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Abstract: Problem statement: Cloud is purely a dynamic environment and the @gsttask
scheduling algorithms are mostly static and comsidlearious parametelige time, cost, makespan,
speed,scalability, throughputresourceutilization, schedulingsuccessrate and soon. Available
scheduling algorithms are mostly heuristic in natand more complex, time consuming and does not
consider reliability and availability of the clowdmputing environmeniThereforethereis a needto
implement a schedulinglgorithm that can improve the availability and reliability in cloud
environmentApproach: We propose a new algorithm using modified linesygpamming problem
transportation based task scheduling and resoulioeation for decentralized dynamic cloud
computing. The Main objective is to improve theiabllity of cloud computing environment by
considering the resources available and it's wagkstatus of each Cluster periodically and
maximizes the profit for the cloud providers by iniizing the total cost for scheduling,
allocation and execution cost and minimizing totain-around, total waiting time and total
execution time. Our proposed algorithm also utsizask historical values such as past success
rate, failure rate of task in each Cluster and jmew execution time and total cost for various
Clusters for each task from Task Info Container@J For tasks scheduling resource allocation for
near future Results: Our approach TP Scheduling (Transpotation Problesed) responded for
various tasks assigned by clients in poisson arpattern and achieved the improved reliability
in dynamic decentralized cloud environme@onclusion: With our proposed TP Scheduling
algorithn we improve the Reliability of the decealized dynamic cloud computing.

Key words: Transportation problem, cloud reliability, profitaximization, dynamic decentralized
scheduling, Task Info Container (TFC)

INTRODUCTION network accessto a shared pool of configurable
computingresourcege.g., networks, servers, storage,

Cloud computing refers to Internet basedapplications and services) that can be rapidly
development and utilization of computer technologyprovisioned and released with minimal management
and hence, cloud computing can be described as effort or service provider interaction”. The goal o
model of Internet-based computing and a subscriptio cloud computing in general is to provide services t
based service where you can obtain networked storagisers with greater flexibility and availability &s
space and computer resources and so on. Cloutften described as “taking everything as a service”
Computing, dynamically scalable (and mostly (XaaS) (An and Neuman, 2011).
virtualized)resourcesreprovidedasa service over the Demand (Goudarzi and Pedram, 2011) for
Internet. With the promotion of the world’s leading computing power has been increasing due to the
companies, cloud computing is attracting more andgenetration of information technologies in our dail
more attention for providing a flexible, on demandinteractions with the world both at personal andljou
computing infrastructure for a number of applicatio levels, encompassing business, commerce, education,

The actual cloud computing definition (Badgegtr manufacturing and communication services. At
al.,, 2011; An and Neuman, 2011) by the nationalpersonal level, the wide scale presence of online
institute of standards and technology is: “Cloudbanking, e-commerce, SaaS (Software as a Service),
computing is a model for enabling convenient, omdcha social networking and so on produce workloads eagr
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diversity and enormous scale. At the same timegranularity jobs (Liwet al., 2011), which means to need
computing and information processing requiremeffits olonger waiting-time, consume more resources and lea
various scientific researches (Ho#al., 2008), public to lower flexibility and other drawback&linder cloud
organizations and private corporations have alsnbe computing environment, in regard to multi-user and
increasing rapidly. Examples include digital seegic large amounts of small granularity concurrent job
and functions required by the various industri@tees, requirements, how to properly dispatch jobs toedédht
ranging from manufacturing to housing, from slave nodes to avoid underutilization and how talde
transportation to banking. Such a dramatic incréase with workload unbalance are the bottlenecks which
the computing demand requires a scalable andnportantly influence system performance.
dependable IT infrastructure comprising of servers, The existing scheduling algorithms (Bala and
storage, network bandwidth, physical infrastructure Chana, 2011) consider various parameters like time,
electrical grid (Deelmast al., 2003), IT personnel and cost, make span, speed, scalability, throughput,
billions of dollars in capital expenditure and op@nal  resource utilization, scheduling success gatd so on.
cost (Yanget al., 2008) to name a few ~ but, for a multiple workflows (Yanget al., 2008),
For consumers, it is illusion of infinite metrics like reliability and availability (Bamiah and
computing resources avallablle on demand (Armbrusgrohi, 2011) shouldalso be considered. Existing
et al., 2008) and computing resources becomecheqyling algorithms does not consider reliabiingd
immediate rather than persistent (Dillenal., 2010) gy ajjapility. Thereforethereis a needto implement a

:E:recgge ur;cg Ecjhpe_go?(g (s:gg?émltjmevc;eine?/eﬁoméacf/vaa orkflow schedulingalgorithm that can improve the
y p Wi _they war ailability and reliability in cloud environment.
and release them once they finish scaling down.

