
Journal of Computer Science 7 (2): 225-233, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Pathiah Abdul Samat, Faculty of Computer Science and Information Technology,
 University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

225

Analysis of the Model Checkers’ Input Languages for

Modeling Traffic Light Systems

1Pathiah Abdul Samat, 2Abdullah Mohd Zin and 2Zarina Shukur
1Faculty of Computer Science and Information Technology, University Putra Malaysia,

43400 Serdang, Selangor, Malaysia
2Faculty of Technology and Information Science, University Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

Abstract: Problem statement: Model checking is an automated verification technique that can be
used for verifying properties of a system. A number of model checking systems have been developed
over the last few years. However, there is no guideline that is available for selecting the most suitable
model checker to be used to model a particular system. Approach: In this study, we compare the use
of four model checkers: SMV, SPIN, UPPAAL and PRISM for modeling a distributed control system.
In particular, we are looking at the capabilities of the input languages of these model checkers for
modeling this type of system. Limitations and differences of their input language are compared and
analyses by using a set of questions. Results: The result of the study shows that although the input
languages of these model checkers have a lot of similarities, they also have a significant number of
differences. The result of the study also shows that one model checker may be more suitable than
others for verifying this type of systems Conclusion: User need to choose the right model checker for
the problem to be verified.

Key words: Model checking, distributed control system, user interface, Linear Temporal Logic (LTL),

Computational Tree Logic (CTL), Distributed Control System (DCS), Probabilistic
Computation Tree Logic (PCTL), State Transition Diagram (STD)

INTRODUCTION

 Model checker (Clarke et al., 1999; Berard, 2001;
Razali and Garratt, 2010) is a verification tool that is
embedded with powerful technique and popularly used
in verifying a software or hardware system. There are
many model checking systems which are developed;
the most popular are SMV (McMillan, 1999; Islam et
al., 2010), UPPAAL (Bengtsson et al., 1995; El Emary
and Al Rabia, 2005), SPIN (Holzmann, 2003) and
PRISM (Marta, 2003, Chandren et al., 2010). Each of
the model checkers comes in a package with its own
input language which has strict notations and features
(Bhaduri and Ramesh, 2004; Djavanroodi et al., 2008).
The SMV language is used to describe a finite state
transition relational model. Properties of the model to
be verified are specified in a temporal logic, known as
Computational Tree Logic (CTL). SPIN accepts
design specifications written in the verification
language Promela and it accepts correctness claims
specified in the syntax of standard Linear Temporal
Logic (LTL). In UPPAAL, systems to be verified have
to be represented with a collection of timed automata.

PRISM known as probabilistic model checking is an
automatic procedure for establishing if a desired
property holds in a probabilistic system model.
Properties to be checked against the constructed
model are specified using temporal logic Probabilistic
Computation Tree Logic (PCTL).
 By using a model checker, all possible behaviors or
properties of the system can be checked to determine
whether they satisfy the system’s specification. If any
of the behaviors is not satisfied, the model checkers will
produce a counterexample.
 In this study, we would like to compare the input
languages of various model checkers in modeling a
distributed control system. A Distributed Control
System (DCS) (Trentesaux, 2009) refers to a control
system in which the controller elements are not
centrally located but are distributed throughout the
system with each component sub-system controlled by
one or more controllers. The entire system of
controllers is connected by a network for
communication and monitoring. A good example of a
simple DCS is a traffic light system.

J. Computer Sci., 7 (2): 225-233, 2011

226

 The comparison of the input languages of model
checkers will focus into two main aspects: (i) The input
languages for modeling systems to be model checked
and (ii) The language for formalization of properties of
the system. Specifically, we would like to answer the
following questions:

• Q1: Is there any difficulty in describing the system

to be checked into the input language of the model
checkers?

• Q2: Is there any significant difference between the
input languages of the model checkers?

• Q3: Is there any part of the system that cannot be
modeled by the model checkers?

• Q4: Based on Q3. If there answer is yes, is there
any solution for the above problem?

• Q5: Is there any difficulty in representing the
properties?

