
Journal of Computer Science 8 (10): 1601-1614, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Gilsa Aparecida de Lima Machado, Course of Biomedical Engineering, Research and Development Institute (IPD),
University of Vale do Paraíba (UNIVAP), Av. Shishima Hifumi, 2911, 12244-000, S. José dos Campos, SP, Brazil

1601

Applying Software Engineering Methodology for

Designing Biomedical Software Devoted to Electronic Instrumentation

1Gilsa Aparecida de Lima Machado, 1Patricia Mara Danella Zacaro,
1Alderico Rodrigues de Paula Junior and 2Marcelo Lopes de Oliveira e Souza

1Research and Development Institute (IPD)
Course of Biomedical Engineering, University of Vale do Paraiba (UNIVAP),

Av. Shishima Hifumi, 2911, 12244-000, S. Jose dos Campos, SP, Brazil
2Course of Space Engineering and Technology (ETE),

Division of Space Mechanics and Control (DMC),
National Institute for Space Research (INPE),

Av. dos Astronautas, 1758, 12227-010, S. Jose dos Campos, SP, Brazil

Abstract: Problem statement: Significant effort goes into the development of biomedical software,
which is integrated with computers/processors, sensors and electronic instrumentation devoted to a
specific application. However, the scientific work on electronic instrumentation controlled by
biomedical software has not emphasized software development, instead focusing mainly on electronics
engineering. The development team is rarely composed of Software Engineering (SE) experts.
Usually, a commercial automated tools environment is not used due to its high cost and complexity for
researchers from other areas to understand. Approach: This present study reports how the SE
approach was applied to design and develop biomedical software, which is part of a Computerized
Electronic Instrumentation (CEI). This CEI comprises software and an electronic instrumentation
based on a force sensor and electrogoniometer to monitor the hand exertion of computer user during
typing task. The aim is to serve as a guideline for academic researchers who are not expert in software
engineering methodology but usually develop their own software to run with their CEI. The
specification of the requirements, presented as use case, includes the context diagram, the data flow
diagram, the entity relationship diagram and test procedure. The Unified Modelling Language from the
Enterprise Architect tool was used. The developed software and the electronic instrumentation were
tested together. Results: A sample of the interface screen shows how the outcomes could be plotted in
an integrated manner. By comparing the values with other values obtained by manual calculations and
with those provided by sensor manufacturer, the repeatability of test procedure validated the results.
Reliable electronic instrumentation when working with unreliable software can become unreliable.
Conclusion: Applying software engineering methodology principles provided a simple and clear
documentation that was helpful to establish the test procedures and the re-work.

Keywords: Biomedical software, signal processing, software engineering, structured analysis

INTRODUCTION

The scientific work in electronic instrumentation

controlled by biomedical software has not emphasized the
software development, but instead focused on electronics
engineering, probably, because the development team is
rarely composed of Software Engineering (SE) experts.
However, in this study, software design and development
was the target instead of electronic instrumentation
development. This should help researchers in academic
environments to better understand where the SE
methodology approaches fit when they do electronic
instrumentation that involves software development.

Biomedical software and mission critical
applications: A lot of software is developed by people
who are not experts in Software Engineering (SE)
methodologies. A significant amount of software is
developed by small and medium size software
organizations, which do not have infrastructure and
resources to implement a rigorous quality plan (Mishra
and Mishra, 2009). Most cannot afford automated tools
for SE due to their high cost and complexity.

Therefore, design faults may occur as a result of
imperfections from specification requirements. To
avoid design faults, according to Troubitsyna (2010)

J. Computer Sci., 8 (10): 1601-1614, 2012

1602

while developing a system by refinement, developers start
from an abstract specification. Stepwise refinement allows
them to incorporate system requirements into the
specification gradually and eventually arrive at system
implementation, which is correct by construction. Design
faults may cause errors and even failures in the system.
Wrong results could be due to code implementation
faults or faults in the specification.
 Nevertheless, when a failure occurs in biomedical
computerized electronic equipment, it is usually
attributed to a protocol error, equipment failure, or
human error during system operation. Rarely, is it
attributed to a software fault that induced an equipment
error. Early reliability models are based on reliability
engineering, particularly hardware reliability
(Shanmugapriya and Suresh, 2012). However, quality
goals can primarily be achieved if the software
architecture is evaluated with respect to its specific
quality requirements at the early stage of software
development (Shanmugapriya and Suresh, 2012).
 Redundancy is especially important in systems
with critical missions. Software can have redundancy
of processes, while hardware can have redundancy of
electronic components such as sensors or input/output
channels. A system is defined in the biomedical field as
having a critical mission, if its failure could have life
threatening consequences. Several authors have
reported on such systems. Arpaia et al. (2012)
proposed a method for home-care to predict a critical
condition of a patient affected by a specific disease
such as pulmonary disease.
 Systems engineering can autonomously decide the
next step for patient care based on the previous set.
Kauffmann et al. (2011) offered approaches for
verification and validation processes. The greater the
risks, the more efforts must be used to reduce the
probability of system failures. Depending on the
mission of the system, its failure can result in lost of
human life. For example, Garcia-Saez et al. (2009)
discussed a solution for the problem of diabetes care
based on architecture and implementation of a mobile
personal assistant that supports personal and remote
control strategies for insulin-dependent patients
supervised by healthcare professionals through a
telemedicine information system. The system notifies
the patient with a message whenever a new therapy is
prescribed. In this case, incorrect information would
generate incorrect prescription, which could be
ultimately lethal.
 Considering that an incident can occur when
unprepared staff operates complex biomedical
system, all biomedical systems should have access
control for each available process into the system.
One solution reported by Rezk et al. (2012) makes it
possible to mine the dependency among user’s data
items from his transaction log and generates specific

rules, which determine the context in which the user
access the data items. According to them the challenge is
building an efficient Database Intrusion Detection System,
which can detect any malicious transaction with low false
positive rate and high detection rate and integrating it with
access control, in order to strength the database security.
 Two issues could minimize the problems reported
above, one of them is the software engineering
methodology; the other is the certification of software
and electronic instrumentation.

