
Journal of Computer Science 8 (7): 1123-1133, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Vani V., Department of Information Technology, Dr. N.G.P Institute of Technology,
 Anna University of Technology, Coimbatore, 641048, India

1123

3D Mesh Streaming based on Predictive Modeling

1V. Vani, 2R. Pradeep Kumar and 3S. Mohan

1Department of Information Technology, Dr. N.G.P. Institute of Technology,
Anna University of Technology, Coimbatore, 641048, India

 2Department of Computer Science and Engineering,
Adithya Institute of Technology, Anna University of Technology, Coimbatore, India

3Department of Computer Science and Engineering,
Dr. N.G.P. Institute of Technology, Anna University of Technology, Coimbatore, 641048, India

Abstract: The complexity in 3D virtual environment over the web is growing rapidly every day. This
3D virtual environment comprises a set of structured scenes and each scene has multiple 3D
objects/meshes. Therefore the granular level of the block in a virtual environment is the object. In a
virtual environment, it is required to give user interactions for every 3D object and at any point of
time, it is enough if the system streams and brings in only the visible portion of the object from the
server to the client by utilizing the limited network bandwidth and the limited client memory space.
This streaming would reduce the time to present the rendered object to the requested clients. Further to
reduce the time and effectively utilize the bandwidth and memory space, in the proposed study, an
attempt is made to exploit the user interaction on 3D object and built a predictive agent which would
minimize the latency in the rendering of the 3D mesh that is being streamed. The experiment result
shows that the rendering time and cache miss rates are significantly reduced with the predictive agent.

Keywords: 3D virtual environment, Predictive Modeling (PrM), 3D streaming, 3D rendering, 3D

mesh, visibility culler, user profiling, operation profiling

INTRODUCTION

 In recent times, 3D modeling and rendering has
gained attention over the internet and most of the
multiuser virtual environment renders the entire world
once it is fully downloaded from the server. Therefore,
to get the first response from the server, the
clients/users ought to wait till the entire model is
downloaded and rendered. Due to the increased
complexity of the 3D model, even with the high
bandwidth user has to wait for a longer time to view the
model. To reduce the waiting time of the user 3D
streaming technique is made available to the users.
Based on the user camera/eye position and orientation,
the visible portion of the model is made available to the
user by culling the invisible portions. In this study, an
attempt is made towards reducing the waiting time of
the user further by predicting the operation that would
be performed by the users. A Predictive Agent (PA) is
built after successful offline analysis carried out on
profiles collected from 50 different users (aged 18-22,
from engineering institutions with good visual and
computer senses). As part of the analysis, the speed of
the key press and the pattern of the keys pressed are
taken for analysis across various 3D models. For
experimentation purpose, 3D models of various sizes

ranging from a few KBs to few MBs are considered
with various shapes. The PA contains the typical key
press and patterns of all users which will be used
further to predict their navigation. This in turn helps to
optimize the 3D streaming and rendering over web by
reducing the time delay between user request and
response.

Related works:
Progressive Mesh (PM): Progressive Mesh (PM), a
method proposed by Hoppe (1996) and Cheng et al.
(2011), shows how an arbitrary mesh is stored as a
much coarser mesh together with a sequence of N detail
records that indicate how to incrementally refine
exactly back into the original mesh. Each of these
records stores the information associated with a vertex
split, an elementary mesh transformation that adds an
additional vertex to the mesh. The PM representatives
thus defines a continuous sequence of meshes of
increasing accuracy, from which Level of Details
(LOD) approximations of any desired complexity can
be efficiently retrieved.

Decimation of triangular meshes: The goal of the
decimation algorithm (Schroeder et al., 1992) is to

J. Computer Sci., 8 (7): 1123-1133, 2012

1124

reduce the total number of triangles in a triangle
(polygon) mesh, preserving the original topology and a
good approximation to the original geometry.