Moreover, resources provisioning appears to be
infinite to them, the consumption can rapidly rise  Related work: There are plenty of research is going
order to meet peak requirement at any time. Irfor resource scheduling for improving various fasto
practice, physical resources of clouds are limaaed in cloud computing. Normally all research is based
a performance bottleneck will eventually develop.  on the heuristic based algorithm where we requires
Scheduling (Senkuét al., 2002; Sakellariou and lot iterations to achieve the optimal cost and
Zhao, 2004) is fundamental to the achievement g hi minimizing the waiting time and turn-around time.
performance in parallel and distributed systemsNo scheduling algorithm considers the important
Scheduling problems, which are concerned withparameters such as reliability, Availability and
searching for optimal (or near-optimal) real-time improving the scalability. And also complex algonit
(Srikanthet al., 2012) and predictive schedules subjectmakes the cloud scheduler as more complex.
to a number of constraints (Zhasgal., 2009, Yu and Gu et al. (2012) proposed a genetic algorithm
Shi, 2008), are mostly NP-hard. In general, probtdm based scheduling andonsidersthe historical data
determining whether there is an assignment of tasks and current statesof VM, usestree structureto do
servers so that each task's demand bwgatisfiedoy = the coding in genetic algorithm, proposes the
the available resources is NP-complete (Heger, R01Gorrespondenstrategiesof selection, hybridization
(unlikely to be solvable in an amount of time that and variation also puts some control on the method
reflects a polynomial function). Even if resoura®  so that it has better astringency.
available to meet a certain demand, to correctly Chen and Zhang, 2009, Yasgal. (2008) proposed
mapping the set of demands with a set of resounzas an Ant colony basedask schedulingarchitectureto
be too complex to solve within an acceptable timeimprovethe schedulingpehavior,betterutilize (balance)
frame. In cloud computing, delivering services andthe available resources, lowaggregatetask execution
resources on demand over a network require§me andhenceminimizecost.

addressing numerous technological issues, including Heger (2010) proposed an ANN basedsk

automated provisioning, ~dynamic virtual Server .o qjing architecture to improve the scheduling

migration, or network security problems. Further a behavior, better utilize (balance) the available

cloud environment, not all the resources (virtuediz esources. lowemaaregatetask execution time and
server systems) may actually be available to alf€SOUTCES, lowemggreg xecution t

customers, due to network latency, commercial€NCc&minimizecost.

agreements, or some security policy issues. Henzingeret al. (2010) proposed a method known
A cloud resource scheduler (Bautistaal, 2012, as “flexible provisioning of resources in a cloud

Dillon et al., 2010) should make full use of all kinds of €nvironment, ~ (Flex PRICE) where the cloud

resources on Internet such as computing, networkProvider) and the users build a symbiotic relastup.

bandwidth and storage resource. However, mosttsf jo Instead of renting focuses on allocation of resesirc

that cloud computing needs to deal with are smalhcross tasks using a set of specific resourcesygbe
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simply presents the job to be executed to the cloud

An and Neuman (2011) proposed a scheduling

The cloud has an associated pricing model to quotalgorithm which takes cost and time. The simulation

prices of the user jobs executed.

has demonstrated that this algorithcan achieve

Tayal (2011) proposed a centralized scheduletower cost than others while meeting the user

(master node) a choice by referring to a globahvid

the whole system with fuzzy setting based on GA

designated deadline.
Liu et al. (2010) presented novel compromised-

parametersTheir idea was the adaptation of the GA time-costschedulingalgorithm which considersthe

operator’s value (selection; crossover; mutatiamjrd
the run of the GA. The fuzzy control is appliedtht
condition of fuzzy adaptation is truelhis Model
described the information related processorswvhich
includesslot information, data replicationinformation
andworkloadinformationof processors.

