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Abstract: Problem statement: Shortest path routing is the type of routing widely used in computer 
network nowadays. Even though shortest path routing algorithms are well established, other alternative 
methods may have their own advantages. One such alternative is to use a GA-based routing algorithm. 
According to previous researches, GA-based routing algorithm has been found to be more scalable and 
insensitive to variations in network topologies. However, it is also known that GA-based routing algorithm 
is not fast enough for real-time computation. Approach: To improve the computation time of GA-based 
routing algorithm, this study proposes a coarse-grained parallel GA routing algorithm for solving the 
shortest path routing problem. The proposed algorithm is evaluated using simulation where the proposed 
algorithm is executed on networks with various topologies and sizes. The parallel computation is performed 
using an MPI cluster. Three different experiments were conducted to identify the best value for the 
migration rate, the accuracy and execution time with respect to the number of computing nodes and speedup 
achieved as compared to the serial version of the same algorithm. Results: The result of the simulation 
shows that the best result is achieved for a migration rate around 0.1 and 0.2. The experiments also show 
that with larger number of computing nodes, accuracy decreases linearly, but computation time decreases 
exponentially, which justifies the use parallel implementation of GA to improve the speed of GA-based 
routing algorithm. Finally, the experiments also show that the proposed algorithm is able to achieve a 
speedup of up to 818.11% on the MPI cluster used to run the simulation. Conclusion/Recommendations: 
We have successfully shown that the performance of GA-based shortest path routing algorithm can be 
improved by using a coarse-grained parallel GA implementation. Even though in this study the proposed 
algorithm is executed using an MPI cluster, the algorithm is also applicable to other parallel architecture 
such as multi-core CPU, multi-processor or GPGPU. A future work would be to evaluate the performance 
of the proposed algorithm on these other parallel architectures. 
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INTRODUCTION 

 
 Routing in a computer network refers to the task of 
finding a path from a source node to a destination node. 
Given a particular network, it is very likely that there is 
more than one path that can be used. The task of a 
routing algorithm is to find the shortest path. Shortest 
path routing algorithms such as Dijkstra’s algorithm 
and Bellman-Ford algorithm are commonly used in 
computer network nowadays (Kurose and Ross, 2010). 

 Even though shortest path routing algorithms are 
already well established, there are researchers who are 
trying to find alternative methods to find shortest paths 
through a network. These alternative methods 
commonly employ AI techniques such as genetic 
algorithm (Munetomo et al., 1998; Ahn and 
Ramakrishna, 1999), neural networks (Liu and Wang, 
2009), particle swarm optimization (Mukhef et al., 
2008; Yusoff et al., 2010), ant colony optimization 
(Zakzouk et al., 2010; Guo et al., 2010), simulated 
annealing algorithm (Su and Li, 2009) and A* search 
algorithm (Panich, 2010).  
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Fig. 1: The general outline of GA 
 
 Genetic Algorithm (GA) is a multi-purpose search 
and optimization algorithm that is inspired by the 
theory of genetics and natural selection (Goldberg, 
1989). The problem to be solved using GA is encoded 
as a chromosome that consists of several genes. The 
solution of the problem is represented by a group of   
chromosomes referred to as a population. During each 
iteration of the algorithm, the chromosomes in the 
population will undergo one or more genetic operations 
such as crossover and mutation. The result of the 
genetic operations will become the next generations of 
the solution. This process continues until either the 
solution is found or a certain termination condition is 
met. The idea behind GA is to have the chromosomes 
in the population to slowly converge to an optimal 
solution. At the same time, the algorithm is supposed to 
maintain enough diversity so that it can search a large 
search space. It is the combination of these two 
characteristics that makes GA a good search and 
optimization algorithm. The general outline of GA is 
shown in Fig. 1. 
 One of the earliest GA-based shortest path routing 
algorithms is the one proposed by Munetomo et al. 
(1998; 2001). Munetomo proposed a GA-based routing 
algorithm to generate alternate paths that can be quickly 
used in the case of link failures. In the proposed 
algorithm, the algorithm chromosome is encoded as a 
list of node IDs that are on the path from the source 
node to the destination node. Since different paths can 
have different number of nodes, the chromosomes are 
of variable length. This algorithm employs crossover, 
mutation and migration genetic operators in generating 
the next generation of solutions. Ahn and Ramakrishna 