Streaming of 3D progressive meshes: Streaming of
progressive meshes (Cheng, 2008) enable users to view
3D meshes with increasing level of details, by sending a
coarse version of a mesh initially, followed by a
sequence of refinements to incrementally improve the
quality. This study concentrates on how to send
refinements to quickly improve the quality. An
analytical model is developed to investigate the effects
of dependency when the progressive meshes are sent
over a lossy network and also proposed a receiver
driven protocol to stream progressive meshes based on
the user viewpoint in a scalable way.

Efficient and feature preserving:
Triangular mesh decimation: The method proposed by
(Hussain et al., 2004) deals with a new automatic method
for the decimation of triangular meshes in which at low
levels of detail the system preserves visually important
parts of the mesh and thus keeps the semantic or high
level meaning of the model. The algorithm followed is
based on greedy approach and exploits a new method of
measuring geometric error employing a form of vertex
visual importance that helps to keep visually important
vertices even at low levels of detail and causes to remove
other kinds of vertices, which do not profoundly
influence the overall shape of the model.

3D model streaming based on JPEG 2000: 3D mesh
(El-Leithy and Sheta, 2009) streaming method based on
JPEG 2000 standard was proposed with the integration
into an existed multimedia streaming server (Lin et al.,
2007). In this method, the mesh data of a 3D model were
first converted into a JPEG 2000 image and then based on
the JPEG 2000 streaming technique, the mesh data were
then transmitted over the Internet as a mesh streaming.

View dependent mesh streaming with minimal
latency: The study proposed by (Kim, et al., 2004)
presents a framework for view-dependent streaming of
multi-resolution meshes. Here, the server dynamically
adjusts the transmission order of the detail data with
respect to the client’s current viewpoint. By extending
the truly selective refinement scheme for progressive
meshes to client-server architecture, it accomplishes an
efficient view-dependent streaming framework that
minimizes network communication overhead to facilitate
minimal latency of mesh updates for varying viewpoints.

Design of geometric streaming systems: A system
was designed to stream large graphics environments
from a central server to multiple clients. The streaming

is transparent to the user who can treat remote models
just like local ones. The streaming system automatically
adapts to the rendering capabilities, network bandwidth
and latency of the client and transmits an optimized
model (Deb and Narayanan, 2004).

General and Automated Polygon Simplification
(GAPS): The method uses an adaptive distance
threshold and surface area preservation (Erikson and
Manocha, 1998) along with a quadric error metric to
join unconnected regions of an object. Its name comes
from this ability to “fill in the gaps” of an object. The
algorithm combines approximations of geometric and
surface attribute error to produce a unified object
space error metric.

Quadric based polygon surface simplification:
Automatic simplification (Garland, 1999) of highly
detailed polygonal surface models into faithful
approximations containing fewer polygons. The system,
examines the hierarchical structure that is induced on
the surface as a result of simplification. This resulting
hierarchy can be used as a multi-resolution model-a
surface representation which supports the
reconstruction of a wide range of approximations to the
original surface model.

Proposed Method:
Predictive Model (PrM): The proposed predictive
model is based on understanding user navigation in the
virtual world. It is built based on the current camera
position and orientation. Therefore only the visible
vertices and faces of the selected triangular meshes are
brought to the client. Simultaneously, based on the
previous history collated from various user inputs, the
next set of predicted vertices and faces are also pushed
to the client with the help of the Predictive Agent (PA).
This would reduce the time delay between the user
request and response.