Software certification: Software certification is not
usually taught in a university or a computer science
course. Therefore, few software developers are
prepared to develop software ready to be submitted to a
certification process. Certification of medical software
is not a recent approach; however, few researchers and
governments have made any effort to do this.
 Certification allows software developers in the
country to market safe products with better quality and,
therefore, are more competitive. In addition, certification
facilitates the entry of such software into international
markets. For this purpose, the way that software
packages are tested, delivered and operated should
contain written document. The International Standard
Organization (ISO)/12119:1994 is concerned about this.
Additionally, the ISO 9001 and FDA medical device
good manufacturing process regulations have roles that
reduce the risk of low quality software production.
 Recent scientific study addressing certification of
biomedical software that works with electronc
instrumentation was not found. However, certification
of systems containing software is increasingly
important for governments, industry and consumers
alike (Maibaum and Wassyng, 2008).
 Guidelines from a certifier company are needed for
biomedical electronic instrumentation that involves
software development. Each certifier company has
their own roles based on specific ISO standard. Due to
the lack of roles based on ISO standard that could help
researchers to conceive and develop their software for
biomedical instrumentation, this computerized
electronic instrumentation has not been submitted to a
certification process yet. Nevertheless applying the SE
methodology approach was an advance.

Software engineering methodologies: There are
several approaches to SE and each lead to a specific
methodology of SE. Structured Analysis of systems is a
SE methodology used by several software developers.
Nakanish et al. (2009) had the Data Flow Diagram
(DFD) as their focus. The Agile is about rapid software
design and development. The Scrum, based on agile
methods, could be the best solution for project with
rapidly changes and at first, it does not emphasize solid
requirements as the structured analysis does. The
ArchJava is a tool designed to allow programmers

J. Computer Sci., 8 (10): 1601-1614, 2012

1603

assemble components, connection and ports. An
ArchJava component is a special object, able to be
equipped with ports through which it can interact with
other components. Ports are dedicated to support
connections and service invocations. A port
corresponds to the concept of interface found in COM
port frequently used in communication between
machines. Analysis and Object Oriented are different
techniques to develop the computer system. The Object
Oriented (OO) is the newest approach that focuses on
capturing the objects in the scenario of the current
system. A tool of modelling called UML (Unified
modelling Language) serves for the use case and DFD
definition that could be applied in both approaches of
structured analysis and OO.
 However, some researchers have developed
biomedical software for CEI, but the focus of their
manuscripts has been electronic instrumentation.
Therefore, the reader or some new team member does
not understand how the software was designed and
developed. As a consequence, the system could
become unrepeatable and not maintainable. Amato et
al. (2009) developed a biomedical system using Java,
relational MySQL DBMS, MATLAB and XML, but
their SE design was not included. Pereira et al. (2009)
developed instrumentation to apply and assess
locomotor training. They constructed a system using
electrogoniometers, load cell and software developed
in LabVIEW® environment. The LabView is one
software environment provided with its respective data
acquisition card.
 Normally, the researchers generate documents
applied to the electronic instrumentation only, while
the software documentation is stored only in the mind
of the developer. When the project moves out of
laboratory and onto the market, the software should not
be inserted into the project documentation as a “black
box”, but a systematic documentation of software is
need to allow reproducibility of the project.

MATERIALS AND METHODS

Electronic instrumentation: The computerized
electronic instrumentation is an integrated solution that
proposes to record typing frequency, fingertip force and
wrist posture (flexion, extension, ulnar and radial
deviation) in computer user to detect hand overexertion,
during typing task, that could put the computer user at risk
of acquiring muscle skeletal injury.
 Exactly how the electronic instrumentation was
developed was addressed in our previous study:
Machado and Villaverde (2011). Following is a brief
description of electronic instrumentation.
 The electronic instrumentation is comprised a two-
axis capacitive sensor accelerometer±1.5g±90deg, with
a 1Hz- 300Hz bandwidth response used as goniometer

to register the wrist posture; and a Force Sensing
Resistor (FSR), 4.4 N, with a response time of 5 µl, biased
by dual ±9V and -5V power supplies used to register the
applied force. An instrumented hand is shown in Fig. 1.
This photograph was taken while a computer user was
performing a typing test using the CEI.
 The accelerometer is in the box positioned on
the subject’s right hand. The force sensor resembles
an almost transparent ribbon. An empty box was
attached to the subject’s left hand to simulate the
condition of the test hand; simulated force sensors
were also placed on the left hand.
 After the hands were properly instrumented, both
sensor circuits (force and accelerometer) were
energized and connected to a data acquisition card
(with 12 bits and 32 channels from Lynxtec
Technology-Brazil) inserted into a personal computer.
 Figure 2 and 3 are the basic diagrams of circuit
boards corresponding to the force sensors and the
accelerometer, respectively. These diagrams show
the output signal, which were acquired and
processed by developed software.
 The Vout in Fig. 2 is the output signal in response
to a pressure that changes the sensor resistance (R1) to
a reference resistance (R2).
 The accelerometer sensor has two reading exits,
one for the X-axis and another for Y-axis; Yout is the
output voltage of the accelerometer, in Y direction; Xout
is the output voltage of the accelerometer, in X
direction. The accelerometer was used as a goniometer
to measure wrist flexion/extension and ulnar/radial
deviation. The developed software acquired and
processed the output signal in order to provide the
correspondent angle for wrist posture during typing task.
 The software requires calibration tables to execute
calculations using the acquired signal. Therefore, the
software has a process responsible for sensors
calibration. The calibration task was described in the
Procedure for test and in the calibration outcomes
section. With more calibration points, more precise
results could be obtained, because the calculations
were based on a linear interpolation method (Eq. 1):

() ()
()

1 1
2 1 X1

X'1 x1

X' - X
X = X + a - Y

Y - Y
 (1)

where, variable “a” represents VOUT from Fig. 2 and
VOUT, XOUT from Fig. 3; X2 corresponds to the
unknown fingertip force or wrist angle during typing
task; while the interval value from the calibration
table is X1 with its respective tension YX1 and X1’
with its respective tension YX’1 . The X2 values were
saved as temporary data for graphic generation by
developed software.