Senkulet al. (2002) presented a logical framework

for scheduling work-flow under resource allocation

characteristics oftloud computingto accommodate
instance-intensive cost-constrained workflows by
compromisingexecutiontime and cost with user input
enabled on the fly.

Pandeyet al. (2010) presentec Particle Swarm
Optimization (PSO) based heuristic to schedule
applicationsto cloud resourceghat takesinto account
both computatiorcost and datatransmissioncost. It is
used for workflow application by varying its

constraints. The framework is based on Concurrent,m, tatiorand communicationosts.The experimental
Constraint Transaction Logic (CCTR) and integrategesyitsshow s that PSOcan achievecost savingsand
Concurrent Trans-action Logic with Constraint Logic gooddistributionof workload onto resources.

Programming. They presented an algorithm that took

the initial work flows specification and a set eSource
allocation constraints and returns a new work-fovd
a resource assignment, such that every executitrabf
workflow is guaranteed to satisfy the constraints.
Clark et al. (2012) introduced an Intelligent Cloud
Resource Al-location Service (ICRAS). ICRAS supgort
the consumer with (1) discovering all availableorese
con-figurations, (2) choosing the desired confitjara

Lin and Lu, (2011) proposeah SHEFT workflow
schedulingalgorithmto schedule workflow elastically
on a Cloud computing environmenfThe experimental
resultsshowthat SHEFT not only outperformsseveral
representative workflow scheduling algorithmsin
optimizing workflow executiontime, but also enables
resources to scale elastically at runtime.

Wu et al. (2011) proposeda market-oriented
hierarchical schedulingtrategy which consistsof a

3) negotiating a service agreement with the CSP, (4serVice'|eVe| SChedUIin@nd a task-level SCheduling.

monitoring the service agreement for violations &)d
assisting in the migration of services between CSPs
Ramamrithanet al. (1989) was among the first

The service-level scheduling deals with the Task-to
Service assignment and the task-level schedulirdsde
with the optimization of the Task-to-VM assignmémt

to propose the use of distributed algorithms tolocal cloud data centers.

schedule tasks with time and resource restrictions.

They give different algorithms for this purpose and

Xu et al. (2009) worked on multiple workflows and
multiple QoS. Theyhad a strategyimplementedfor

comparison of their performance. They claim thatmultiple workflow management systemvith multiple
their solution is effective even in hard real-time Q0S.The scheduling access rate is increased by using
environments. However, their approach requires eachlis strategy. Thisstrategyminimizes the makespan
node to have full knowledge of the rest of theand costof workflows for cloud computing platform.

system, which naturally limits its scalability.

Varalakshmi et al. (2011) proposed OWS

Zhong and Zhang (2010) proposed an optimizecalgqrithm for scheduling workfl_ows _in a _cloud
scheduling algorithm to achieve the optimization orenvironment. The scheduling algorithm finds a sofut

sub-optimization for cloud scheduling. In this aigam
an Improved GeneticAlgorithm (IGA) is usedfor the
automatedschedulingpolicy. It is used to increase the
utilization rate of resources and speed.

Selvarani and Sadhasivam (2010) proposed
improved cost-basedscheduling algorithnfor making
efficient mapping oftasksto available resourcem
cloud. This scheduling algorithm measures both
resource cost and computation performance,it also
Improves the computation/communication ratio.

that meets all user preferred QoS constraints. \ttith
algorithm, a significant improvement in CPU utilize
is achieved. Parsa and Entezari-Maleki (2009) mego
a new task scheduling algorithm RASIAis composed
of two traditional scheduling algorithms; Max-minda
Min-in. RASA usesthe advantagesof Max-min and
Min-min algorithmsand coverstheir disadvantageshe
experimentatesults shovthat RASA is outperformshe
existing schedulingalgorithmsin large scaledistributed
systems (Xt al., 2009).
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Inconveniences with existing methods: In practice, value between 1 and 5 where 1 has the highestitgrior
cloud computing is highly dynamic and tasks are notnd charges more per unit of time and 5 has thedow
always executed in the same style. For this type opriority with least charges per unit of time. Somets
problem, genetic algorithms have difficulty dealingh  the priority value can be automatically assignedhi
"deceptive" fitness functions (Melanie, 1998), thos client’s task based on the Service Level Agreements
where the locations of improved points give misiegd (SLA) (Buyya et al., 2011) with client. Our System
information about where the global optimum is liked  receives the tasks from clients with Flexible Quamt
be found. ANN, ant colony (Yangt al., 2008) PSO of buffer time. This buffer time to receive can be
(Liu et al., 2010) and honey bee algorithms are heuristiextended based on the inter-arrival time of tagfer
and need lot of considerable time to get trained anreceiving set of tasks, that is transferred to dales.
react on the situation. As the cloud, dynamic style The scheduler gets all necessary information frémero
more new clients and new tasks introduces, same tygphases like workload predictor and Historical
of task may not be very much frequent. information from Task Info Container such as Expdct
Execution Time (EET), Expected Worst-case execution