(1999) also proposed a GA-based routing algorithm for 
solving the shortest path routing problem. Similar to 
Munetomo’s algorithm, the chromosome in this 
algorithm consists of a sequence of node IDs that are on 
the path from source to destination. However, there are 
several differences in the details of the GA 
implementation such as in the crossover and mutation 
operations. Some researchers implemented a hybrid GA 
algorithm where GA is combined with another 
algorithm to solve the shortest path routing problem. 
One example of this is the algorithm proposed by 
Hamdan and El-Hawary (2002) that combined GA with 
the Hopfield network. Another example would be an 
algorithm proposed by Riedl (2002) who combined GA 
with a local heuristics search.  
 Ahn and Ramakrishna (1999) has shown that using 
GA for the shortest path routing problem has several 
advantages. The first advantage is that GA is insensitive 
to variations in network topologies with respect to route 
optimality and convergence speed. The second 
advantage is that GA-based routing algorithm is 
scalable in the sense that the real computation size does 
not increase very much as the network size gets larger. 
However this literature also pointed out that GA is not 
fast enough for real-time computation and in order to 
achieve a really fast computation time in GA, a 
hardware implementation of GA is required. 
 Due to the advantages of GA-based routing 
algorithms, there are researchers who have extended 
these algorithms to solve the more difficult multi-
constrained path routing problem where each network 
link has more than one parameter the path chosen must 
fulfill a specific QoS requirement or constraints 
(Yussof and Ong, 2010; Potti and Chinnasamy, 2011). 
GA has also been used to solve other types of routing 
problems such as vehicle routing (Nazif and Lee, 2010), 
logistics distribution routing (Zaoqiang and Minde, 
2009), evacuation route assignment (Li et al., 2010), 
aircraft route planning (Gao and Zheng, 2010), traffic 
route choice problem (Li and Zhu, 2010) and travelling 
salesman problem (Al Rahedi and Atoum, 2009).  
 In this study, we are proposing a parallel genetic 
algorithm for the shortest path routing problem. The 
motivation behind this proposal is that parallel 
implementation of GA should be able to improve its 
computation time. The proposed algorithm is implemented 
on a Message Passing Interface (MPI) cluster. 
 
Parallel genetic algorithm: GA is generally able to find 
good solutions in reasonable amount of time but as they 
are applied to harder and bigger problems, there is an 
increase in the time required to find adequate solutions. As 
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a consequence, there have been multiple efforts to make 
GA faster and one of the promising choices is to use 
parallel implementation (Paz, 2000). 
 In parallel GA, there are multiple computing nodes. 
The task of each computing node depends on the type 
of parallel GA used. There are four major types of 
parallel GAs which are master-slave GA, coarse-
grained GA, fine-grained GA and hierarchical hybrids. 
In master-slave GA, one computing node will become 
the master and the other computing nodes will become 
the slaves. The master node will hold the population 
and perform most of the GA operations. However, the 
master can assign one or more computing-intensive 
tasks to the slaves. This is done by sending one or more 
chromosomes to the slaves and the master would then 
wait for the slaves to return their results. In coarse-
grained GA, the population is divided among the 
computing nodes and each computing node executes 
GA on its own sub-population. To ensure that good 
solutions can be spread to other nodes, the nodes can 
occasionally, with certain probability, exchange 
chromosomes with each other. This exchange is called 
migration and it involves a node sending a chosen 
chromosome to other nodes. The other nodes would 
then replace a chromosome in their population with the 
one received. Which node is chosen to be migrated or 
replaced would depend on the migration strategy used. 
Fine-grained GA has the highest level of parallelism 
among the four types of parallel GAs. In fine-grained 
GA, each computing node only has a single 
chromosome. The computing nodes are normally 
arranged in a spatial structure where each node can only 
communicate with several neighboring nodes. The 
population would be the collection of all the 
chromosomes in each node. To execute a genetic 
operation, a computing node will have to interact with 
its neighbors. Since the neighborhood overlaps, 
eventually the good traits of a superior individual can 
spread to the entire population. Fine-grained GA has a 
large communication overhead due to the high 
frequency of interactions between neighboring nodes. 
The final parallel GA type is the hierarchical hybrid 
which is structured in two levels. At the higher level, 
the algorithm operates as a coarse-grained GA while 
at the lower level the algorithm operates as a fine-
grained (or master-slave) GA. 
 For each of the parallel GA type, there are multiple 
variations proposed by researchers to improve its 
performance or to suite a particular problem. For 
example, Golub and Jakobovic (2000) proposed a 
master-slave GA where the master only creates the 