J. Computer Sci., 8 (10): 1601-1614, 2012

1604

Fig. 1: View of the instrumented hand showing the position of the sensors

Fig. 2: Basic diagram for force sensor. Legend: R1 =

sensor resistance; R2 = Reference resistance;
Vout = output signal

Fig. 3: Connection Diagram for Accelerometer.

LEGEND: VDD=the power supply input;
VSS=the power supply ground; ST=logic input
pin used to initiate self test; Xout=output voltage
of the accelerometer; Yout =output voltage of the
accelerometer

Software design: The structured analysis methodology
was applied. The software requirements were
described by use case. The use case diagram is
commonly applied to the Object Oriented approach.
For the structured analysis approach, the software
requirements are described by narrative use case as a
series of numbered steps and complemented by
context diagram.
 The relational database manager system Firebird®;
the Delphi® language; Unified Modelling Language
(UML) from the Enterprise Architect tool; a PC
Computer with Microsoft Windows, a data acquisition
card by Lynxtec Technology; and the electronic
instrumentation previous described were used.
 The first step of this methodology was the
narrative use case as a series of numbered step of
software requirements, present in the results section.
The second step is the context diagram (Fig. 4)
design that can be helpful in understanding the
context that the system will be part of.
 The next step was the Entity and Relationship
Diagram (ERD) designing (Fig. 5-6). This ERD is a
relational model to show a brief database composition
and how the data are inter-correlated. Each entity was
represented by a rectangle; while each data was defined
as an attribute of its respective entity, known as table
column. For each entity created, its attributes were
defined and listed on the right side of Fig. 5 and
represented by an ellipse in Fig. 6. The designed ERD
had an indicator of its cardinality. The database
modeling was performed using UML Data Modeling
Profile. This tool maps the database concepts of tables
and relationships onto the UML concepts of classes and
association by using the stereotype.

J. Computer Sci., 8 (10): 1601-1614, 2012

1605

Fig. 4: Context diagram of the system

Fig. 5: The used tool case showing the starting of the entity and relationship diagram definition and its respective

attributes

The fourth step of this SE methodology was to
design the Data Flow Diagram (DFD), shown in Fig. 7,
composed by process, data storages and external
entities. This DFD helps visualize how the system
should operate and how the system would be
implemented. The used tool case provided the

notation used for DFD design, where the ellipse
represent a process in which data are used or
generated; the rectangle represents an external
source; the two parallel lines represents the stored
data; and the arrow indicates the direction of data,
i.e., how data flows through the system.

J. Computer Sci., 8 (10): 1601-1614, 2012

1606

Fig. 6: Part of the entity and relationship diagram of the system

Fig. 7: Data flow diagram of the system-top level

J. Computer Sci., 8 (10): 1601-1614, 2012

1607

Fig. 8: How the outcomes were exhibited in an integrated manner. LEGEND: Deg=degree that refers to the threshold

for wrist posture; N=Newton that refers to the fingertip force applied during typing; Hz =the average of
keyswitch pressed in one second

The fifth step was the software implementation by

code creation using the Delphi® language.

Code implementation: The driver of the acquisition
card had its source code adapted to run as part of our
software, to provide facilities to choose the channel
and sample frequency, as well as to acquire and
process data. Process 3 from Fig. 7 was programmed
considering the pins where the sensors were
connected to the data acquisition card. These signals
were processed and stored in a Table as
“Temporary-data” according to Fig. 5-7.
 The access control process from Fig. 7 was the
first to be implemented enabling and disenabling
access to the other options of the system. Each process
was implemented and tested in isolation. Finally, the
integrated system was obtained when the electronic
instrumentation was connected to the computer. Then,
process 3 was tested to evaluate its capability to
recognize the electronic instrumentation. Each channel
from the data acquisition card was tested to assure the
correct reading from each connected sensor.
 The electronic instrumentation and software were
tested together to evaluate the capability of the

software to acquire and process data. The outcomes
were compared to previous set values.

Procedures for test: The test team was composed of a
computer scientist (software developer), electronic
engineer and physiotherapist.
 To check the access control and assure that all
requirements were implemented, a person, who was
unauthorized to access some source of the system,
checked the security/safe condition. Two people were
the system testers. Each logged in the system as
administrator and all permission to the administrator
profile was tested. This same person logged out as
administrator and subsequently, logged in as
receptionist; then the type of permissions granted her
was tested. This same person logged out as receptionist
and logged in as arbiter so she could setup the software
configuration to recognize the electronic
instrumentation, setup the channel from where the data
would be acquire; choose the sample frequency before
use; calibrate the electronic instrumentation; start a
simulation of a test by pressing all force sensor and
moving the electrogoniometer, stop the simulation; and
observe how the outcomes were exhibited. The second
tester repeated this sequence.