• Q6: Based on Q5. If there answer is yes, what type
of assistant needed to represent these properties?

• Q7: What are the similarity exist in all the
modeling languages while modeling the system?

Related works: A few comparative reports are available
on this issue in different domains. Jeffrey et al. (2000),
the performance of five different model checking
techniques was compared such as SPIN, Fc2Tools,
SMV, SMC and IOTA. The tools are used to analyze
the deadlock property of the example system. The
attribute of performance is taken based on memory and
CPU time. The result shows that the IOTA tool is more
efficient than the other four tools in the verification of
the deadlock property. The performance of SPIN and
NuSMV (Choi, 2007) were compared on a model of
Flight Guidance System (FGS). The purpose of this
study is to investigate whether SPIN more suitable than
NuSMV in term of scability and usability. This study
claim that SPIN performs poorer than NuSMV on the
one-sided synchronous FGS model, but scales better to
asynchronous two sided FGSs when they manage to
handle the one-sided FGS using SPIN.
 There is another study to compare the performance
of probabilistic model checkers (Jansen et al., 2008).
This study investigate the strengths and weaknesses of
the various model checking tools such as ETMCC,
MRMC, PRISM (sparse and hybrid mode), YMER and
VESTA. The result shows that YMER is by far the
fastest tool and its memory usage is remarkably
constant, hardly varying with the model size.
Unfortunately, YMER only supports bounded and
interval until formulas. In particular, YMER
outperforms the other statistical model checker
VESTA: VESTA’s memory consumption is also rather
constant, but more in the order PRISM’s memory
usage. ETMCC performs the worst in terms of memory
and frequently was unable to check models that were

easy for the other tools. MRMC mostly performs better
than PRISMs both in time and memory.

MATERIALS AND METHODS

Description of the model checkers: SMV’s language
for the description of automata is based on declarative
approach which clearly oriented towards describing a
“possible next state” relation between states seen. SMV
input language start with keyword MODULE followed
by module’s name. A MODULE consists of some
definitions (type declarations and assignments) that can
be reused.
 Promela is a verification modeling language for
SPIN model checker. Promela programs consist of
processes, message channels and variables. Processes
are global objects. Message channels and variables can
be declared either globally or locally within a process.
Processes specify behavior, channels and global
variables define the environment in which the processes
run. A process can wait for an event to happen by
waiting for a statement to become executable.
 PRISM language comprises modules and variables.
A system is composed a number of modules which can
interact with each other. A module contains a number
of local variables. Each variable has its own values
which constitute as a state of the module. The global
state of the whole system is determined by the local
state of all modules. The behavior of each module is
described by a set of commands. A transition is
specified by giving the new values of the variables in
the module, possibly as a function of other variables.
 UPPAAL consists of a model-checking engine and a
graphical user interface. The user interface consists of
three parts: system editor, simulator and verifier. The
system editor enables the user to model a real time
system as a network of timed finite states automata
global or local variables and clocks. The automata
templates have to be entered by means of a graphical
notation that resembles the standard notation for timed
automata. The transitions to be synchronized have to be
labeled by ch! and ch?. The abbreviation “ch” refers to
the communication channel name which is used in a
template. The simulator offers the possibility to the user
to interactively run the system and check if he made
some trivial mistakes in its modeling or design. The
verifier allows the user to enter the properties to be
verified.

Traffic light system: The traffic light according to
Wikipedia, also known as traffic signal is a signaling
device positioned at a road intersection, pedestrian
crossing or other location. A traffic signal is
typically controlled by a controller which is placed
inside a cabinet mounted on a concrete pad.