Linear Programming (LP or linear optimization): ~ 1imeé (EWT), Success Score within Expected Time
Linear Programming (LP or linear optimization) is a(ggsvlng),RSuccess gcor? ;\"tgg Wo(;stécasef T"Ee
mathematical method for determining a way to achiev { ). Resources-Required (RR) and Cost for the

. g %ask execution for each Cluster. With that inforiomt
the best outcome (such as maximum profit or lowes . . ; .
preprocessing is done to build the Transportation

COSt)_ in a given mathematica! mode| fqr some list o Problem Table (Table 3). The Column Minima (which
requirements represented as linear relationshipeak  gives the least cost for the execution in particula
programming is a specific case of mathematicalciyster of resource from set of Cluster) methodsisd
programming (mathematical optimization). for efficient scheduling plan, which provide as ruc
More formally, linear programming (Liet al.,  tasks scheduling as possible with minimum totalt cos
2010) is a technique for the optimization of a ine for allocation. After the Scheduling, the Allocator
objective function, subject to linear equality amd/ generates a queue (execution Sequence order) of
linear inequality constraints. It is feasible regis a scheduled tasks based on EET and EWT time in
convex polyhedron, which is a set defined as théscending order for available resources at an every
intersection of finitely many half spaces, eachvbfch is  instance of time and allocates resources in therord
defined by a linear inequality. Its objective fiantis a ~ Reésources availability can be periodically predicte

real-valued affine function defined on this polytwed \(,jv(i-:‘t(r;]ent?ael'sc()el:jr%e na?rz?cdicclf)or('j slc:;geltjjreler 1 shows the
ized dynamic clou uler.

The Transportation problem: There is a type of linear With this system we can persevere and enhance
programming problem (Reeb and Leavengood, 2002he Reliability by considering the available fafri¢e

Liu et al., 2010) that may be solved using a simplifiedresources for allocation of tasks and we also take
version of the simplex technique called transpamat historical values for scheduling. So the task
method. Because of its major application in solvingexecution failure because of resources is prevented
problems involving several product sources andrs¢ve gq the reliability can be preserved. Also our syste

destinations of products, this type of problem isconsidered the minimum cost and maximum profit to
frequently called the transportation problem. Itsgés  ine cloud providers.

name from its application to problems involving
transporting products from several sources to sdver Proposed System Architecture: Our
destinations. The two common objectives of sucl’g '
problems are either (1) minimize the cost of shigpin
units to n destinations or (2) maximize the prafit
shipping m units to n destinations. Let us assumeet
are m sources supplying n destinations. Sourc

capacities, destinations requirements and costs of o ) ) )

proposed
ystem Architecture is shown in Fig. 2. It consists

7 different phases to produce the scheduling and
allocation of tasks with reliability. The concept
thind the each phases of our system are

are given constantly. scheduling and task allocation, dynamic in nattine,
clients can assign task to the cloud at any pditinwe.
Proposed system: The tasks are assigned to the cloud is in poissivah
Overview of proposed system: In our proposed pattern and tasks are independent with other tasks.
system, the clients can assign their tasks withripyi The task initiator has the following functions.
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Fig. 2: The proposed system architecture