J. Computer Sci., 8 (10): 1601-1614, 2012

1608

Table 1: The calibration table obtained during three trials with one
force sensor

Masses Trial-1 Trial-2 Trial-3 Mean SD
(gram) (volt) (volt) (volt) (volt)
 (volt)

20 0.23 0.21 0.28 0.24 0.04
50 0.61 0.58 0.45 0.55 0.09
70 0.74 0.80 0.70 0.75 0.05
100 1.10 1.00 1.10 1.07 0.06
120 1.20 1.40 1.40 1.33 0.12
130 1.30 1.40 1.60 1.43 0.15
150 1.40 1.50 1.70 1.53 0.15
170 1.70 1.70 2.00 1.80 0.17
180 1.90 1.90 2.10 1.97 0.12
200 2.40 2.50 2.50 2.47 0.06
220 2.50 2.50 2.60 2.53 0.06
230 2.60 2.40 2.60 2.53 0.12
250 2.90 2.80 2.80 2.83 0.06
270 3.10 2.90 3.18 3.06 0.14
280 3.10 3.00 3.42 3.17 0.22
300 3.30 3.30 3.60 3.40 0.17
320 3.70 3.70 3.80 3.73 0.06
350 4.20 4.20 4.00 4.13 0.12
360 4.22 4.21 4.25 4.23 0.02
370 4.60 4.50 4.30 4.47 0.15
380 4.60 4.50 4.50 4.53 0.06
400 4.70 4.90 4.60 4.73 0.15
430 4.92 4.98 4.85 4.92 0.07

To validate the result provided by software and the
electronic instrumentation working together, one force
sensor was tested by using standard masses, when 23
calibrated points were obtained starting from 20-430
grams. For this purpose, the force sensor was
connected to the data acquisition card inserted into the
computer. The circuit with the force sensor was power
supplied by an electronic device with a dual voltage of
±9V. The sensor, with a sensitive diameter, was placed
on a flat area. The masses were placed on the sensitive
perimeter of the sensor and the response was shown in
tension through the software. When a pressure was
exerted on the sensitive area, a reduction in its
resistance occurred and, consequently, a voltage signal
was released. To validate its reliability, the same force
sensor was tested three times. The outcomes are
presented in Table 1. The mean and standard deviation
was calculated between the three trials to observe the
error rate in order to estimate the reliability of the
software in providing accurate results from electronic
instrumentation in response to the fingertip force applied
during typing task.
 To obtain the calibration points from the
electrogoniometer, it was connected to the computer,
the software responsible for calibration task was set
up and the electrogoniometer was positioned at
0° and ±90 degree for x-axis and y-axis. Then the
outcomes were transferred to the calibration data

storage labelled as Goniometer in Fig. 5-6. Five
calibration points were recorded.
 To check the reliability of this present software
in calculating the typing frequency, no sensors were
used; one subject typed a text using the computer
keyboard for 90 s. Then, the system showed the
typing frequency expressed in Hz, which was
compared with manual calculation.
 To check the accuracy of software in acquiring and
processing signals, one computer user sat in an upright
position with arm held at a flexion of 90 degree to the
body. The forearm was in the resting position over a
flat area, leaving the left hand free to move by flexing
the wrist. The electrogoniometer was fixed onto the
volunteer’s hand, at the metacarpal junction of the
middle finger and then this was connected to the
computer through the data acquisition card. The
software was configured at a sampling rate of 5 Hz. At
the same time, a manual goniometer was placed on the
side of the subject’s hand, in the carpal area, with its
movable spindle positioned at the edge of the little
finger following the median line of the ulna. The
subject did some wrist flexion movements, as
requested by the arbiter. The manual goniometer
followed the wrist flexion. The result from
electrogoniometer was compared with the result from
manual goniometer. This test procedure is the same
reported by Machado and Villaverde (2011).
 Later, the test procedure was set up with one
computer user. For this purpose, the electronic
instrumentation was positioned on the subject’s right
hand at the metacarpal junction of the middle finger
(Fig. 1) to register wrist posture. With the subject’s
hand in a prone position, a flex force sensor was fixed
with a ribbon sensor on the palmar aspect of fingers 2
through 5 in the medial phalanx region with the
sensitive area of the sensor on the fingertip pulp to
register the applied force. Fig. 1 shows an
instrumented hand. After the hands were properly
instrumented, both sensor circuits (force and
accelerometer) were energized and connected to a
data acquisition card inserted into a personal
computer. The software was setup to enable the
channels from data acquisition card and the sample
frequency was established at 2000 Hz. The subject
started typing a previously selected text and the
software started to acquire and process data, ending as
soon as the arbiter pressed the “Stop” button available
on the interface screen.
 The outcome was shown in an integrated manner
on a computer screen, which is illustrated in Fig. 8.
These included information about the typing frequency,
wrist flexion and extension, radial and lunar deviation
and fingertip force.

J. Computer Sci., 8 (10): 1601-1614, 2012

1609

 The outcomes were saved as image.tiff, as
predicted in Fig. 7. The software offers a resource
for recovering this image.

RESULTS

This methodology was applied in a simple form,
which is understandable by anyone who intends to
develop biomedical software for electronic
instrumentation. The narrative use case, the context
diagram, ERD, the DFD, the result of the calibration
task and a sample of the outcomes provided by CEI
during typing task in attendance with item 21 from use
case are shown below.

Narrative use case of the software requirements:
The system administrator creates the staff records for
receptionist, arbiter, calibrator and physiotherapist to
provide user authentication:

• One patient first arrives to do a test
• The system requires the receptionist authentication
• The system verifies the user authentication profile

in order to enable or disable resources
• The system enables the receptionist to create the

patient record
• The receptionist receives the patient by providing

a patient record at his/her first time. The
receptionist then logs out from the system

• The instrument calibrator logs in the system to
obtain user authentication

• The system verifies the user profile to enable the
screen interface for calibration task

• The instrument is connected to the computer
• The calibrator calibrates the force sensors and the

electrogoniometer to actualize the database with
the new calibration data and logs out of the system

• The system registers any changes made in the
database

• The arbiter/physiotherapist logs into the system
• The record of respective patient who arrived to do

the typing test is selected
• The subject sits upright in a chair with arms and

knees flexed at 90 degree. The keyboard is
approximately 10 cm from the edge of the table.
The subject starts typing a previously selected text
for 90s. The developed software obtains the typing
frequency

• The typing frequency is saved by system
• The patient has the hand instrumented with force

sensor and electrogoniometer attached
• The arbiter decides the duration of the test,

selects the channel for signal acquisition and

chooses the sample frequency. Then the patient
starts the typing task

• The software starts the control of the
channel/sensor, registers the signal in volts,
records the reading time and transforms the values
obtained in volts into the correct measurement
units (degree, Newton and Hz).