J. Computer Sci., 7 (2): 225-233, 2011

227

Fig. 1: A 3-way traffic light system

Fig. 2: State transition diagrams for Fig 1

The cabinet typically contains a power panel to
distribute electrical power in the cabinet; a detector
interface panel to connect to loop detector and other
detectors; detector amplifier and other components.
 Traffic controllers use the concept of phases. For
instance, a simple intersection may have two phases:
North/South and East/West. A 4-way intersection with
independent control for each direction and each left-
turn will have eight phases. Traffic signals must be
instructed when to change phase. In some traffic light
systems, phase change occur based on timer. Many
traffic light systems are now sensor-based system. The
sensor is buried in the pavement to detect the presence
of traffic light waiting at the light. Thus, it can avoid
giving the green light to an empty road while motorists
on the different route are stopped. A timer is frequently
used as a backup in the case the sensors fail. There are
two main components in a sensor-based traffic lights
system: controller and timer.
 For this particular study, we will use a sensor-
based traffic light system which uses sensors for a 3-
way intersection, as shown in Fig. 1.
 Figure 2 show State Transition Diagram (STD) for
timer and controller.
 The timer has three sequences of states: ticking,
short-done and long-done. Start acts as reset signal. The

next state of ticking is either short-done or maintain at
the original state. The next state of short-done is either
long-done or maintain at original state. The controller
has four states: farm-yellow, highway-green, farm-
green and highway-yellow. If the state of controller is
highway-green and there are many cars and time given
is long then the next state is highway-yellow. If the
state of controller is highway-yellow and the time given
is short then the next state is farm-green. If the state of
controller is farm-green and there is no car and time
given is long then the next state is farm-yellow. If the
state of controller is farm-yellow and time given is
short then the next state is highway-green.

Properties of the traffic light system: The above
traffic light system should satisfy at least three
properties:

• to ensure either the farm road or the highway

always has a red light
• if a car appears on the farm road then it will

eventually get a green light
• the highway light turns green infinitely often

Modeling in SMV: In SMV, model description and
specification of properties are written in the same file.
The model of the traffic light system is described by
using four modules; main, timer, controller and light.
 The module main is used to enable messages to be
shared between modules. Based on the code listed
below, we can see that controller shares messages with
timer and passes a Boolean value.

Module main VAR

 Farmcars: boolean;
 Cntl: controller(farmcars, time);
 Time: timer(cntl.start-timer);
 Lamp: light(cntl.state);

The controller has two variables: state and start-
timer. The evolving state of controller is described by
using the next operator. For example, the next state of
controller is highway-yellow if the current state is
highway-green and there is a car on the farm road and
the time taken at that time is long-done.

MODULE controller(cars, time)
VAR
state: {highway-yellow, highway-
 green, farm-yellow, farm-
 green};
start-timer : boolean;

J. Computer Sci., 7 (2): 225-233, 2011

228

ASSIGN
 init(state) := highway-green;
 next(state) := case
 state = highway-green & cars &
 time=long-done :
 highway-yellow;
 state = highway-yellow &
 (time=short-done) :
 farm-green;
 state = farm-green & (!cars |
 time=long-done) :
 farm-yellow;
 state = farm-yellow & (time=
 short-done) : highway-
 green;
 1: state;
 esac;

 The timer has three states; ticking, short-done and
long-done which are declared under variable state. The
start-time which is shared between controller and timer
is used to initialize a ticking in timer. If state of time is
ticking then the next state is either ticking or short-
done.
 The light has three states of lamps: green, yellow
and red which are declared under variables farm-light
and highway-light. The evolving state of farm-light and
highway-light are determined by using the next
operator. For example, the next state of farm-light is
yellow if the state of controller is farm-yellow.
 SMV only allows the properties to be written in
CTL and must be written in the same file under a
keyword SPEC. The three properties of the traffic light
system can be described as follows:

• (1)AG (lamp.farm-light = red | lamp.highway-light

= red)
• (2) AG (AF(farmcars ->lamp.farm-light = green))
• (3) AG (AF lamp.highway-light = green)

