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Abstract: Problem statement: Due to the ever growing amount of biomedical datasets stored in 
multiple tables, Information Extraction (IE) from these datasets is increasingly recognized as one of 
the crucial technologies in bioinformatics. However, for IE to be practically applicable, adaptability of 
a system is crucial, considering extremely diverse demands in biomedical IE application. One should 
be able to extract a set of hidden patterns from these biomedical datasets at low cost. Approach: In 
this study, a new method is proposed, called Bio-medical Data Aggregation for Relational Attributes 
(BioDARA), for automatic structuring information extraction for biomedical datasets. BioDARA 
summarizes biomedical data stored in multiple tables in order to facilitate data modeling efforts in a 
multi-relational setting. BioDARA has the advantages or capabilities to transform biomedical data 
stored in multiple tables or databases into a Vector Space model, summarize biomedical data using the 
Information Retrieval theory and finally extract frequent patterns that describe the characteristics of 
these biomedical datasets. Results: the results show that data summarization performed by DARA, can 
be beneficial in summarizing biomedical datasets in a complex multi-relational environment, in which 
biomedical datasets are stored in a multi-level of one-to-many relationships and also in the case of 
datasets stored in more than one one-to-many relationships with non-target tables. Conclusion: This 
study concludes that data summarization performed by BioDARA, can be beneficial in summarizing 
biomedical datasets in a complex multi-relational environment, in which biomedical datasets are stored 
in a multi-level of one-to-many relationships. 
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INTRODUCTION 

 
 Biomedical information extraction from structured 
biomedical data stored in relational databases refers to 
data summarization applied to relational biomedical 
data. One of the approaches of data summarization for 
relational biomedical data is clustering. Clustering is a 
process of grouping data that shares similar 
characteristics into groups. Despite the increase in 
volume of biomedical datasets stored in relational 
databases, only few studies handle clustering across 
multiple relations (Kirsten and Wrobel, 1998; 2000). In 
a biomedical dataset stored in a relational database with 
one-to-many associations between records, each table 
record (or object) can form numerous patterns of 
association with records from other tables. For 
example, in a mutagenesis dataset, there are two classes 

of molecules (active and non-active molecules). These 
molecules can be represented in molecular structures 
representation, as shown in Fig. 1. At the same time, the 
information of these molecules can be stored in 
relational tables, as shown in Fig. 2. 
 

  
 
Fig.1: An example of a molecular structure and bonding 
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Fig. 2: A biomedical dataset stored in a relational 

database with two levels of one-to-many 
relationship 

 
 In Fig. 2, the scenario in which a single object has 
multiple instances is illustrated. In this scenario, 
relation Molecules has a one-to-many relationship with 
relations Atom and Bonding, through the association of 
field Mol.  
 Clustering in a multi-relational environment has 
been studied in Relational Distance-Based Clustering 
(RDBC) (Kirsten and Wrobel, 2000). Clustering 
(Hofmann and Buhnmann, 1998; Hartigan, 1975) is an 
unsupervised learning technique, that is, it can operate 
on un-annotated data. However, it can be used as the 
first step of a supervised learning tool. For instance, a 
dataset split into classes can be clustered (without 
making use of the class labels) and then associations 
between clusters and classes learned using one of the 
various well known supervised learning tools. This is 
the case in RDBC, where the role of this tool is 
performed by a decision tree learner. The approach 
proposed in this study follows the same strategy, 
combining a novel clustering technique with C4.5. 
 In RDBC, the similarity between two objects is 
defined on the basis of the tuples that can be joined to 
each of them. In this way, each of the two objects is 
expanded into a set of records and the two sets are 
compared as follows: for each record in one set, the 
closest match in the other set is found and their distance 
added. The distance between two such records is 
measured in the usual ways, comparing each pair of 
attributes in turn, depending on the types of attributes 
involved, e.g., as differences of numerical values, or a 
Hamming distance in the case of categorical values. 
However, the RDBC process of computing the distance 
between two objects is very expensive, since the 
process compares repeatedly components of first-order 
instances where each comparison is eventually reduced 
to a propositional comparison of elementary features. In 
addition to that, the RDBC approach only considers the 
minimum distance measured between instances to 
differentiate two objects and may not generate good 
clustering results, which leads to less meaningful 