• The result of calculation is retained in a
temporary Table

• The arbiter administers the use of the instrument,
tracks completion of the test and stops it by
pressing a button available on user interface screen

• The system shows the outcomes on a screen
interface. Data on flexion and extension of the
wrist, radial and ulnar deviation, typing frequency
and fingertip force during the typing are exhibited

• The arbiter saves or prints the result as an image
• The arbiter/physiotherapist and patient analyse the

result together
• The system provides limits for wrist flexion and

extension, lunar and radial deviation, fingertip force
and typing frequency above which the patient is in
risk of acquiring muscle skeletal disorder

• The physiotherapist researches previous result of
the respective patient

• The patient receives guidance about extreme
values observed

• The physiotherapist fills the electronic record with
information related to the diagnostic conclusion

• The physiotherapist/ arbiter logs out from the
system

• The system saves information about user name,
date and database structure in which the
respective user has just modified. The system
allows the administrator to audit the database to
assure data safety

Context diagram: The Context Diagram (Fig. 4) has
just one process element representing the system
being modelled, showing its relationship to external
systems, person, equipment, or something that is
necessary during software use.

The context diagram is composed of: Previous
results-were saved in one folder into the hard disk of
the computer where the screen of the outcomes was
saved as image.tiff. The purpose of this is to track
patient’s improvement concerning hand overexertion.
Staff-people with authorization to operate the system
and therefore register patients, be responsible for CEI
use, search for previous results, analyse the outcomes.
In summary, staff is a person who is not patient, but is
involved in the typing test environment:

J. Computer Sci., 8 (10): 1601-1614, 2012

1610

• Arbiter-health professional who is responsible

for instrumentation use and analyses of the
patient’s test outcomes

• Electronic Instrumentation-the CEI composed by
force sensor, electrogoniometer, data acquisition
card and power supplier

• Patient-the computer users who will use the CEI
solution to detect his/her vulnerabilities in
acquiring muscle skeletal disorder

• System administrator-person responsible for
database system and software performance and
security

• Computer-used to run the developed software
including the goniometer, force sensors and the
data acquisition card. The typing task test was also
performed on this computer

Entity and relationship diagram: There was no
intention to write a tutorial; therefore, Fig. 5-6 is a brief
demonstration of designed ERD. Consequentially, not
all created entities were represented in Fig. 6. In Fig. 5,
part of the tool case is shown to provide an idea how
the entity and its respective attributes were created. In
this case, the entity Patient and Staff are shown.
 Figure 5 (b) is part of the Entity and Relationship
Diagram of the system in a more advanced stage of
creation than Fig. 5.
 The diagrams in both Fig. 5-6 are not a flowchart.
Therefore, the losangle does not represent decision
made: this represents the relationship between the two
entities. The relationships illustrate how two entities
share information in the database structure. The
relationship between entities Patient and Staff was the
primary key from Patient and Staff, plus a new
attribute labelled as Date Time that denotes the date of
patient attendance. For each data storage in this ERD,
there is an equivalent data storage in the DFD.
 The underlined attribute (Fig. 6) represents a
primary key. These keys were used for relationships
between the data storages and warrant uniqueness.
 The data storage named “Patient” has information
about each patient. Whereas, the data storage named
“Temporary_Data” contains processed signals obtained
during typing task. The data storages named
“Force_Instrument” and “Goniometer” were used for data
storage from the instrument calibration; staff with
calibrator profile is responsible for these table’s contents.
 This ERD diagram shows the attributes
distributed among entities that represent the data
storages, illustrated with rectangles. In reality, each
data storage in ERD had an equivalent data storage
in DFD; and each data storage generates one table in
the Firefird® database. Two entities are shown on the

left side of Fig. 6 to demonstrate how the attributes
were designed by using an ellipse and line connector
to the respective entity. The attributes of each
respective entity are listed on the right side of Fig. 5.
 The relationship named of “Patient_in_test” from
Fig. 6 enables the system to provide information about
patient’s attributes and consultation date, as well as the
attributes of involved staff. Additionally, when the staff
has the health care profile defined by the occupation
attribute, they have free access to the Temporary-Data.
 There are many notation styles that express
cardinality. The tool used for this ERD designing
provides the used notation, where:

• 0..1 - zero or up to 1 instances, but no more than 1
• 0..* - zero, one or many instances
• 1..* - 1, or more than 1 instances
• - exactly 1 instances

Data flow diagram: To show the solution of the SE,
the Data Flow Diagram (DFD) was designed with
several levels. However, this study only shows the
DFD in the top level of abstraction, i.e., level-1
composed by process, data storages and external
entities.
 The developed software was divided in many
parts. Each part was responsible for one or more
tasks from the use case. The DFD diagram in Fig. 7
shows each part of software defined as numbered
process (1, 2, 3, 4 and 5).
 Process-1 was created for user authentication and
access management to each process in the system,
guaranteeing set restrictions for system use. The user’s
profile determined which processes became
available. Inserting a new patient record into the
database was a task for staff, who are profile
receivers. This key process works as a connector
between other processes where security services
were performed to guarantee confidentiality,
integrity, access control and non-repudiation.
 Process-2 is for registering patients or authorized
staff to operate the instrument.