population and let the slaves perform the whole 
evolution process. Tan et al. (2002) proposed a coarse-
grained GA which has a special computing node 
assigned to collect the best chromosomes from all the 
nodes and distribute one or more of the fittest ones to 
the other nodes. This is done to reduce the delays in 
propagating the globally fittest chromosome to all the 
computing nodes. De Toro et al. (2002) also proposed a 
modification to the coarse-grained GA where a master 
node is assigned to gather the whole population from all 
the computing nodes once in several generations. The 
master node would then sort the chromosomes 
according to some objective function and then 
distribute them again to the computing nodes.  
 Parallel GA has been successfully used in various 
problems such as design optimization (Atiqullah, 
2002), transport route planning (Meghanathan and 
Skelton, 2007), time series forecasting (Eklund, 2003; 
Ourdighi and Benyettou, 2010), network design 
(Huang et al., 1997) and sorting (Han, 1999). 
 
Proposed parallel genetic algorithm for shortest 
path routing:  
Overview: The proposed algorithm will use coarse-
grained parallel GA. The main reason for this choice is 
due to the use of MPI cluster. In an MPI environment, 
communication between computers has a large 
overhead. Therefore, coarse-grained GA would be the 
most suitable type of parallel GA to be used since it has 
the lowest communication overhead compared to the 
other parallel GA types. 
 In our parallel GA implementation, all the computing 
nodes will randomly create their own sub-population and 
each of them will execute GA on its own sub-population. 
However, one of the computing nodes will be assigned the 
task to gather results from all the other nodes and then 
choose the best result (the one that gives the shortest path) 
to be the output of the coarse-grained parallel GA. This 
node is called the collector node. 
 The operations done by the computing nodes are 
outlined below: 
 
• Randomly initialize the initial sub-population 
• Evaluate fitness of each chromosome in the 

population 
• Create the mating pool which consists of all the 

chromosomes in the current population 
• Apply crossover operator several times to create n 

new children for the new sub-population (where n is 
the size of the sub-population). The parents are 
selected using the selection operator. Crossover is 
only performed if one or both of the parents have 
not yet mated 
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• Apply mutation operator on the chromosomes in the 
mating pool. Each chromosome has a certain 
probability to be mutated 

• If migration rate is higher than 0, decide whether 
migration is to be performed in this iteration. If yes, 
choose the best chromosome and send it to the other 
computing nodes. At the same time, check whether 
there is any chromosome migrated from the other 
computing nodes. For each chromosome received, 
replace the worst chromosome in the population 
with the migrated chromosome if the migrated 
chromosome has better fitness. 

• Repeat step 2 until the sub-population converges or 
the maximum number of iterations has been 
achieved. The value for maximum iteration used in 
all the experiments is 100 

• Send the best chromosome to the collector node 
 

 The operations done by the collector node are 
outlined below: 
 
• Receive the best chromosomes from each of the 

computing nodes 
• Choose the best chromosome from the ones 

received. This is presented as the shortest path 
found by the algorithm 

 
Genetic encoding: A communication network can be 
modeled as a directed graph G (N, E), where N is the 
set of nodes representing routers and E is the set of 
edges connecting the links that connect between the 
routers (Kurose and Ross, 2010). Each edge (i,j) is 
associated with an integer representing the cost of 
sending data from node i to node j and vice versa. 
 In the proposed algorithm, each chromosome is 
encoded as a series of node IDs that are in the path from 
source to destination. The first gene in the chromosome 
is always the source and the last gene in the 
chromosome is always the destination. Since different 
paths may have different number of intermediate nodes, 
the chromosomes will be of variable length. However, 
the maximum length of a chromosome cannot exceed 
the total number of nodes in the network. Any repeated 
nodes in the chromosome signify that the path 
represented by the chromosome contains a loop and in 
network routing, any loop should be eliminated. 
 