Modeling in SPIN: In SPIN, the traffic light model and
the properties must be written in two separate files. The
model is described by using one proctype and two
inlines. We also use in it to initialize the processes
declare in proctype.
 We describe our processes in a proctype called
controller. Since operation of controller, involves
nondeterministic selection, we use guarded expressions:

proctype controller(bit crs){
 sst1: if::st_cnl_1(state)->
 car_2(crs);
 get_cr2(crs)->

 if:: st_t_long(time) ->
 state_cnl!hg
 :: state_cnl?state->
 goto sst2
 fi
 fi;
sst2: if::st_cnl_2(state)->
 if::st_t_short(time)->
 state_cnl!fg
 ::state_cnl?state->
 goto sst3
 fi
 fi;
sst3: if::st_cnl_3(state)->crs=0->
 if:: st_t_long(time)->
 state_cnl!fy
 :: state_cnl?state->
 goto sst4
 fi
 fi;
sst4: if::st_cnl_4(state)->
 if:: st_t_short(time)->
 state_cnl!hg
 :: state_cnl?state->
 goto sst1
 fi
 fi;

 Instructions in proctype controller are executed by
calling a number of inline functions.
 For example, one of the inline function is timer the
main function of this inline is to initialize ticking and to
determine the current state of timer. To indicate the
next state in Promela, we need to use if.. else statement:

inline timer(tt){
if
 ::tt==1->state_time!ticking
fi;
do::state_time?time->
 if
 ::time=ticking->
 state_time!ticking
 ::else->
 state_time!short_done
 fi;
 if
 ::time=short_done->
 state_time!short_done
 ::else->state_time!long_done
 fi
 ::state_time!time->break
od
}

J. Computer Sci., 7 (2): 225-233, 2011

229

 The communication between controller and its
components is executed via message channels such as
state_cnl, state_time, start_time, f_light, h_light and
farmsc.
 The properties of traffic light are specifies as a
never claim. We choose never claim because our aims
is to check the behavior that should never occur. The
first property can be stated as:

never {/*
TO_init:
 if
 ::(!((lamp 1))&&!((lamp 1))->goto accept_all
 ::(1) ->goto TO_init
 fi:
 accept_all:
 Skip
}

 The second property is specified as follows:

never {/*![](<>cs2-lamp 4))*/
TO_init:
 If
 ::(!((lamp 4))&&!((cs2))->goto accept_all
 ::(!((lamp 4)) ->goto TO_S4
 ::(1) ->goto TO_init
 fi:
TO_S4
 if
 ::(!((cs2)) ->goto accept_all
 ::(1) ->goto TO_S4
 fi:
accept_all:
 Skip
}

 The others property we would like to check is the
highway turn green infinitely often. The property is
specifies as below:

never {/**/
TO_init:
 If
 ::(!((lamp3)))->goto accept_S4
 ::(1) ->goto TO_init
 fi:
 accept_S4:
 fi
 ::(!((lamp3)))->goto accept_S4
 fi:
}

Modeling in PRISM: In PRISM, the model and its
properties must also be described in two separate files.
The model for the traffic light system is described by
using three modules; timer, controller and light. The
descriptions of module controller is coded as below:

module controller
 stateclr:[1..4] init hwayellow;
 startime:[0..1] init no;
 cars:[0..1] init no;

 [] cars=no -> cars'=yes;
 [] cars=no -> cars'=no;
 [] cars=yes -> cars'=no;
 [] cars=yes -> cars'=yes;
 [b] (stateclr=hwaygreen) &
 (cars=yes) &
 (timestate=longdone)
 -> (stateclr'=hwayellow);
 [b] (stateclr=hwayellow) &
 (timestate=shortdone)
 -> (stateclr'=frgreen);
 [c] (stateclr=frgreen) &
 (cars=no)|
 (timestate=longdone)
 -> (stateclr'=fryellow);
 [c] (stateclr=fryellow) &
 (timestate=shortdone)
 -> (stateclr'=hwaygreen);
 [a] (stateclr=hwaygreen) &
 (cars=yes) &
 (timestate=longdone) |
 (stateclr=hwayellow) &
 (timestate=shortdone) |
 (stateclr=frgreen) &
 (cars=no) &
 (timestate=longdone) |
 (stateclr=fryellow) &
 (timestate=shortdone)
 ->startime'=yes;
endmodule

 The states of each module are defined as constant
integer. In order to strengthen a guard in a
command we use the symbols like = and and | which
stand for equal and or, respectively. The statement
on the right hand side of → is executed if the guard
return true. The action name is used to force two
modules to make transitions. simultaneously.
For example, a is placed inside the square bracket in
command nine of controller and command one of
timer. By default, all modules are combined
using the standard CSP parallel composition (i.e.,
modules synchronize over all their common actions).