Process-3 controls the sampling frequencies and the
number of samples in each channel. In addition, the
calibration values obtained from process-4 are used to
calculate values from hand exertion.
 Process-4 helps to calibrate the instruments used
for angle and force measurements. The respective
calibration values were then stored in data storage
Goniometer and Force_Instrument.
 Process-5 performs support tasks such as searching
previous patient test files, which were saved in the
computer in an image format and controlling the

J. Computer Sci., 8 (10): 1601-1614, 2012

1611

alterations made in the database, making it possible to
gather information about who changed the data.
 Data storage-Patient contains register information
about patients; and data storage-Staff is to record the
staff involved in the system operation. Temporary_Data
is used to save temporary data about the acquired signal
of hand exertion. Changes in the database, from any part
of the system, are automatically recorded in data storage
labelled as Control.

The calibrations outcomes performed via software:
The measurement of wrist posture with a goniometer does
not require decimal place precision (i.e., integer number).
Oscillations or noise (drift problems) were observed in the
fifth decimal places from the measured values. The used
electrogoniometer had an offset in X and Y-axis of 3 and
6°C, respectively, when checking the accuracy of
software in acquiring and processing signals, which was
considered during software development.

 The test with software and instrumentation for
fingertip force measurement when repeated three times
showed a mean standard deviation of 0.10 volts and the
maximum was 0.18 volts (Table 1). These are compatible
with the expected error rate (±5%) reported in the
datasheet from the manufacturer of the force sensor.

 For the calibration task, calibration table became
empty automatically, because all previous points must
be recalibrated. The history about who did what was
recorded in the data storage for access control. A staff
with system administrator profile had access to all
information, especially to the access control, defined as
Control in Fig. 7.

A sample of outcomes provided by software and
electronic instrumentation together: The model of
exhibition of integrated outcomes obtained from
electronic instrumentation is exhibited in Fig. 8.

 Figure 8 shows the outcomes: patient/subject code,
patient/subject name; arbiter name; typing speed;
typing frequency; flexion/extension of the wrist;
lunar/radial deviation; fingertip force; tolerable values to
be reached; and test date. This information helps the
health professional to diagnose the computer user who is
inclined to acquire the Work Related Upper Extremity
Disorder (WRUED) due to inadequate hand exertion.

Improvements were done to this software in
response to Machado and Villaverde, (2011), which did
not successfully measure radial and lunar deviation.
 In the upper left corner of Fig. 8, a sample shows
how the saved outcomes were recovered. The saved
file name was composed of subject code plus date and
time of test, separated by special characters. The
tolerable values shown in Fig. 8 were set by Machado
and Villaverde (2011). The subject and arbiter analyse
the outcomes regarding these tolerable values in order

to make decisions for extreme hand exertion to avoid
the risk of inciting muscle-skeletal illnesses.
 Only one button needs to be pressed to save the
test results, with the file name and location
automatically chosen by the developed software.

DISCUSSION

Applied software engineering methodology: Any SE
methodology approach could be an advance. The
developers would choose the SE methodology and one
appropriated tool case. Consequently, comprehension
about what/how the software does provides
information useful for software maintenance and
validation method. Applying software engineering
methodology, the requirements were easily traced after
the software implementation. Moreover, perceived
errors during the software test were quickly located in
the respective source code and resolved. According to
Constantine and Lockwood 2012, one advantage of
narrative use case is that a series of numbered step is
immediately apparent, because the separation into
distinct steps makes it easier to skim the use case for an
overview and the general nature of the interaction.”
 Functional similarity was not found in other
software. Nakanish et al. (2009) presented a DFD, but
their ERD diagram was not found, nor was a sample of
their software requirement shown. Therefore, it was
impossible to apply the same methodology of SE as
they did. Nevertheless, their explanation about the
DFD designed was fully comprehendible. Amato et al.
(2009) seem to have used a systematic procedure.
Respective documentation probably was done;
however, their SE design was not included in their
manuscript. On the other hand, the present study
disclosed our software engineering design to encourage
research of electronic instrumentation to make software
documentation. No specific tool case is mandatory.
There are several tool cases, some is totally free while
others are temporary free provided as a demo-version.
There are also the open source tools devoted to the
designing and development of software that use open
source platform such as Linux.
 There are several commercial software to acquire
and process signal. However, they do not allow
changes to the source code in order to obtain personal
software. Therefore, the requirements presented in the
case use, would become limited to the scope of the
software. This was one more reason to decide to develop
the present software. The software for the signal
acquisition was modified and embedded into this present
system to be part of them. This software solution
generated low production cost and anything can be
changed at any time.

J. Computer Sci., 8 (10): 1601-1614, 2012

1612

 Contrary to this, Pereira et al. (2009) developed
instrumentation and built three software programs
using LabVIEW® environment. According to them,
this tool provided agility to building the system but was
certainly more expensive to reproduce. No
documentation about software design was reported.
However, they intend to develop their software in the
conventional manner for lower production costs.
However, if the same researcher is not available
anymore, due to the lack of software documentation,
more time would be demanded during software
rebuilding. Hence, this present study can hopefully
make the researchers realize the advantages in applying
some SE methodology.
 There are modern methodology for software
development that could be used to develop biomedical
applications (Object Oriented-OO, Artificial
Inteligency-AI, Agile methods, SCRUM). However,
when a methodology is new, the probability to find a
partner or professional to work on the team could be
reduced. In addition, depending on the application, one
methodology fits better than another.
 The OO approach is used less than structured
analysis among veteran software developers, while AI
is an approach specific for application that supports
decision-making. The Agile methodology emphasizes
communication among developers and users, rapid
changing of information and adaptability to the change.
The Scrum is an interactive and incremental agile
software development method. The Aegis methods are
for rapid software development, after that, the details
of requirements are implemented gradually based on
customer opinion, making it difficult to predict anything
before the end. According to Hajjdiab et al. (2012), the
lack of knowledge transfer between team members
contributed for unsuccessful adoption of Scrum method
in the United Arab Emirates. This may be due to the
Scrum being a rarely used method. Conversely, for
about three decades, structured analysis has been used;
consequently, the possibility of find experts is larger.
Structured analysis is based on process and relational
database, also a consistent requirements definition is
expected when changing of the requirements is not
expected during implementation.
 According to the chosen SE methodology, the
specific programming language and tool case was
chosen. This present work was based on structured
analysis methodology. The Enterprise Architect tool
case was chosen to design this present software
because its free download was possible. However, for
this computerized electronic instrumentation to be in
marketing, the purchasing of commercial version of
used tool case is needed.