Analytical model: The main objective of the proposed
study is to develop an analytical model based on the
user interaction while viewing the 3D models over the
network. The central idea is to predict the user
navigation and construct an analytical model for every
3D object (3D meshes) using the PA. This predictive
model hence would be useful in bringing the necessary
surfaces during streaming so that rendering and
response time can be reduced. To construct the
predictive model (Predictive Agent: PA), the following
notations have been used: Let Sv be a set of mesh
vertices in the server and Sf be a set of corresponding
mesh faces in the server for the selected 3D mesh and

J. Computer Sci., 8 (7): 1123-1133, 2012

1125

Let Cv be the set of mesh vertices in the client where,
Cv ⊆ Sv and Cf be the set of corresponding mesh faces
in the client where Cf ⊆ Sf.
 On an Operation Oi, which can be an arbitrary
rotation (ϴx, ϴy, ϴz), Cv and Cf can undergo change ±∆
{V i} and ±∆{F i}.
 For ±∆{V i}:

+ ∆ {V i} ⊆ Sv, - ∆{Vi} ⊆ Cv.

Where:
+∆{V i} = The set of vertices chosen from Sv
- ∆{V i} = The set of vertices chosen out from Cv

For ± ∆{F i}:

+ ∆{Fi} ⊆ Sf, - ∆{F i} ⊆ Cf
Where:
+∆{F i} = The set of faces chosen from Sf
- ∆{F i} = The set of faces chosen out from Cf

 Table 1 summarizes the notations used in our model.

Operation profiling: To profile the interaction
performed by the user, basically the Rotation operation
Rϴ in any one of the directions: +ϴx/- ϴx, +ϴy/- ϴy,
+ϴz/- ϴz is considered.
 For every key press during the rotation, a fixed
angle of rotation is applied to the 3D object and
outcome of the rotation generates updated eye position
and eye orientation (eye refers to the camera position,
which is the viewpoint of the user in the 3D world).
Based on this operation, the speed of rotation is
estimated which directly depends on the number of key
pressed per second. The key presses would determine
the amount of angle being rotated per second.
 Based on the rotation output, the amount of change
in the vertices and faces (+∆{V i} and + ∆{F i}) that
ought to be transmitted to the client is predicted. The
predicted faces and vertices only are transmitted to the
client. The prediction, hence, would reduce the
response time taken for rendering the visible portion of
the 3D mesh based on the client input.

User profiling: To construct the predictive agent, an
offline analysis has been carried out by considering 50
user profiles taken from a range of novice to
professionals in interacting with 3D virtual world. The
user profiles include, rate at which the key is pressed
and the actual key that is pressed per user session on
various 3D meshes considered for analysis. Using the
collated user profiles, operation patterns are determined
and predictive model is built. This process is considered
to be a training session for the users before they
actually navigate the virtual world.

Table 1: Notations
Sv Server vertex set
Sf Server face set
Cy Client vertex set
Cf Client face set
Oi ith operation
∆{V i} Vertices changes
∆ {F i} Faces changes
Rϴ Rotation
ϴx Rotation about x axis
ϴy Rotation about y axis
ϴz Rotation about z axis

Table 2: User key press
S. No Key pressed Operation performed
1 Up Rotate +Y
2 Down Rotate –Y
3 Left Rotate +X
4 Right Rotate –X
5 Pg up Rotate +Z
6 Pg down Rotate -Z
7 Plus (+) Zoom In
8 Minus (-) Zoom Out

Once trained, the users would be able to get the
rendered 3D models with a better response time across
the network while interacting with the 3D web.

Representation of 3D streaming system: The proposed
predictive model is used to stream the 3D data from the
server to the requested clients in an effective manner.
The implementation details of streaming system are
discussed here. Figure 1 and 2 shows the 3D streaming
system and its components as schematic diagram.

Client module: The client module comprises of 3
components namely Client Cache, Renderer and
Visibility Culler. Also, the module receives a key press
and the name of the 3D object to be viewed as the Client
Input. The key pressed and the operation performed
based on the key press is specified in the Table 2.
 The operation performed as indicated in Table 2
would update the client’s eye position and eye
orientation for every key press during navigation into the
virtual world.