This phase maintains the necessary condition fo¥Vorkload predictor: This phase provide the necessary
the Linear Programming problem Transportationinformation to the Tasks arrived into decentralized
roblem whereS Sources = 5 Destinations b cloud environment for execution. Those informatiove
P . i ) i Y such as (i) Expected Execution Time (EET) which
receiving the tasks from various clients’ taskgjyes the average case execution time for the sk
assignment in which the sum of resources requiregiven input parameters, (i) Expected Worst case
should be equal to readily available Cluster resesiat Execution Time (EWT) for the task with given input
an instance of time. parameters. This phase also predicts an important

Task initiator contains the Flexible Quantum attribute such as (iii) Resources-Required (RR) to

. . . ! complete the task in an efficient manner.
Time S|I.Ce (FQTS). as tas_ks recellvmg buffer tl.mg. B We have an assumption that the resources
default it has a fixed slice of time to receive theavailable in the Cluster of the cloud have same
clients’ tasks say 5 sec. If more tasks are assidgpye capa<t:_|tty a;nd same Capa_k;”g)l/ bltlt_ it thas d|fffet_rent
. . arri - : guantity of resources available at instance of time
clients and the inter-arrival time is _too short days To minimize the prediction time, the Workload
than or equal to 200 ms then the time slice exténdepredictor calculates EET, EWT and Resources-

up to the inter-arrival time maintained to 200 Required for only the tasks assigned for the firse

millisecond. When FQTS completed and no taskg© our cloud environment, if the task is already

. . . introduced, then those information such as EET, EWT
arrived with less than equal to 200 millisecondnthe and RR can be retrieved from the Task Info Containe
tasks are transferred to TP scheduler. which was updated by the Log and Info Updater.
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Task info container: The Task Info Container is

storage with controller that keeps all the histakic
information about already assigned task. The
Historical information is such as Task id, EET, EWT

and Resource-Required those can be predicted at the

first time by work load predictor and can be ugliz
for the near future execution. And other Historical

Scheduling the highest Success Percentage of the
task either within EET or cumulative success
percentage of EET and EWT (Percentage of
successful Task completion updated by Log and
Info Updater)

The lowest cost for task-Cluster combination
(predicted from historical values)

data such as Success Percentage of a Task within
EET called SSET, Success Percentage of a task ith the above constrains, this phase formulate
within EWT called SWET and execution cost for | Pp based TP table and generate schedule plariheith

task in each Cluster represented by Gashere i |owest execution cost and make allocation queuedas
stand for Cluster and j represents the Task. on smallest to highest value of EET.

When the task is assign to the cloud, Task Info
Container provides all the historical informatiom t Task allocator: This phase receives the schedule plan
the TP scheduler for scheduling. For the new tasKor the tasks from the TP task scheduler. The attoc
these information’s are newly generated and storedhakes the queue or allocation order of tasks fahea
into the Task Info Container. Cluster with appropriate Tasks by ascending order

L d info undate: This ph K dati I based on EET. The task allocator allocates allstask
0g and Into update: This phase kKeeps-on upaaling all g, e possible task to the Cluster resources ashper
activities within cloud environment into the log wasll

X . ) . .. scheduler plan generated by the scheduler. Sometime
as updating of task information in the approprlatethe task allocator may not allocate the entire tasthe
storage The functions of this phase are: y

Cluster because of the unavailability of resources.

« Provide the status of all Clusters and its resaurceThese tasks are kept in separate queue and allocate
by periodically collected from Cluster when resources are released from the task already

« Update the success and failure percentage of eagllocated. One additional queue is maintained whadre
task executed with EET and EWT represented agew tasks which do not have the necessary infoomati
SSET, SSWT such as SSET, SSWT cost for all clusters, will be

* Update the Cost information of a task in eachallocated to the freely available resources in any
execution for appropriate Cluster clusters with near future.

* This Phase helps the Resource availability . . o
predictor by providing periodic status Resour ce predictor: This phase periodically collects the

» Update unallocated task details and reasons for th&tatus of each resources of the Cluster and kewps t
such as resource unavailability, resource failureupdate for helping the task allocator. Thus thek tas
during the execution, Task failure during the allocator can allocate the tasks as availableengtreue.
execution time and when the Task exceeds the EWTRIso this phase monitors and collects the workitagus

* Provide all the above information to the TP of the resources available in the Cluster, which ba
scheduler on demand used to avoid the resource failure before it occurs