Initial sub-population: In the beginning, the sub-
population is filled with chromosomes that represent 
random paths. Even though the paths are random, they 
are supposed to be valid paths, where the chromosomes 
consist of a sequence of nodes that are in the path from 
sender to receiver. The number of chromosomes 

generated for each sub-population, Sn, depends on the 
total population size and the number of computing 
nodes, as depicted in Eq. 1: 
 

n
PS
N

=  (1) 

 
where, Sn represents the sub-population size of the nth 
node, P represents the total population size and N 
represents the total number of computing nodes. 
 The algorithm used to generate the random paths is 
as follows: 
 
• Start from the source node 
• Randomly choose, with equal probability, one of 

the nodes that are connected to the current node 
• If the chosen node has not been visited before, mark 

that node as the next node in the path. Otherwise, 
find another node 

• If all the neighboring nodes have been visited, go 
back to step 1 

• Otherwise, repeat step 2 by using the next node as 
the current node 

• Do this until the destination node is found 
 
Fitness function: Each chromosome in the population 
is associated with a fitness value that is calculated using 
a fitness function. This value indicates how good the 
solution is for a particular chromosome. This 
information is then used to pick the chromosomes that 
will contribute to the formation of the next generation 
of solution. The fitness function used in the proposed 
algorithm is defined as follows: 
 

i
i

1f
c

=  (2) 

 
where, fi represents the fitness value of the ith 
chromosome and ci represents the total cost of the path 
represented by the ith chromosome. This would give a 
higher fitness value for shorter paths. 
 
Selection: Selection is used to choose the parent 
chromosomes for the crossover operation. The selection 
scheme used in the algorithm is the pairwise 
tournament selection with tournament size, s = 2. In this 
selection scheme, a parent for the crossover operation is 
selected by randomly choosing two chromosomes from 
the population. The one with the higher chromosome 
between the two will be selected as a parent. To select 
two parents, this operation is performed twice. 
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Crossover: Crossover is performed on the two parent 
chromosomes selected using the selection scheme 
described above. To ensure that the paths generated by 
the crossover operation are still valid paths, the two 
chromosomes selected must have at least one common 
node other than the source and destination nodes. If 
more than one common node exists, one of them will be 
randomly chosen with equal probability. The chosen 
node is called the crossover point. For example, assume 
that we have the following parent chromosomes: 
 
Parent chromosome 1 = [A B C G H I X Y Z] 
Parent chromosome 2 = [A K L M I T U Z] 
 
where, A and Z are the source node and destination 
node respectively. In this example, the common node is 
node I. Therefore, crossover operation will exchange 
the first portion of chromosome 1 with the second 
portion of chromosome 2 and vice versa. As a result, 
the following child chromosomes will be generated: 
 
Child chromosome 1: [A B C G H I T U Z] 
Child chromosome 2: [A K L M I X Y Z] 
 
 These two chromosomes would then become new 
members of the population. 
 
Mutation: Each chromosome produced by the 
crossover operation has a small chance to be mutated 
based on the mutation probability, pm. For all the 
experiments, the value for pm is set to 0.05. For each 
chromosome that is chosen to be mutated, a mutation 
point will be chosen randomly, with equal probability; 
among the intermediate nodes in the path from sender 
to receiver (i.e., the sending and receiving node cannot 
be chosen as the mutation point). Once the mutation 
point is chosen, the chromosome will be changed 
starting from the node after the mutation point and 
onwards. For example, assume that the following 
chromosome has been chosen to be mutated: 
 
Original chromosome: [A C E F G H I Y Z] 
 
where, A and Z are the sending node and the receiving 
node respectively. Assume also that the node G has 
been chosen as the mutation point. The mutated 
chromosome would become like this: 
 
Mutated chromosome: [A C E F G x1 x2 x3 … Z] 
 
 The mutated chromosome now contains a new path 
from G to Z where xi is the ith new node in the path. The 

new path is generated randomly; the same way as the 
paths in the initial population is generated. 
 