clustering results. RDBC approach is also not able to 
generate interpretable rules. In our approach to 
clustering in a multi-relational environment, we 
consider all instances of an object when the distance 
between two objects is computed. By clustering objects 
with multiple instances, objects with the same 
characteristics are grouped together and objects with 
different characteristics are separated into different 
groups. Traditional clustering algorithms are based on 
one representation space, usually a vector space. 
However, in a relational database system, multiple 
instances in a non-target table exist for each object in 
the target table, due to the one-to-many association 
between multiple instances and the object. To cluster 
multiple-instance data using the established methods 
would require to restrict the analysis to a single 
representation or to construct a feature space 
comprising all representations.  
 In this study, we present a data summarization 
approach, borrowed from the information retrieval 
theory, to cluster such multi-instance data. This study 
proposes a technique that considers all available 
instances of an object for clustering and we show the 
evaluation results on the mutagenesis dataset. In 
addition to that, the effect of the number of relevant 
features on the classification performance is also 
evaluated. The rest of the study is organized as follows. 
First, we present related study on data mining in a 
multi-relational environment. Next, the problem is 
formalized and the proposed new pre-processing 
method for the purposes of clustering, called Dynamic 
Aggregation of Relational Attributes (DARA) (Alfred 
and Kazakov, 2006a; 2006b; 2007) is introduced. 
Finally, the experimental evaluation is discussed and 
then the conclusion section summarizes the study and 
presents some ideas for future research. 
 

MATERIALS AND METHODS 
 
Learning data in a multi-relational environment: 
The most popular approach to supervised learning in a 
multi-relational environment is relational learning. 
Relational learning is not a new research area and has a 
long history. (Muggleton and DeRaedt, 1994) introduce 
the concept of Inductive Logic Programming (ILP) and 
its theory, methods and implementations in learning 
multi-relational domains. ILP methods learn a set of 
existentially quantified first-order Horn clauses that can 
be applied as a classifier (Salton et al., 1975; Srinivasan 
et al., 1996). In a relational learner based on logic-
based propositionalization (Kramer et al., 2001), 
instead of searching the first-order hypothesis space 
directly, one uses a transformation module to compute a 
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large number of propositional features and then uses a 
propositional learner.  
 Variants of relational learning include distance-
based methods (Horvath et al., 2001; Emde and 
Wettschereck, 1996). The central idea of distance-based 
methods is that it is possible to compute the mutual 
distance Emde and Wettschereck (1996) for each pair 
of objects. Relational Instance-Based Learning (RIBL) 
algorithms extend the idea of instance based learning to 
relational learning (Emde and Wettschereck, 1996). 
Instance-Based Learning (IBL) algorithms (Aha et al., 
1991) are very popular and a well studied choice 
(Wettsschereck and Dietterich, 1995) for propositional 
learning problems. Probabilistic Relational Models 
(PRMs) (Getoor et al., 2001) provide another approach 
to relational data mining that is grounded in a sound 
statistical framework. In PRMs, a model is introduced 
that specifies, for each attributes of an object, its 
(probabilistic) dependence on other attributes of that 
object and on attributes of related objects. Propescul et 
al. (2002) proposed a combined approach called 
Structural Logistic Regression (SLR) that combines 
relational and statistical learning.  
 Data stored in a multi-relational environment can 
be considered as multiple instances of an object stored 
in the target table. As a result, learning multiple 
instances can be applied in learning data in a multi-
relational environment. In Multi-Instance (MI) learning, 
instances are organized into bags that are labeled for 
training, instead of individual instances. Multiple 
instance learners assume that all instances, in a bag 
labeled negative, are negative and at least one instance 
in a bag labeled positive is positive. Several approaches 
have been designed to solve the multiple instance 
learning. Dietterich et al., (1997) described an 
algorithm to learn Axis-Parallel Rectangles (APRs) 
from MI data. Maron introduced a framework called 
Diverse Density to learn Gaussian concepts (Maron and 
Lozano-Perez, 1998). Another approach using lazy 
learning has been investigated in this context as well 
(Wang and Zucker, 2000). Unlike the former 
approaches, a framework for learning rules from 
multiple data was introduced by Most of the approaches 
(Maron and Lozano-Perez, 1998; Wang and Zucker, 
2000) are not able to generate interpretable rule sets or 
decision trees.  
 In Relational Distance-Based Clustering (RDBC) 
(Kirsten and Wrobel, 2000) the similarity between two 
objects is defined based on tuples joinable with them. 
The distance measure uses the idea of computing 
distances by recursively comparing the components of 
first-orders instances, in which it is highly expensive if 
we have many tables. In addition to that, RDBC 

approach only considers the minimum distance 
measured between instances to differentiate two objects 
and may not generate good clustering results, which 
leads to less meaningful clustering results. RDBC 
approach is also not able to generate interpretable rules. 
In our approach, we transform the data representation in 
a multi-relational environment into a vector space 
model suitable or applicable to clustering operation. By 
clustering these objects, one can group bags with 
multiple instances that have similar characteristics that 
can be extracted, as an interpretable rule to describe the 
cluster’s behaviors. 
 