TP task scheduler: The objectives of TP task pMathematical
scheduler are:

formulation: The mathematical
formulation of cloud resource scheduling and allioca
using the modified Transportation problem consist o
present and historical valuesThe cloud reliable
scheduling and allocation using Transportation jgnob
CRSATP can be defined as:

» Efficiently allocate more tasks within available
Resources at an instance of time

e To maximize the reliability of the cloud environnben
and to maximize the profit for cloud provider

* To minimize the execution cost within Clusters and
load of the resources of the Cluster TP_Schedular = {T, C, S, D, TP, CO, EET, EWT,

« To maximizing the success percentage of tasi®SEET, SSWT, CH}
either in EET or in EWT

* The TP scheduler has control over the Taskwhere:
Scheduling based on the following constrains

e Selection of Tasks which are all satisfying theT = Set of TASKS from various Requesters defined as
necessary conditions on the TP at instance oirtiee t Tywithj=1,2,..,n

» Priority queue maintained for the Tasks by priority C = Set of Clusters of the cloud with various numbe
value given either by client for the Task or ashia of equal capability resources, defined asnm@h i
Service Level Agreement (SLA) with the client. =1,2,..,m
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Tablel: Initial problem formulation table

T1 T2 T3

T4

TP I (Task Priority) TP 2 (Task Priority)

TP 3 @kaPriority)

TP 4 (Task Priority)

EET1 EWT1 EET1 EWT1 EET1 EWT1 EET1 EWT1 Source
C1 COST 1,1 SSWT (1,1) COST 1,2 SSWT(1,2) COST1,SSWT(1,3) COST1/4 SSWT (1,4) Available

SSEET Allocation SSEET Allocation SSEET Allocation SSEET Allocation  resources at

(1,2) 1,2) 1,3) (1,4) instance of time S1
c2 COST2,1  SSWT(2,1) COST2,2 SSWT(2,2) COST2SSWT (2,3) COST24  SSWT (2,4) Available

SSEET Allocation SSEET Allocation SSEET Allocation SSEET Allocation  resources at

2,1) (2,2) (2,3) (2,4) instance of time S2
C3 COST3,1  SSWT(3,1) COST3,2 SSWT(3,2) COST3,8SWT (3,3) COST3,4  SSWT(3,4) Available

SSEET Allocation  SSEET Allocation  SSEET Allocation SSEET Allocation  resources at

3,1) 3,2) (3,3) (3,4) instance of time 3
C4 COST 4,1 SSWT (4,1) COST 4,2 SSWT (4,2) COST 4,3SWT (4,3) COST1,1 SSWT (4,4) Available

SSEET Allocation SSEET Allocation  SSEET Allocation SSEET Alloc resources at

(4,1) 4,2) (4,3) (4,4) ation instance of tig
Desti Resources required Resources required Resorequired Resources required
nation for Task 1 for Task 2 for Task 3 for Task
CHA  Charges / Unit of Time Charges / Unit of Time hatges / Unit of Time Charges / Unit of Time

RGES As per Priority or SLA

As per Priority or SLA  As per Priority or SLA

As per Priority or SLA

Table 2: Cost score calculation table

SS Value TP=1 TP=2 TP=3 TP=4 TP=5

SSEET > 90 0 0.442 0.884 1.326 1.768 2.21
SSET + SSWT > 90 1 1.442 2.884 4.326 5.768 7.21
SSET + SSWT BETWEEN 80 - 90 2 2.442 4.884 7.326 68.7 12.21
SSET + SSWT BETWEEN 70 - 80 3 3.442 6.884 10.326 768 17.21
SSET + SSWT BETWEEN 60 - 70 4 4.442 8.884 13.326 768 22.21
SSET + SSWT BETWEEN 50 - 60 5 5.442 10.884 16.326 1.768 27.21
SSET + SSWT BELOW 50 10 10.442 20.884 31.326 41.768 52.21
NEW EXECUTION (SAME AS ABOVE) 10 10.442 20.884 3263 41.768 52.21
Table 3: Actual transportation problem table

T1 T2 T3 T4

EET1 EWT1 EET2 EWT2 EET3 EWT3 EET4 EWT4 Source
C1l Cost score Cost score Cost score Cost score Available

(1,2) 1,2) 1,3) 1,4 no. of resources

Allocation Allocation Allocation Allocation at instance of time S1

or zero or zero or zero or zero
c2 Cost score Cost score Cost score Cost score Available no.