Migration: Migration is a genetic operation commonly 
used in coarse-grained parallel GA implementation 
(Goldberg, 1989). In coarse-grained parallel GA, each 
computing node has its own sub-population that 
evolves independently and in isolation. As compared to 
the serial GA, this would result in low diversity of the 
population because different sub-populations do not 
interact with each other. Migration is an operation that 
can be used to increase the sub-population diversity by 
having the computing nodes to share their results with 
each other. Migration involves having each computing 
node sending one of its chromosomes to the other 
nodes. At the same time, each computing node will 
receive migrated chromosomes from the other nodes. 
The received chromosome can replace one of the 
chromosomes currently in the sub-population. The 
migration rate is controlled by the migration 
probability, pmg.  
 There are several different migration strategies, as 
discussed by Goldberg (1989). Each computing node 
can either send its best chromosome or a random 
chromosome from its sub-population. The receiving 
node, on the other hand, can either choose to replace its 
worst chromosome or just any random chromosome in 
its sub-population. For the proposed algorithm, the 
migration strategy used is to send the best chromosome 
and replace the worst chromosome. 
 

MATERIALS AND METHOD 
 
 The proposed algorithm is implemented as a C++ 
program. The program is run on an MPI cluster which 
has six machines. Each machine has a dual-core 
processor. A computing node is associated with a single 
processing core. Therefore, up to 12 computing nodes 
can be run on this parallel computer. 
 The objective of this experiment is to measure the 
performance of the proposed algorithms with respect to 
accuracy and computation time. Accuracy measures the 
percentage of the shortest paths returned by the algorithm 
that are actually shortest paths (as obtained from 
Dijkstra’s algorithm). Computation time measures the 
execution time taken by the algorithm to obtain all the 
results from the beginning to the end of the simulation. 
The performance of the algorithm is compared with the 
non-parallel version of the same algorithm. 
 There are two types of network used in the 
simulation, the n x n mesh network and the Waxman 
network (Waxman, 1988). The Waxman network is 
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actually a random graph where the existence of link 
between two nodes, i and j, is defined by the following 
probability: 
 

i, j
ij

d
p = αexp( ( )),0 < α,β < 1

βL
−  (3) 

 
where, di,j is the distance between the two nodes and L 
is the maximum inter-nodal distance in the topology. A 
larger value of α would generate a graph with higher 
density and a smaller value of β increases the density of 
short edges relative to longer ones. In all the 
experiments, the values for both α and β are set to 0.2 
and 0.1 respectively. However, to avoid having 
disconnected nodes, each node must be connected to at 
least one other node. The network topologies used are 
10×10 mesh network 15×15 mesh network, 100-node 
Waxman network and 225-node Waxman network. Each 
link in the network is given a randomly generated cost 
value, ck(i,j) ~ uniform[1,20]. 
 The result reported in the next section is averaged 
over 50 runs. For each run, a new network with a new 
set of link metrics is randomly generated using 
different seeds. For the Waxman network, this also 
means that a different network topology is generated 
on each run. In each run, a total of 1000 source-
destination pairs are randomly chosen and the shortest 
path for each of them is computed. 
 

RESULTS 
 
 Three different experiments are conducted to 
evaluate the proposed algorithm. The first experiment 
aims to find the most suitable migration rate, pmg, to be 
used. The second experiment evaluates the accuracy 
and execution of the algorithm with respect to the 
number of computing nodes. The third experiment 
evaluates the speedup achieved by the parallel GA 
routing algorithm as compared to a serial version of the 
same algorithm. 
 

  
Fig. 2: Accuracy for 10×10 mesh network 

 The result of the first experiment is presented in 
Fig. 2 until Fig. 5. These figures present the accuracy 
result with respect to the migration rate for the four 
network topologies used, where Fig. 2 and Fig. 3 show 
the  result  for t hen  x n  mesh  networks while Fig 4 
and Fig. 5 show the results for the Waxman networks. 
For the mesh networks, it seems that having migration 
does not necessarily result in better accuracy. Having 
no migration (pmg = 0) seems to be better than having a 
migration rate that is too high. 
 