Client cache: Inspired by the cache memory model
(Hennessy and Patterson, 2007), a cache is built on the
client side during the rendering. Initially, a client
module receives the 3D mesh data from the server
based on the current client’s eye position and
navigation. Once the 3D mesh data is brought to the
client, it is set as referred data at the server end. In the
client side, the data are stored in the Client Cache.
Further, based on the client input, the 3D mesh data is
received only when it is referred for the first time.
Otherwise, data will be fetched from the Client Cache.
In this case, retrieval is made from local and thus the
transmission time and bandwidth is saved.

J. Computer Sci., 8 (7): 1123-1133, 2012

1126

Fig. 1: Client module

Fig. 2: Server module

Visibility culler (for client): The Visibility Culler is
implemented using back face culling algorithm (Moller
et al., 2008). Initially, based on the user key press, eye
position and eye orientation are calculated. With the
updated eye position and orientation, visible portion of
the object is determined with the help of back face
culling/hidden surface elimination algorithm. The client
side visibility culler algorithm is activated when the
required vertices and faces are already bringing to the
client.

Renderer: The Renderer (Moller et al., 2008) is
implemented to render the 3D data which is visible to
the user at that particular eye position and orientation.
The rendering speed is maintained with the help of
predictive agent that rests in the server.

Server module: The server module comprises of 3
components namely Server Agent, Predictive Agent
and Visibility Culler. Also, the module retrieves the 3D
mesh data based on the client input from the underlying
3D Mesh database.

J. Computer Sci., 8 (7): 1123-1133, 2012

1127

Fig. 3: Thumbnails of actual and Rotated/Zoomed 3D meshes (#http://www1.cs.columbia.edu/~cs4162/models)

Fig. 4: Average Number of Vertices Cached for Multiple Access

Visibility culler (for server): Visibility Culler
implements Back face culling algorithm (Moller et al.,
2008) that determines the set of vertices and faces that
has to be sent to the client whenever there is a request
corresponding to those faces and vertices through user
navigation.

Server agent: The Server Agent receives the client input
and output from the visibility culler and store into the
dynamic data structure with the reference bit is set against
the corresponding vertices and faces that have to be sent to

the client. Also, the server agent keeps track of the no. of
times each vertices and faces have been referred.

Predictive agent: The Predictive Agent in parallel with
the server agent also receives the client input and the
output from the visibility culler. Based on the user
profiling analysis carried out offline by collating the
user interactions of 50 users across various models, the
next key press is predicted and the corresponding 3D
data are retrieved.

J. Computer Sci., 8 (7): 1123-1133, 2012

1128

Fig. 5: Average number of faces cached for multiple accesses

Table 3: 3D mesh objects and its attributes
 Total No. Total No.
Model vertices of faces File size
Ico 12 20 1 KB
Plane 121 200 4 KB
Cone 301 570 15 KB
Sphere 482 960 27 KB
Mug 1088 572 33 KB
Teapot 726 1452 37 KB
Torus 1200 2400 69 KB
Cow 2903 5804 161 KB
Moomoo 3890 7776 218 KB
Fandisk 6475 12946 369 KB
Hand 7609 15214 437 KB
Mountains 10201 20000 523 KB
Rocker-arm 10000 20000 603 KB
Heptoroid 17878 35840 1.15 MB
Horse 19851 39698 1.36 MB
Elephant 78792 157160 5.21 MB

Table 4: Average no. Of vertices and faces stored in cache for

multiple Accesses across models
 Average number Average number
Model of vertices of faces
Ico 11 16
Plane 37 61
Cone 229 420
Sphere 410 794
Mug 891 463
Teapot 636 1180
Torus 999 1900
Cow 2670 4551
Moomoo 1992 3624
Fandisk 2585 4907
Hand 7027 12783
Mountains 7219 9470
Rocker-arm 9100 16000
Heptoroid 10011 20070
Horse 14268 27788
Elephant 56730 114240

These 3D data’s reference bits are also set and it is sent
to the client along with the requested data. This
prediction would minimize the rendering latency and
increase the cache hits. The 3D meshes# used are
tabulated in Fig. 3. This table also shows the rotated or
zoomed (in/out) 3D meshes. In each row, top one
shows the actual and bottom one shows one of the
screen shots of 3D mesh during the user interaction.
The attributes of the 3D objects are given in Table 3.