(2,1) (2,2) (2,3) (2,4) of resources at

Allocation Allocation Allocation Allocation stance of time

or zero or zero or zero or zero S2
C3 Cost score (3,1) Cost score (3,2) Cost s&8 ( Cost score (3,4) Available no. of

resources at instance

Allocation or zero Allocation or zero Allocatiom pero Allocation or zero of time S3
Cc4 Cost score Cost score Cost score Cost score Available no. of

(4,1) 4,2) 4,3) 4,4) resources at instance

Allocation or zero Allocation or zero Allocatiom pero Allocation or zero of time S4
Destination ~ Resources Resources Resources Resour Resources

Required for Task 1 Required for Task 2  Requirrdrask 3 Required for Task 4 Required for Task 1
Charges Charges / / Unit of Time  Charges / Unitro& Charges / Unit of Time Charges / Unit of TimeCharges / Unit of Time

As per Priority or SLA As per Priority or SLA Urif Time As per

As per Priority or SLA  As per Pitgror SLA
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S = Set of sources ie. Resources of equal The equivalent SS value for the SSET and SSWT
capability available for each Cluster, defined is shown in Table 2, for example if the £© 442 then
as $ with i= 1,2,.m ($ is available costscore is available in the Table 2
E:e)sources at an instance of time for ClusterAlgorithm for our proposed TP scheduling:
|
D = Set of destinations ie. Number of ResourcesStep 1: Formulate the initial transportation tallith
of equal capability required to complete the available and received attributes and tasks as
Task, defined as;vith j= 1, 2,n Table 1
TP = Set of TASK Priority of a TASK specified Step 2: Find the cost scoyecost score = (((COij/1000)
by either Requester or as per SLA with + SS Valug) * TPy SS value = 0 if SSET>90, 1
Requester, defined as jWith j = 1,2,...n if SSET+SSWT>90, 2 IF SSET+SSWT
CO = Set Of Processing COST for TASK Between 80-90, 3 for 70-60, 4 for 60-50, 5 for
processing each Cluster, defined as;CO 50-60 and FOR<50 and new execution 10. refer
where CQ s the cost at clustgior TASK; Table 2. _
for one resourcesed in unit of time Step 3: Formulate the actual transportation problem
EET = Set of Expected Execution Time by with above data as Table 3. _
workload Predictor for a TASK (Average Step 4: Repeat step 5-7 for all tasks available.
case Time for N input) irrespective to the Step 5: Find the minimum EET/EEWT mark the
CLUSTER, defined as ERT where column
Expected Execution Time for TASK Step 6: Find the minimum cost score for the column
Eewt = Set of expected execution worst case time by marked and allocate the resources as required
workload predictor for N input to a TASK by the task
irrespective to the cluster, defined as gewt Step 7: Make the EET marked and cost score ij into
where Expected Execution Time for TASK infinitive value.
SSEET = Set of success score for EET (Percentage gfep 8: Find the order of execution by finding
Success in EET time at Clustfar TASK;, maximum charges/unit of time as the first task
by Historical Value to a TASK respective to and so on.

the cluster, defined as SSEETwhere  giep 9: Allocate all resources and update the tasks
success score EETIJ at Cluster TASK;. history after execution is over

SSWT = Set of success score for EWT(Percentage afiep10: If required resources are more than resswt

Success within EWT Time for TASKat all Cluster then eliminate the tasks which has
Clustey) by Historical Value to a TASK more resources required.
respective to the CLUSTER, defined as
SSWT;, where SSWJ at Cluster for MATERIALSAND METHODS
TASK;.
CH = Set of Charges for processing the TASK inThe genetic algorithm based scheduling the Tasks an
any cluster for any number of resources forresource allocation is implemented. The fitnesgtion
a Unit of Time, Defined as GH was selected to find the total cost for task aliocain

Cluster and population is taken as 100 tasks and
Objective function: The main objective to this mutation by changing the allocation vector one sk
scheduling and allocation function is to minimizet Cluster with random value. The crossover functiasw
total cost Miny_ i7" ' Xij Cij , failure percentage of implemented by generating new combination of tasks

execution of a Task MinY "> i"xijFj and to Cluster allocation vector. The genetic Algorithm is

