>90, 1 
if SSET+SSWT>90, 2 IF SSET+SSWT 
Between 80-90, 3 for 70-60, 4 for 60-50, 5 for 
50-60 and FOR<50 and new execution 10. refer 
Table 2. 

Step 3: Formulate the actual transportation problem 
with above data as Table 3. 

Step 4: Repeat step 5-7 for all tasks available. 
Step 5: Find the minimum EET/EEWT mark the 

column 
Step 6: Find the minimum cost score for the column 

marked and allocate the resources as required 
by the task 

Step 7: Make the EET marked and cost score ij into 
infinitive value. 

Step 8: Find the order of execution by finding 
maximum charges/unit of time as the first task 
and so on. 

Step 9: Allocate all resources and update the tasks 
history after execution is over 

Step10: If required resources are more than resources of 
all Cluster then eliminate the tasks which has 
more resources required. 

 
MATERIALS AND METHODS 

 
The genetic algorithm based scheduling the Tasks and 
resource allocation is implemented. The fitness function 
was selected to find the total cost for task allocation in 
Cluster and population is taken as 100 tasks and 
mutation by changing the allocation vector one task on 
Cluster with random value. The crossover function was 
implemented by generating new combination of tasks to 
Cluster allocation vector. The genetic Algorithm is 
executed with 100 tasks, mutation rate by 1% and 
Crossover rate by 96.5%.  
 The Genetic Algorithm generates the maximum 
of 400 iterations to produce the near optimum value 
comparing with our algorithm which generates best 
optimum cost with minimum number of resources. 
Two different experiments are conducted. One with 
one set of 100 tasks another with 10 different set of 
each 100 tasks to prove that our system can 
efficiently allocate the dynamic tasks. 
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Fig. 3: Comparison between Genetic Algorithms with our Proposed TP scheduling algorithm 

 

 
 

Fig. 4:  Experimenting with10 different sets of 100 Tasks between genetic and our proposed 

 

 
 

Fig. 5 Comparison of global optimization system with our proposed TP scheduling system 
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Naturally the genetic algorithm could not produce 
the optimum results for both experiments and also it 
takes more execution time to produce the results. All 
the results are imported in mat lab as xpls file and 
graphs 1 and 2 are generated (Fig. 3 and 4). 
 Next we compare our proposed TP scheduling 
system with Global Optimization System Implemented 
with total Permutation and Combination method in 
JAVA, This System can take only of 10 tasks for 4 
Clusters and produced the best optimum cost after 
execution of 10,48,576 different iterations to complete. 
The graph 3 (Fig. 5.) shows the comparison of TP 
scheduling with Global Optimization for 10 tasks. 
 

RESULTS 
 
From the graph 1(Fig. 3) we understand that the blue 
horizontal line (TP Scheduling System) is producing 
the optimal allocation cost in first iteration itself for the 
given 100 tasks, but the black line (genetic Scheduling 
and allocation system) takes 400 itterations it 
converged to find the near optimal result. It also takes 
long time to complete the task scheduling. With the 
graph 2 (Fig. 4) we understand that the black line (TP 
Scheduling) produces the optimal allocation cost for all 
10 sets of each 100 tasks, whereas the red line (Genetic 
Scheduling) produces near optimal value for all sets 
with long execution time. 
 From the graph 3 (Fig. 5) we understand that the 
TP scheduling produces (red horizontal line) shows that 
TP scheduling optimal cost in first iteration whereas 
Global optimization system (red dotted line) produces 
the optimal cost at 20,000 th iteration (in this data set) 
and goes upto 10,48,576 total iterations to complete. 
 From this we can understand TP Scheduler 
produces better scheduling and resource allocation and 
minimizes the Cost and maximizes the profit. And the 
objective of reliability also preserved and enhanced. 
 

DISCUSSION 
 
Our proposed system is implemented as simulation 
environment using the Core JAVA with System 
Configuration of Core 2 Duo with T6600 and 2.20 GHz 
processor and with 2 GB RAM, in which we have 5 
clients and 4 Clusters. Each will have random number 
of resources and 100 tasks are generated with random 
inter-arrival time. Out of 100 tasks some of the tasks 
were generated with random priority, EET, EWT, 
SSET, SSWT, Cost for 4 Clusters. Some of them are 
generated as new tasks so that the system will 
generate the Cost and Success scores. With that the 
TP scheduler is called for scheduling and allocation 

of tasks. The system generates the allocation and 
maintains and updates the historical information in 
Task Info Container. It produces the reliable and best 
optimum cost in first iteration itself. 
 With the same simulated environment, our system 
is compared with two other systems also developed 
with Core JAVA. (1) Genetic Scheduling Algorithm 
with same 4 tasks, 100 tasks and with necessary 
information. (2) Global Optimization by total 
permutation and combination method for 10 tasks, 4 
Cluster and with necessary information. 
 

CONCLUSION 
 
 Thus our proposed TP scheduling algorithm for 
task scheduling and resource allocation in decentralized 
and dynamic cloud computing environment, efficiently 
schedule and allocate the tasks. The main objective of 
this algorithm, to enhance the reliability and 
maximization the profit by minimizing the allocation 
and execution cost and minimizing the complexity of 
cloud controller is achieved.  
 The reliability is achieved by the following ways. 
First it considered the actual availability of the 
resources which are all physically and logically good 
condition and based on that it schedules the tasks. 
Second preferences given to the task which are all have 
most successful by historical values and up-to-date cost 
values is considered for finding the minimal cost. Third 
it maximizes allocation of all assigned tasks as earlier 
as possible. So it serves almost all assigned tasks. This 
system has Task initiator which removes the bottleneck 
problem by control the task incoming flow. 
 Now we have proposed the method for independent 
tasks with equal capability resources of Clusters and 
assuming no advanced reservation in Task Assinment. 
In Future the we are planning to improve the reliability 
and availability for Task Scheduling and resource 
allocation for some complex constraints which are not 
considered now such as resource specialization, critical 
resources, tasks dependent to predecessor task, time 
bounded prescheduled tasks and advanced reservation. 
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