Multi-relational learning in DARA: We first describe 
the concept of multi-relational setting for data stored in 
a relational database. Then, we describe how a single 
object stored in a target table that is associated with 
many objects stored in a non-target table can be 
represented in a vector space model. 
 The Multi-Relational Setting  
 In this subsection, we describe the representation of 
data for objects stored in multiple tables with one-to-
many relations. Let DB be a database consisting of n 
objects. Let R := {R1,…,Rm} be the set of different 
representations existing for objects in DB and each 
object may have zero or more than one representation 
of each Ri, such that |Ri| ≥ 0, where i = 1,…,m. Each 
object Oi DB, where i = 1,…,n can be described by 
maximally m different representations with each 
representation has its frequency: 
 
Oi := {R1(Oi):|R1(Oi)|:|Ob(R1) 
|,…,Rm(Oi):|Rm(Oi)|:|Ob(Rm)|}, 
 
where, Rj(Oi) represents the j-th representation in the i-
th object and |Rj(Oi)| represents the frequency of the j-
th representation in the i-th object and finally |Ob(Rj)| 
represents the frequency of object with j-th 
representation. If all different representations exist for 
Oi, then the total different representations for Oi is |Oi| 
= m else |Oi| < m.  
  In relational instance-based learning, the distance 
measures are defined based on the attribute’s type 
(Horvath et al., 2001) and the distance between two 
objects is based on the minimum distance between pair 
of instances from the two objects. In our approach, we 
apply the vector-space model (Salton et al., 1975) to 
represent each object. In this model, each object Oi is 
considered as a vector in the representation-space. In 
particular, we employed the rf-iof term weighting 
model borrowed from (Salton et al., 1975), where in 
which each object Oi, i = 1,…,n can be represented as: 
 
(rf1•log (n/of1), rf2•log(n/of2), . . . , rfm•log (n/ofm)) 
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where, rfj is the frequency of the j-th representation in 
the object, ofj is the number of objects that contain the 
j-th representation and n is the number of objects. To 
account for objects of different lengths, the length of 
each object vector is normalized so that it is of unit 
length (||orfiof||= 1), that is each object is a vector on 
the unit hypersphere. In this experiment, we will 
assume that the vector representation for each object 
has been weighted using rf-iof and it has been 
normalized so that it is of unit length. In the vector-
space model, the cosine similarity is the most 
commonly used method to compute the similarity 
between two objects Oi and Oj, sim(Oi,Oj), which is 
defined as cos(Oi,Oj) = Oi•Oj/(||Oi||•|||Oj||). The cosine 
formula can be simplified to cos(Oi,Oj) = Oi•Oj, when 
the record vectors are of unit length. This measure 
becomes one if the records are identical and zero if 
there is nothing in common between them. The idea of 
our approach is to transform the data representation for 
all objects in a multi-relational environment into a 
vector space model and find the similarity distance 
measures for all objects to cluster them. These objects 
then are grouped based on the similarity of their 
characteristics, taking into account all possible 
representations and the frequency of each 
representation for all objects. 
 
Dynamic Aggregation of Relational Attributes 
(DARA): In relational database, records are stored 
separately in different tables and they are associated 
through the matching of primary and foreign keys. With 
a high degree of one-to-many association, a single 
record, O, stored in a main table is associated with a 
large volume of records stored in another table. In our 
algorithm called the Dynamic Aggregation of 
Relational Attributes (DARA), we convert the data 
representation from a relational model into a vector 
space model. Let O denotes a set of n records stored in 
the target table and let R denotes a set of m records (T1, 
T2, T3, … , Tm) stored in the non-target table. Let Ri is 
in the subset of R, Ri R and is associated with a single 
record Oa stored in the target table, Oa O. Thus, the 
association of these records can be described as Oa → 
Ri. Since a record can be characterized based on the bag 
of term/records that are associated with it, we use the 
vector space model to cluster these records, as 
described in the study of Salton et al. (1975). In vector 
space model, a record is represented as a vector or ‘bag 
of terms’, i.e., by the terms it contains and their 
frequency, regardless of their order. These terms are 
encoded based on the number of attributes combined, p 
and represent instances stored in the non-target table 
referred by a record stored in the target table (Alfred, 

2008). The encoding process to transform relational 
datasets into data represented in a vector-space model 
has been implemented in DARA (Alfred and Kazakov, 
2006a; 2006b). Given this data representation, we can 
use clustering techniques (Hofmann and Buhnmann, 
1998; Hartigan, 1975) to cluster them, as a means of 
aggregating them. DARA algorithm simply assigns 
each record in the target table with the cluster number. 
Each cluster then can generate more information by 
looking at the most frequent patterns that describe each 
cluster. 
 