Experimental Results and Discussions: To conduct
the experiment and affirm that the predictive model for
3D mesh streaming and rendering would lessen the
response time in rendering and reduce the cache miss
rate, 16 standard 3D mesh models with various
numbers of vertices and faces starting from simple 3D
mesh model to the complex one are considered. Table
4-10 and Fig. 4-12 illustrates the various experimental
results which indicate that the streaming using
predictive agent is advantageous than downloading
entire 3D model of the client.
 It is found from these results that, by exploiting the
viewpoint of the client, the visible portion of 3D
meshes are streamed and rendered, instead of
downloading the entire object to the client. This avoids
the initial waiting time of the client. The client can
quickly view the first response received from the server
without much delay. Also, before the client requests for
the next chunk of data by changing his viewpoint, the
predictive agent would determine the probable move
the client might make and client cache is updated if it is
the demanded data.

J. Computer Sci., 8 (7): 1123-1133, 2012

1129

Fig. 6: Average number of vertices never rendered for multiple accesses by multiple users

Table 5: User interaction analysis of various models for multiple accesses by various users
 Rendered Vertices and Faces (RVF)
Model /Never Rendered Vertices and Faces (NRVF) User 1 User 2 User 3 User 4 User 5 Avg.
Ico RVF 12 10 12 11 11 11
 16 12 17 13 14 14
 NRVF 0 2 0 1 1 1
 4 8 3 7 6 6
Mug RVF 891 704 892 716 800 801
 459 380 460 372 428 420
 NRVF 197 384 196 372 288 287
 113 192 112 200 144 152
Teapot RVF 701 407 685 550 491 567
 1246 658 1196 852 773 945
 NRVF 25 319 41 176 235 159
 206 794 256 599 679 507
Torus RVF 979 797 1012 840 881 902
 1814 1442 1900 1526 1610 1658
 NRVF 221 403 188 360 319 298
 586 958 500 874 790 742
Cow RVF 2303 2116 2465 2327 2184 2279
 3851 3434 4335 3055 3621 3659
 NRVF 600 787 438 576 719 624
 1953 2370 1469 1849 2183 1965
Heptoroid RVF 14183 13032 15181 14331 13451 14036
 23781 21206 26769 24423 22360 23708
 NRVF 3695 4846 2697 3547 4427 3842
 12059 14634 9071 11417 13480 13480

This prediction reduces the cache miss rate and also the
rendering time as the future data is made available in
the cache before it is requested.
 Table 4, Fig. 4 and 5 highlights the average number
of vertices and faces brought to the client after multiple
accesses across various models. It clearly shows that
none of the instances all the vertices and faces is
referred by the client. Therefore, we shall conclude that
mesh saving and bandwidth saving can be achieved
through streaming.
 Table 5, Fig. 6 and 7 shows the results for multiple
user interactions across various models after multiple
simultaneous accesses. Once again the results prove

that mesh saving and bandwidth reduction is possible
through streaming.
 Table 6 and Fig. 8 shows that number of meshes
brought to the client initially and the result shows that
on an average only about 40% of the meshes are saved
in the server end itself and is not brought to the client.
Table 8 and Fig. 10 shows the results of average user
speed across various models in seconds for multiple
degrees or key presses. This result is used to determine
the time gap between the user interactions. This is
studied for pushing the predicted 3D data to the client
before it is requested.