J. Computer Sci., 7 (2): 225-233, 2011

230

Fig. 3: The template of controller

The traffic light problem which describe in MDP of
type model allows the modules themselves to make
nondeterministic choice. For example, state 2 until 5 in
timer will be nondeterministic choice.
 PRISM does not provide any mechanism for
parameter passing for its module. The only way to link
one module to another module is by adding states to the
related modules. For example, the transition of first
command in light only occurs if the current state of
controller is fryellow.
 The properties are specified in PRISM language
by using PCTL, which is an extension of classical
temporal logic CTL. The properties of the traffic light
system are specified in form of p>=1 [true U p] stand
for “with the probability of 1 eventually p is satisfied
for all states”. For example, if we want to check either
the farm road or the highway road has a red light, the
property is specified as below:

P>=1[true U(farmlight = red | hwaylight = red)]

 In this model, we also interested to check if a car
appears on the farm road, it will eventually get a green
light and it could be specified as follow:

P>=1[true U cars = yes = > (farmlight = green)]

 The others property that we would like to check is
the highway light turn green infinitely often. The
property is specified in this form:

P>=1[true U (hwaylight = green)]

 For MDP model, properties using the P operator
actually reason about the minimum or maximum
probability, over all possible resolutions of non-
determinism, that a certain type of behavior is observed.

Fig. 4: The template of timer

Modeling in UPPAAL: The first step for modeling in
UPPAAL is to insert a template in the editor pane. For
our case, we have defined three templates; Controller,
Timer and Light. Figure 3 shows the controller’s
template which contains nine parameter such as bool
&cars, bool and red1, bool and red2, bool &long, chan
&start, chan and yellow1, chan and green1, chan and
yellow2 and chan and green2. bool and cars, bool &red1,
bool and red2, bool and long, chan and start, chan and
yellow1, chan and green1, chan and yellow2 and chan
and green2.
 Controller has four states or locations stated as fg,
hg, hy and fy stand for farm green, highway green,
highway yellow and farm yellow, respectively. The
location hg synchronizes with others automaton via
start! and green2!.
 The timer’s template contains two parameters such
as bool and long and chan &start. Figure 4 shows the
template of timer.
 The timer has three locations which are labeled as
ticking, shortdone and longdone. Ticking is self-loop
which synchronizes with controller via start? The others
location is executed based on the update stated on edge
corresponding with edge on controller.
 In the system declaration, templates are instantiated
into process. The system declaration in Fig. 5 shows
that the template controller is instantiated to process
Traffic1, template Timer is instantiated to the processes
Timer1. Lastly, the template Light is instantiated to
process Light. All of the processes are executed in
parallel and declared active as one system.

J. Computer Sci., 7 (2): 225-233, 2011

231

Fig. 5: System declaration for a traffic light

 In UPPAAL, the properties are specified in CTL.
Properties are written in a separate file with file name
extension .q. We use symbols like | and ==, stand for or
and equality, respectively. We also use =>, mean that
implication if the expression before => true for the
following properties. The properties of interest are
written as below:

//either the farm road or the highway has a red light
A[] (red 1 == true | red 2 == true)

//if car appears on the farm road, it will eventually get a
green light
A[] (cars == true implu light 1. yw1)

//the highway light rurns green infinitely often
E<> (Light 1. gr2)