RESULTS 
 
 In this experiment, we employ an algorithm, called 
DARA that converts the dataset representation in 
relational model into a space vector model and use a 
distanced-based method to group objects with multiple 
representations occurrence. With DARA algorithm, all 
representations of two objects are taken into 
consideration in measuring the similarity between these 
two objects. The DARA algorithm can also be seen as 
an aggregation function for multiple instances of an 
object and is coupled with the C4.5 classifier (J48 in 
WEKA) (Witten and Frank, 2000), as an induction 
algorithm that is run on the DARA’s transformed data 
representation. We then evaluate the effectiveness of 
each data transformation with respect to C4.5. The C4.5 
learning algorithm (Quinlan, 1993) is a state-of-the-art 
top-down method for inducing decision trees. All 
experiments with DARA and C4.5 were performed 
using a leave-one-out cross validation estimation with 
different values of p, where p denotes the number of 
attributes being concatenated. We chose well-known 
dataset, Mutagenesis (Srinivasan et al., 1995).  
 The mutagenesis data (Srinivasan et al., 1996) 
describes 188 molecules falling in two classes, 
mutagenic (active) and non-mutagenic (inactive); 125 
of these molecules are mutagenic. The description 
consists of the atoms and bonds that make up the 
compound. Thus, a molecule is described by listing its 
atoms atom (AtomID, Element, Type, Charge) and the 
bonds bond (Atom1, Atom2, BondType) between 
atoms. In this experiment, we use three different sets of 
background knowledge: B1, B2 and B3: 
 
B1: The atoms in the molecule are given, as well as the 

bonds between them; the type of each bond is given 
as well as the element and type of each atom. The 
table for B1 has the schema Molecule(ID, ATOM1, 
ATOM2, TYPE_ATOM1, TYPE_ATOM2, 
BOND_TYPE), where each molecule is described 
over several rows, listing all pairs of atoms with a 
bond and the type of each atom and the type of 
bond between them 
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B2: Continuous values about the charge of atoms are 
added to all data in B1 

B3: Two continuous values describing each molecule 
are added to all data in B2. These values are the log 
of compound’s octanol/water partition coefficient 
(logP) and energy of the compound’s Lowest 
Unoccupied Molecular Orbital (ЄLUMO) 

 
 In B1, there are five attributes that describe an 
individual molecule, namely first atom, second atom, 
first element’s type, second element’s type and 
bondtype. There are typically several records for each 
molecule. We performed a leave-one-out cross 
validation estimation using the C4.5 classifier for p = 1, 
2, 3, 4, 5 (p is the number of attributes combined) as we 
have a total of five attributes for dataset B1. Table 1 
shows that the predictive accuracy of the decision tree 
learned.  
 In B2, two attributes are added into B1, which are 
the charges of both atoms. We performed a leave-one- 
out cross validation estimation using the C4.5 classifier 
for p∈{1,2,3,4,5,6,7}, as we now have a total of seven 
attributes for dataset B2. With additional two more 
attributes, we have a higher prediction accuracy of the 
decision tree when p = 5, compared to learning from B1 
when p = 5, as shown in Table 1. 
 In B3, two more attributes are added to the existing 
dataset B2 and we now have the following row of 
attributes: [first atom, second atom, first element’s type, 
second element’s type, bondtype, first element’s 
charge, second element’s charge, log P, ЄLUMO]. 
Table 1 indicates that the prediction accuracy of a 
leave-one-out cross validation of C4.5 is the highest 
when p = 4 and 8.  
 Table 2 shows the DARA+C4.5 performance in the 
case of the mutagenesis dataset, using leave-one-out 
cross-validation and the J48 implementation of C4.5 
(Witten and Frank, 2000).  
 