J. Computer Sci., 8 (7): 1123-1133, 2012

1130

Fig. 7: Average number of faces never rendered for multiple accesses by multiple users

Fig. 8: Server Initial Mesh Saving

Table 6: Server initial mesh saving
Mesh savings initially (%)
--
Model name % of faces saved %. of vertices
saved
Ico 45.00 16.67
Cone 50.00 46.51
Sphere 44.79 39.83
Mug 41.26 40.81
Teapot 56.20 45.32
Torus 48.17 41.50
Cow 43.69 29.25
Heptoroid 49.31 44.08

Table 7: Server mesh saving after multiple accesses
Mesh savings after multiple accesses
--
Model name % of faces saved %.of vertices saved
Ico 20.00 16.67
Cone 50.00 46,51
Sphere 17.60 39.83
Mug 19.76 40.81
Teapot 14.19 45.32
Torus 24.42 41.50
Cow 21.21 29.25
Heptoroid 44.87 44.08

J. Computer Sci., 8 (7): 1123-1133, 2012

1131

Fig. 9: Server mesh saving after multiple accesses

Fig. 10: Average user speed for various models

J. Computer Sci., 8 (7): 1123-1133, 2012

1132

Fig. 11: Client cache hit without prediction for multiple accesses

Fig. 12: Client cache hit with prediction for multiple accesses

Table 9 and Fig. 11 show the client cache hit/miss
without including predictive agent. It clearly
highlights when the complex model is accessed from
multiple viewpoints, all the vertices and faces
viewed already are not referred as a whole after quite
a large number of accesses.
 Table 10 and Fig. 12 show the client cache hit/miss
with predictive agent. Since the next move is predicted
and the corresponding faces and vertices are brought to
the client well in advance before it is requested by the
client, it is considered as a cache hit. The result proves

that predictive agent could bring in the probable
vertices and faces that would be referred by the client in
comparison with nonproductive approach.

CONCLUSION

 The proposed study addresses the need for
streaming with predictive agent. The system attempts to
stream the 3D data from the server to the client based
on the viewpoint of the client by predicting
the user’s next move.

J. Computer Sci., 8 (7): 1123-1133, 2012

1133

Table 8: Average user speed for various models
Average user speed for various models (in sec)
--
Degree Ico Sphere Mug Teapot Torus Cow
10 3.0 2.9 2.3 4.0 2.9 4.2
20 3.9 3.5 2.8 4.4 4.3 7.3
30 4.2 3.9 3.2 5.0 5.6 9.9
40 4.6 4.3 3.8 5.4 7.0 12.7
50 5.3 4.8 4.3 6.8 8.5 15.4
60 5.6 5.3 4.7 7.4 10.1 18.1
70 5.8 5.8 5.1 7.9 11.3 21.8
80 6.1 6.2 5.7 8.3 12.9 25.7
90 6.3 6.6 6.5 8.6 14.1 28.6
100 6.9 7.1 7.0 9.6 15.3 31.9
110 7.2 7.5 7.5 10.1 16.5 34.9
120 7.5 7.9 8.0 10.5 17.6 37.7
130 7.9 8.3 8.5 11.1 19.1 40.9
140 8.6 8.7 9.0 11.7 21.8 44.1
150 8.9 9.3 9.7 12.8 23.6 47.1
160 9.3 9.7 10.3 13.5 25.5 50.5
170 9.6 10.2 10.8 14.0 27.6 53.7
180 9.8 10.7 11.3 14.8 28.8 57.3

Table 9: Client cache hit/miss without prediction for multiple accesses
Without prediction (%)
--
Model name Vertex hit Vertex miss Face hit Face miss
Ico 85.710 14.29 57.14 42.86
Cone 71.430 28.57 66.67 33.33
Sphere 19.050 80.95 9.52 90.48
Mug 9.520 90.48 9.52 90.48
Teapot 28.570 71.43 4.76 95.24
Torus 0.000 100.00 0.00 100.00
Cow 0.000 100.00 0.00 100.00