RESULTS

 We discuss the answer for each of the questions
listed earlier based on our experience in model
checking the traffic light system.
 Q1 is regarding the difficulty in describing the
system by using the input language of the model
checkers. The input language of SMV allows the
description of the model to be directly translated from
the state diagram. Each state diagram can be translated
into one module. Interaction between these modules can
be done through shared variables. However it is
difficult to translate the state diagram to input
languages of UPPAAL, PRISM and SPIN. UPAAL
does not support the concept of modules. Each state
diagram is represented as a template. Furthermore,
UPPAAL does not support non-deterministic behavior.
PRISM language does not support representation of

enumerated data type, so data in this form have to be
converted into numerical representation. Message
sharing mechanism between modules in PRISM is
different from other model checkers. In SPIN, each
state diagram can be representation as one proctype.
However, there is a difficulty in passing parameters
between proctypes.
 Q2 is regarding significant differences between the
input languages of the model checkers. It is obvious
that there are differences between the languages. For
example, in SMV, the synchronization is described by
parallel assignment. This is done by copying array or
data to a module. In UPPAAL, the synchronization can
be described by instantiating the template to a process,
followed by identifying processes to be synchronized
by using operators !(send) and ?(receive). In PRISM,
the synchronization is described by using the action
name. The modules which have the same action name
will be activated in parallel. In SPIN, the
synchronization is described by using message channel
through the method ! For sending and ? For receiving.
 Q3 is to answer if any behavior of the system that
cannot be modeled by using the input languages of
model checkers. In this case study, the system is
successfully modeled in SMV and PRISM. However
we have problems to model the start time and to
synchronize the start time with timer in UPPAAL. In
SPIN, we will have a problem to pass parameter from
controller to timer and light if all of them are declared
as proctype.
 Q4, is about methods used to solve problems arise
in Q3. In UPPAAL, the problem is solved by placing
start time as send message to each location in controller
and at one particular time controller can only receive
one start time message. We also add four locations in
the light automaton. In SPIN, we decided to have only
one proctype, that is controller and the others are
described as inlines. The disadvantage for using this
approach is that the codes for describing the model
become longer.
 Q5 is about the difficulty to represent the
properties. We have no problem in specifying
properties in SMV. UPPAAL does not allow nested
path quantifier while SPIN requires identifiers to be
declared as global. Since, PRISM is designed as a
probabilistic model checker; it can return not only true
or false values but also numerical values.
 In order to solve problems stated in Q5, we suggest
that all four model checkers provide type checking
assistant to assist users to formulize properties.
 For Q7, we found that all model checkers need
procedures to model the component of the system. Each
of procedure requires a special declaration and

J. Computer Sci., 7 (2): 225-233, 2011

232

description of state, initialization and transition. On the
other hand, each component requires synchronizing to
achieve one of state-machine system objectives.

DISCUSSION

 Based on the listed questions above, we classified
our result into two groups.
 Firstly, the input language of all four model
checkers allows us to model traffic light system from
state diagrams, although, there are significant
differences in modeling synchronization of various
components of the traffic light system. We have also
shown that all of the states, transitions and
initializations can be successfully modeled in all of the
input languages. All of model checkers’ input
languages have their own notations and symbols. For
example, in SMV and PRISM, each STD is represented
as a module. However PRISM’s module not like as a
function construct. SPIN use proctype and #inline
constructs whereas UPPAAL prefer to use template.
 Secondly, is about formulization of properties.
SMV provides a lot of temporary logic operators for
formulizing the properties. It has a variety of nesting
path of quantifier and allows almost all of logical
symbols. The other model checkers which accepts
nested path of quantifier are SPIN and PRISM.
UPPAAL is less elegant to formulizing properties
because it does not allow nesting path quantifier.

CONCLUSION

 From the study that has been carried out, it seems
that all of the model checkers share a lot of similarities.
All of them require us to model the state of the system
as well as the state transition. All of them provide
mechanism for selection, synchronization, message
passing and message sharing. Users have to provide a
list of properties to be checked against the model.
 However, there are some significant differences
between these model checkers that may cause some
problems for users to move from one model checker to
another. In particular, there is a significant different in
term of the input language of these model checkers.
Each of the input languages uses different notations and
symbols. Each of them also uses different means to
provide the listed mechanisms. Since each of the model
checkers are based on different temporal logic, the
specification of the properties must also be stated by
using different formulae. The output from the model
checkers are also given in different forms.
 Since model checkers are developed for different
purposes, one model checker may be better than others

for model checking a specific system. In this particular
example, we found that Promela is better for describing
a traffic light system, although it has a limitation in
term of the proctype function and our codes is too
length. Thus, it is important for users to choose the right
model checker for modeling and verifying a system.