- ) executed with 100 tasks, mutation rate by 1% and
maximize the profit and success percentage

. . I o Crossover rate by 96.5%.
i-m dJ-npii
Max > i"> . "Pij . The initial table formulation is as The Genetic Algorithm generates the maximu

given in Table 1. This table contains the taskss@rs  of 400 iterations to produce the near optimum value

sources, destinations and predicted _execqtion tim%omparing with our algorithm which generates best
success score calculated from the previous histales optimum cost with minimum number of resources.
and charges to each tasks completion. To formti@e 1., gitferent experiments are conducted. One with
foII(_)vymg formula is used to find thg single cospee one set of 100 tasks another with 10 differentcfet
to fit into the actual TP table, shown in Table 3: each 100 tasks to prove that our system can
Cost score = ((Cf2 1000) + SS Valyg * TP, efficiently allocate the dynamic tasks.
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Naturally the genetic algorithm could not produceof tasks. The system generates the allocation and
the optimum results for both experiments and also imaintains and updates the historical information in
takes more execution time to produce the resullis. A Task Info Container. It produces the reliable ardtb
the results are imported in mat lab as xpls filel an optimum cost in first iteration itself.
graphs 1 and 2 are generated (Fig. 3 and 4). With the same simulated environment, our system
Next we compare our proposed TP schedulings compared with two other systems also developed
system with Global Optimization System Implementedwith Core JAVA. (1) Genetic Scheduling Algorithm
with total Permutation and Combination method inWith same 4 tasks, 100 tasks and with necessary

JAVA, This System can take only of 10 tasks for 4information. (2) Global ~Optimization by total
Clusters and produced the best optimum cost aftep€rmutation and combination method for 10 tasks, 4

execution of 10,48,576 different iterations to cdetg luster and with necessary information.
The graph 3 (Fig. 5.) shows the comparison of TP
scheduling with Global Optimization for 10 tasks. CONCLUSION
Thus our proposed TP scheduling algorithm for
RESULTS task scheduling and resource allocation in deckzech

and dynamic cloud computing environment, efficigntl
From the graph 1(Fig. 3) we understand that the bluschedule and allocate the tasks. The main objecfive
horizontal line (TP Scheduling System) is producingthis algorithm, to enhance the reliability and
the optimal allocation cost in first iteration ifsfor the ~ maximization the profit by minimizing the allocatio
given 100 tasks, but the black line (genetic Scliegu and execution cost and minimizing the complexity of
and allocation system) takes 400 itterations itcloud controller is achieved.
converged to find the near optimal result. It aakes The reliability is achieved by the following ways.
long time to complete the task scheduling. With theFirst it considered the actual availability of the
graph 2 (Fig. 4) we understand that the black (i@ resources which are all physically and logicallyodo
Scheduling) produces the optimal allocation costalb condition and based on that it schedules the tasks.
10 sets of each 100 tasks, whereas the red lineetiee Second preferences given to the task which areaar
Scheduling) produces near optimal value for alk setmost successful by historical values and up-to-dest
with long execution time. values isconsidered for finding the minimal cost. Third
From the graph 3 (Fig. 5) we understand that thét maximizes allocation of all assigned tasks adiexa
TP scheduling produces (red horizontal line) shthas  as possible. So it serves almost all assigned .tasks
TP scheduling optimal cost in first iteration whese System has Task initiator which removes the bogtén
Global optimization system (red dotted line) progic Problem by control the task incoming flow.
the optimal cost at 20,000 th iteration (in thisadset) Now we have proposed the method for independent
and goes upto 10,48,576 total iterations to coraplet ~ tasks with equal capability resources of Clusterd a
From this we can understand TP Schedule@ssuming no advanced reservation in Task Assinment.
produces better scheduling and resource allocaimh In Future the we are planning to improve the réliigh
minimizes the Cost and maximizes the profit. And th and availability for Task Scheduling and resource

objective of reliability also preserved and enhahce allocation for some complex constraints which aoé n
considered now such as resource specializatiotcatri
DISCUSSION resources, tasks dependent to predecessor task, tim

bounded prescheduled tasks and advanced resetvation

Our proposed system is implemented as simulation

environment using the Core JAVA with System REFERENCES
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