Table 10: Client cache hit/miss with a prediction for multiple access
With prediction (%)
--
Model name Vertex hit Vertex miss Face hit Face miss
Ico 90.48 9.52 85.71 38.09
Cone 80.95 19.05 76.19 23.81
Sphere 28.57 71.43 19.05 80.95
Mug 32.00 68.00 32.00 68.00
Teapot 38.10 61.90 9.52 90.48
Torus 17.39 82.61 13.04 86.96
Cow 11.11 88.89 11.11 88.89

It is proved that the predictive model reduces the
waiting time of the client and he/she can see the first
response quickly when it is compared with the full
download of the model from the server to the client.
Once the initial model is streamed and rendered on the
client side, as per the client’s further interactions, the
referred 3D data are transmitted to the client from the
server. If the required data is already in the client then
the rendering process is carried out without streaming.
 In this working model, an additional flavor is
added to predict the probable move of the client across
models by profiling multiple user interactions. A
predictive agent is constructed and the result shows that
the rendering time and cache miss rates are significantly
reduced. The study can be further extended for a scene.

REFERENCES

Cheng, W., 2008. Streaming of 3D progressive meshes.

Proceedings of the 16th ACM International
Conference on Multimedia, (ICM’ 08), ACM, New
York, pp: 1047-1050. DOI:
10.1145/1459359.1459570

Cheng, W., W.T. Ooi, S. Mondet, R. Grigoras and G.
Morin, 2011. Modeling progressive mesh
streaming: Does data dependency matter? ACM
Trans. Multimedia Comput. Commun. Appli. DOI:
10.1145/1925101.1925105

Deb, S. and P.J. Narayanan, 2004. Design of a geometry
streaming system. International Institute of
Information Technology.

Erikson, C. and D. Manocha, 1998. GAPS: General and
automatic polygonal simplification. Proceedings of
the 1999 Symposium on Interactive 3D
Graphics, (IG’ 99), ACM, USA, pp: 79-88. DOI:
10.1145/300523.300532

El-Leithy, S.T. and W.M. Sheta, 2008. Wavelet-based
geometry coding for 3D mesh using space
frequency quantization. Proceedings of the IEEE
Symposium on Computers and Communications,
Jul. 6-9, IEEE Xplore Press, Marrakech, pp:
1034-1039.

Garland, M., 1999. Quadric-based polygonal surface
simplification. 1st Edn., Carnegie Mellon
University, Pittsburgh, pp: 200.

Hennessy, J.L. and D.A. Patterson, 2007. Computer
Architecture: A Quantitative Approach. 4th Edn.,
Morgan Kaufmann, Burlington, ISBN-10:
0123704901, pp: 704.

Hoppe, H., 1996. Progressive meshes. Proceedings of
the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, (GIT’ 07),
ACM, USA, pp: 99-108. DOI:
10.1145/237170.237216

Hussain, M., Y. Okada and K. Niijima, 2004. Efficient
and feature-preserving triangular mesh decimation.
J. WSCG, 12: 1-3.

Kim, J., S. Lee and L. Kobbelt, 2004. View-dependent
streaming of progressive meshes. Proceedings of
the Shape Modeling Applications, Jun. 7-9, IEEE
Xplore Press, South Korea, pp: 209-220. DOI:
10.1109/SMI.2004.1314508

Lin, N.H., T.H. Huang and B.Y. Chen, 2007. 3D model
streaming based on JPEG 2000. IEEE Trans.
Consumer Elect.ronics, 53: 182-190. DOI:
10.1109/TCE.2007.339523

Moller, T., E. Haines and N. Hoffman, 2008. Real-
Time Rendering. 1st Edn., CRC Press, ISBN-10:
1568814240 pp: 1027.

Schroeder, W.J., J.A. Zarge and W.E. Lorensen, 1992.
Decimation of triangle meshes. ACM, SIGGRAPH
Comput. Graph., 26: 65-70. DOI:
10.1145/142920.134010