REFERENCES

Bengtsson, J. et al., 1995. UPPAAL-a tool suite for

automatic verification of real-time systems.
Proceeding of the 4th DIMACS Workshop on
verification and control of Hybrid System, Oct. 22-
24, Springer-Verlag New York, Inc. Secaucus, NJ,
USA, pp: 232-243.

Berard, B., 2001. Systems and Software Verification:
Model-checking Techniques and Tools. 1st Edn.,
Springer-Verlag, India, ISBN: 3540415238, pp: 190.

Bhaduri, P. and S. Ramesh, 2004. Model Checking of
Statechart Models: Survey and Research
Directions, http://arxiv.org/abs/cs.SE/0407038

Chandren, R.M., A.M. Zin and Z. Shukor, 2010. Model
checking the biological model of membrane
computing with probabilistic symbolic model
checker by using two biological systems. J.
Comput. Sci., 6: 669-678. DOI:
10.3844/jcssp.2010.669.678

Choi, Y., 2007. From NuSMV to SPIN: Experiences
with model checking flight guidance systems. J.
Formal Methods Syst. Design, 30: 199-216. DOI:
10.1007/s10703-006-0027-9.

Clarke, E.M., O. Grumberg and D. Peled, 1999. Model
Checking, 1st Edn., The Mit Press, United States,
ISBN-10: 0262032708, pp: 314.

Djavanroodi, F., M. Sabeghi and K. Abrinia, 2008.
Analysis of the parameters affecting warping in
radial forging process. Am. J. Applied Sci., 5:
1013-1018. DOI: 10.3844/ajassp.2008.1013.1018

El Emary, I.M.M. and A.I. Al Rabia, 2005. Fault
detection of computer communication networks
using an expert system. Am. J. Applied Sci., 2:
1407-1411. DOI: 10.3844/ajassp.2005.1407.1411

Holzmann, G.J., 2003. The SPIN Model Checker:
Primer and Reference Manual. 1st Edn., Addison-
Wesley, Germany, ISBN-10: 0321228626, pp: 608.

Islam, M.R., Z.E. Elshaikh, O.O. Khalifa, A.H.M.Z.
Alam and S. Khan, 2010. Fade margin analysis due
to duststorm based on visibility data measured in a
desert. Am. J. Applied Sci., 7: 551-555. DOI:
10.3844/ajassp.2010.551.555

Jansen, D.N., J.P. Katoen, M. Oldenkamp, M.I.A. Stoelinga
and I.S. Zapreev. 2008. How Fast and Fat Is Your
Probabilistic Model Checker? An experimental
performance comparison. Hardware Software:
Verification Test., 4899: 69-85. DOI:
10.1007/978-3-540-77966-7_9

J. Computer Sci., 7 (2): 225-233, 2011

233

Jeffrey, J., P. Tsai and K. Xu. 2000. A comparative
study of formal verification techniques for software
architecture specifications. Annals Software Eng.,
10: 207-223. DOI: 10.1023/A:1018960305057

Marta, K., 2003. Model Checking for probability and
Time: from theory to practice. Proceeding 18th
IEEE Symposium on Logic in Computer Science,
June 22-25, Ottawa, Canada, pp: 351-360.

McMillan, K.L., 1999. Getting started with SMV,
Cadence Berkeley Labs.
http://www2.tcs.ifi.lmu.de/lehre/SS08/Automat/sm
v/doc/smv/tutorial/

Razali, R. and P. Garratt, 2010. Usability requirements
of formal verification tools: A survey. J. Comput.
Sci., 6: 1189-1198. DOI:
10.3844/jcssp.2010.1189.1198.

Trentesaux, D., 2009. Distributed control of production
systems. Eng. Appl. Artificial Intell., 22: 971-978.
DOI: 10.1016/j.engappai.2009.05.001