 When software is for health care, it was important
to use a solid and safe database, as an example Oracle,
Microsoft SQL, Firebird®, My SQL, PostgreSQL.
Some of DBMS above are free while others must be
purchased. Some specific training is necessary to work
with any of these technologies. We used the Firebird®,
because it was totally free in this version.
 The use of a solid and safe database does not
warrant data protect. Some specific training is
necessary to work with any of these technologies. Few
works have been done about protecting data for
confidentiality, integrity and access control to
sensitive information as those discussed by Rezk et al.
(2012). In their purpose, when user submits a query to
execute, the system checks if he has authority to access
data items in the query, the context in which the user
accesses the data items is checked to determine if he
follows his normal behavior or not. In our case, the
access control protects data by verifying the staff
authentication profile in order to enable or disable
resources. Also, this software controls the alterations
made in the database, making it possible to gather
information about who changed the data, indicating the
user ID, data and time and the name of changed table.

Calibration outcomes performed via software: The
sensor response capability was a linear curve; however,
its predicted error rate could propagate among the
acquired and processed signal, which could contribute
to the standard deviations in the Table 1. The three
trials present a mean standard deviation of 0.07 grams,
taking into consideration the error rate of±5% in full
scale predicted by the sensor manufacturer. Therefore,
considering the full scale during the calibration section
represented by 430 grams, producing mean tension of
4.92 volts (Table 1), the error rate of 5% was
calculated. The outcomes showed that a standard
deviation of 0.24 volts could be expected during
calibration section. Consequentially, the reliability of
software in providing accurate results for fingertip
force measurement can be taken into consideration,
because the maximum standard deviation observed
among the three trials during calibration section was
0.14 volts.
 The electrogoniometer working with developed
software was previously tested and reported in
Machado and Villaverde (2011). The result had an
average deviation of 1.24 degrees between the
electrogoniometer and the manual goniometer. This
was considered satisfactory if compared with the
nonlinearity of ±1% of its out signal predicted by
sensor manufacturer.

J. Computer Sci., 8 (10): 1601-1614, 2012

1613

Integrated use of software and electronic
instrumentation: The general mechanism of error
detection is to intercept outputs produced by a system
(or a component) and to check whether those outputs
conform to the specification (Troubitsyna, 2010).

Manual calculations were used to validate the results
relating to fingertip force, wrist flexion and extension,
ulnar and radial deviation and typing frequency
obtained by the software. Similar validation had
already been efficiency applied by Kauffmann et al.
(2011). It is extremely difficult to validate software that
does not have written requirements.
 Because the software and electronic
instrumentation work together, a problem in one can
make both become unreliable. We experienced this
when the unsuccessful measurement of radial and ulnar
deviations were attributed to the accelerometer
technology. Therefore, another accelerometer was
provided, but the problem remained, because this
problem, attributed to an equipment failure, was
actually due to a software implementation problem. A
consultation with an expert in measuring with an
accelerometer concluded that implementation code for
wrist flexion and extension measurement is easier than
radial and ulnar deviation, which requires signal
composition during code/software implementation to
reach accurate result. His suggestion was applied. This
occurrence showed that human error during
requirements specification or during design process can
cause wrong results. This kind of error is not so easy to
detect during the testing phase, because everything
works normally and no error appears.
 A challenge during developing of biomedical
software is the requirements. For any software
developer, the problem domain is very complex. The
performance of our software working with electronic
instrumentation reached the expectation of the
physiotherapist, who used the CEI as a volunteer and
arbiter. The use of this system by a physiotherapist was
an important phase of the test. Upon her suggestion,
changes in software occurred to use the correct medical
vocabulary on the interface screen. A friendly software
interface encourages the users to carry out
instrumentation manipulation.
 Further implementation would adopt specific
database for image to prevent forced access by an
unauthorized user to the test result provided in the Fig.
8 and stored as image. Another future improvement is
to have the tolerable values presented as lines in the
graphical output from Fig. 8, allowing the subject to

train to within those limits and adjust his/her
movements immediately.”
 This software guaranteed that the data generated
and medical diagnoses remain private.
 According to Shanmugapriya and Suresh (1012), a
software system's reliability is defined as the
probability of the software operating without failure for
a specified period of time in a specified environment.
One example is the system reported by Garcia-Saez et
al. (2009) that supports remote control strategies for
insulin-dependent patients. In this case, unreliable
system would let to incorrect prescription that could be
ultimately lethal. Because this present software was
devoted to an application that does not fit into a critical
mission, in that its failure will not result in loss of
human life, it was not necessary to estimate the order
of magnitude for probabilities of failure per hour.
 Computerized electronic instrumentation should be
certified in order to put it on the market. If an
organization isn’t worried about safety, it must
consider the consequences of using mission-critical
software that isn’t certified or qualified as fit for
purposes (Maibaum and Wassyng, 2008). For an
electronic instrumentation to be marketed in Brazil, it
must be submitted to the Brazilian National Health
Surveillance Agency (Agência Nacional de Vigilancia
Sanitária-ANVISA) to obtain registration/authorization.
This is because some instrumentation could cause
damage or harm to the patient.
 In Brazil, the certification of biomedical electronic
instrumentation can be obtained from a certifier
company and INMETRO (Instituto Nacional de
Metrologia). INMETRO certifies the accuracy and
capability of the electronic instrumentation to
accomplish its purpose. In addition, INMETRO
evaluates if the risk of accident exists.
 Normally, Certifier Companies follow some ISO
standard, which are not easy to understand and
accomplish to make the system ready to be submitted
for a certification process.
 Our software does not fulfil ISO standard, due to
the difficulty in both adequate software and
hardware. Mishra and Mishra (2009) reported a
simplified software inspection process in compliance
with international standards for software quality
assurance. However, this is not enough to reach
software certification.
 The certification of medical software is a difficult
due to limited experience of the software developer or
the difficulties in accessing and applying the standards.