  
Fig. 3: Accuracy for 15×15 mesh network  
 

 
 
Fig. 4: Accuracy for 100-node Waxman network 
 

 
 
Fig. 5: Accuracy for 225-node Waxman network 



J. Computer Sci., 7 (2): 206-215, 2011 
 

212 

 However, the best result is achieved by using a low 
migration rate of 0.1 or 0.2. For the Waxman network, 
having a non-zero migration rate is definitely better 
than having no migration at all. Again, the best result is 
achieved with a low migration rate of 0.1 or 0.2. Based 
on the result of this experiment, subsequent 
experiments are performed using pmg = 0.1. 
 The  result of the second experiment is depicted in 
Fig. 6 until Fig. 9. Fig. 6 and Fig. 7 show the accuracy of 
the proposed algorithm for the n x n mesh network and the 
Waxman network respectively. It is obvious that as the 
number of computing node increases, the accuracy 
decreases linearly. This is because as the number of 
computing node increases, each computing node would 
have smaller sub-population size. In GA, smaller 
population size would result in lower performance. 
However, the benefit of PGA is apparent when 
comparing the computation time as depicted in Fig. 8 
and Fig. 9. For both types of network, as the number 
of computing node increases, the computation time 
decreases exponentially. However, it is also observed 
that for small sub-population size, having too many 
computing nodes may eventually increase the 
computation time again. This is because with small sub-
population size, the parallelism is not fully exploited due 
to the computing nodes are not doing enough work and 
the communication overhead would then cause the 
computation time to increase. This experiment also 
shows that having a higher total population size would 
increase the accuracy. This effect is consistent regardless 
of the network topology, network size or the number of 
computing nodes. Having a higher population size would 
also increase the computation time. However, with larger 
number of computing nodes, the increase in computation 
time becomes less apparent. 
 

 
 
Fig. 6: Accuracy for n×n mesh networks 

 The result of the third experiment is depicted in 
Table 1. This table shows the percentage of 
computation time required by the proposed PGA (TPGA) 
and the computation time of its serial counterpart (TGA) 
to get relatively similar accuracy. Based on the result, 
the coarse-grained parallel GA algorithm is able to 
achieve a speedup from 546.05% – 818.11% relative to 
the serial GA implementation of the same algorithm. 
 

 
 
Fig. 7: Accuracy for waxman networks 
 

 
 
Fig. 8: Computation time for n×n mesh networks 
 

 
 
Fig. 9: Computation time for waxman networks 
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Table 1:  Speed up achieved by the proposed algorithm 

Network TPGA TGA TGA/TPGA 
topology (sec)  (sec) * 100 (%) 
10×10 mesh 2872.73 19440.7 676.73 
15×15 mesh 5666.97 30945.0 546.05 
100-node Waxman 2765.28 22623.1 818.11 
225-node Waxman 6201.05 35739.6 576.34 
 

DISCUSSION 
 
 Based on the results obtained from these 
experiments, it can be concluded that the parallel GA 
implementation of the GA-based routing algorithm can 
help to increase the speed of the algorithm while at the 
same time maintaining a high quality result. This 
conclusion is justified based on the observation where 
with larger number of computing nodes, accuracy 
decreases linearly, but computation time decreases 
exponentially. However, similar to other parallel 
algorithm implementations, the parallelism will only 
provide a significant advantage when the problem is big 
enough. Otherwise, the communication overhead 
between computing nodes will bring down the 
performance.  
 With respect to the shortest path routing problem, 
the problem will be big enough when the number of 
nodes and the number of paths to be evaluated is large. 
For the GA-based shortest path routing algorithm, the 
parallel implementation will also provide a significant 
advantage when then population size is large. In GA, 
large population size leads to better results but at the 
same time increases the computation time. Parallel 
implementation of GA can really help to reduce 
computation time while maintaining the quality of the 
results. 
 

CONCLUSION 
 
 This study proposed a coarse-grained parallel 
genetic algorithm for solving the shortest path routing 
problem. A series of experiments were conducted to 
evaluate various aspects of the algorithm. Based on the 
experiments conducted, it was determined that the best 
result is achieved with a low migration rate, pmg, of 
around 0.1 and 0.2. The experiments also show that 
with larger number of computing nodes, accuracy 
decreases linearly, but computation time decreases 
exponentially. This exponential decrease in 
computation time as compared to linear decrease in 
accuracy justifies the use parallel implementation of 
GA to improve the performance of GA-based routing 
algorithm. Finally, the experiments also show that the 
proposed algorithm is able to achieve a speedup of up 
to 818.11% on the 12-node MPI cluster. Even though in 
this study the proposed algorithm is executed using an 

MPI cluster, the algorithm is also applicable to other 
parallel architecture such as multi-core CPU, multi-
processor or GPGPU. A future work would be to 
evaluate the performance of the proposed algorithm on 
these other parallel architectures. 
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