J. Computer Sci., 8 (10): 1601-1614, 2012

1614

This is one challenge to be reached by the authors from
this present study.
 This would be useful if academic researchers
would publish their experience while submitting their
CEI to a certification process. This present study
describes how the software engineering methodology
was applied to design and develop software to acquire and
process sign from a computerized electronic
instrumentation. In both case, the authors intend to offer
their experience as a guideline to another researchers.
 The way that this study was reported could serve
as a guideline for academic researchers who are not
experts in software engineering methodology but
usually develop their own software to run with their
prototype of electronic instrumentation. However, this
study cannot provide an example of how to obtain a
software certification.

CONCLUSION

 Development of biomedical software to work with
electronic instrumentation needs to pay attention to
both performance and system accuracy.
 This software was developed to acquire and
process signals from a specific instrumentation for
measuring hand exertion to help the computer user detect
their overexertion. The aim was to demonstrate how to
apply the structured analysis in biomedical software to
acquire and process signals when the researcher is not
expert in SE methodologies. Usually, when the developer
leaves the team, no one is able to maintain the software
due to a lack of documentation. One capacity of SE is to
produce software that is maintainable and reusable due to
its clear documentation.
 Due to the lack of guidelines on how to obtain
certification of biomedical software that works as part of
computerized electronic instrumentation, this present
system was not submitted to a certification process.
Despite this, the systematic documentation provided while
the SE methodology was applied was an advance.

ACKNOWLEDGEMENT

 This study was supported by Wagner Lima dos
Santos (computer science) from WLSantos and Cia Ltda.
Michelle Fernanda de Lima (Physiotherapist); Dr. Ricardo
Toshiyutki Irita (Electronic engineer) from the Instituto
Nacional de Pesquisas Espaciais-Brazil; and Alene Alder-
Rangel from Univap (English support).

REFERENCES

Amato, F., M. Cannataro, C. Cosentino, A. Garozzo

and N. Lombardo et al., 2009. Early detection of
voice diseases via a web-based system, Biomed.
Signal Process Control, 4: 206-211. DOI:
10.1016/j.bspc.2009.01.005

Arpaia, P., C. Manna, G. Montenero and G. D’Addio,
2012. In-Time Prognosis based on swarm
intelligence for home-care monitoring: A case
study on pulmonary disease. IEEE Sensors J., 12:
692-698. DOI: 10.1109/JSEN.2011.2158305

Constantine, L.L. and L.A.D. Lockwood, 2012. Structure
and style in use cases for user interface design.

Garcia-Saez, G., M.E. Hernando, I. Martínez-Sarriegui,
M. Rigla and V. Torralba et al., 2009. Architecture
of a wireless personal assistant for telemedical
diabetes care. Int. J. Med. Inform., 78: 391-403.
DOI: 10.1016/j.ijmedinf.2008.12.003

Hajjdiab, H., S. A1-Taleb and A. Jauhar, 2012. An
industrial case study for scrum adoption. J.
Software, 7: 237-242. DOI: 10.4304/jsw.7.1.237-242

Kauffmann, C., A. Tang, A. Dugas, É. Therasse and V.
Olivab et al., 2011. Clinical validation of a
software for quantitative follow-up of abdominal
aortic aneurysm maximal diameter and growth by
CT angiography. Eur. J. Radiol., 77: 502-508.
DOI: 10.1016/j.ejrad.2009.07.027

Machado, G.A.L. and A.J.B. Villaverde, 2011. Design
of an electronic instrumentation for measuring
repetitive hand movements during computer use to
help prevent work related upper extremity
disorder. Int. J. Ergon., 41: 1-9. DOI :
10.1016/j.ergon.2010.11.003

Maibaum, T. and A. Wassyng, 2008. A product-
focused approach to software certification. IEEE
Software Technol., 41: 91-93. DOI:
10.1109/MC.2008.37

Mishra, D. and A. Mishra, 2009. Simplified software
inspection process in compliance with
international standards. Comput. Stand. Inter., 31:
763-771. DOI: 10.1016/j.csi.2008.09.018

Nakanish, T., Y. Tsuchiya, T. Sakamoto and A.
Fukuda, 2009. Structured analysis for software
product lines. Proceedings of the 13th
International Symposium on Consumer
Electronics, May, 25-28, IEEE Xplore Press,
Kyoto, pp: 915-919. DOI:
10.1109/ISCE.2009.5157027

Pereira, E., E.F. Manffra, J.A.P. Setti, C.M.R. Dutra
and L.R. Aguiar, 2009. Development of
instrumentation for application and assessment of
locomotor training with partial body weight
support. Brazilian J. Biomed. Eng., 25: 185-197.

Rezk, A., H.A Ali and S.I Barakat, 2012. Database
security protection based on a new mechanism.
Int. J. Comput. Appli., 49: 31-38. DOI:
10.5120/7879-1188

Shanmugapriya, P. and R.M. Suresh, 2012. Software
architecture evaluation methods-A survey. Int. J.
Comput. Appli., 49: 19-26.

Troubitsyna, E., 2010. Developing fault tolerant
distributed systems by refinement. Proceedings of
the 5th International Conference on Software
Engineering Advances Software Engineering
Advances ICSEA, Aug. 22-27, IEEE Xplore Press,
Nice, pp: 178-183. DOI: 10.1109/ICSEA.2010.34