Table 1:  Predictive performance of C4.5 on mutagenesis datasets B1, 

B2 and B3 based on 10-fold cross-validation 
 Number of features considered, p 
 ------------------------------------------------------------------- 
Datasets 1 2 3 4 5 6 7 8 9 
B1 80.9 81.4 77.7 78.8 81.2 - - - - 
B2 79.5 80.0 81.2 80.3 82.8 81.8 79.5 - - 
B3 79.5 81.6 79.1 82.7 80.2 79.1 79.0 82.7 78.6 
 
Table 2: Comparison on performance accuracies on mutagenesis datasets 
Algorithms B1 (%) B2 (%) B3 (%)  
PROGOL (Srinivasan et al., 1996) 76 81 83 
FOIL (Emde and Wettschereck, 1996) 83 75 83 
TILDE 75 75 85 
RDBC (Maron and Lozano-Perez, 
1998; Wang and Zucker, 2000) 83 84 82 
DARA (Hofmann and  
Buhnmann, 1998; Hartigan, 1975) 81 83 83 

DISCUSSION 
 
 In B1, the predictive accuracy is the highest when p 
is 2 or 5. When p = 2, the attributes used for clustering 
are the following 3 compounds: [first atom, second 
atom], [first element’s type, second element’s type] and 
[bondtype]. When p = 5, the only attribute used is: [first 
atom, second atom, first element’s type, second 
element’s type, bondtype]. A test using the correlation-
based feature selection (CFS in WEKA) function (Witten 
and Frank, 2000) provides a possible explanation of 
these results. We find that the two attributes, first 
element’s type and second element’s type, are highly 
correlated with the class membership, yet uncorrelated 
with each other. This means that an attribute combining 
these two would be relevant to the learning task and split 
the instance space in a suitable manner. The data 
contains this composite attribute when p = 2, 4 and 5, but 
not for the cases of p = 1 and 3. 
 In B2, when p = 5, we have two compound 
attributes, [first atom, second atom, first element’s type, 
second element’s type, bondtype] and [first element’s 
charge, second element’s charge]. Table 1 shows that 
drop in performance when p = 1 and 2. In contrast, we 
have higher prediction accuracy when p = 5. We have 
shown above that in the case of B1, the attributes first 
element’s type and second element’s type are highly 
correlated with the class membership. For B2, we have 
used the same technique to find that the first element’s 
charge and the second element’s charge are also highly 
correlated with the class membership, yet uncorrelated 
with each other. This explains the higher prediction 
accuracy for B2 and p = 5, as in this case 2 useful 
compound attributes are formed: [first element’s type, 
second element’s type] and [first element’s charge, 
second element’s charge]. 
 In B3, when p = 4, we have the following 
compound attributes [first atom, second atom, first 
element’s type, second element’s type], [bondtype, first 
element’s charge, second element’s charge, logP] and, 
finally [ЄLUMO]. Each of the first two subsets of 
attributes contains a pair of attributes that are highly 
correlated with the class membership. Again, this can 
be used to explain the high prediction accuracy for a 
leave-one-out cross validation of C4.5 when p = 4 
with dataset B3.  
 Based on the comparison shown in Table 2, the 
results show that for each of the other algorithms listed 
in Table 2, there is a dataset on which our algorithm 
performed better than the other relational data mining 
approaches. For instance, our approach outperforms 
RDBC when all available tables are used. Unlike 
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RDBC, our approach computes the distance between 
two different objects based on the representation of its 
instances (concatenated attributes). As a result, for each 
cluster, we can find the representations (by taking the 
representation with highest weight) that best describe 
the clusters and these representations can be used as an 
interpretable rules for clustering or classifying unseen 
objects with multiple instances. 
 

CONCLUSION 
 
 This study presents an algorithm transforming 
biomedical datasets in a multi-relational setting into a 
vector space model that is suitable to clustering 
operations, as a means of aggregating or summarizing 
multiple instances. We carried out an experiment that 
clusters the objects in a multi-relational setting based on 
the patterns formed. The results show that varying the 
number of concatenated attributes p before clustering 
has an influence on the predictive accuracy of the 
decision tree learned by the C4.5 classifier. We have 
found that an increase in accuracy coincides with the 
cases of grouping together attributes that are highly 
correlated with the class membership. However, the 
prediction accuracy is degraded when the number of 
attributes concatenated is increased further. The results 
indicate that limiting the number of attributes may be 
desirable. At the same time, it is beneficial to combine 
attributes that are highly correlated with the class 
membership together. In this study, keeping the number 
of concatenated attributes n relatively small (e.g. n ≤ 5), 
results in the best performance in terms of prediction 
accuracy as measured by leave-one-out cross- 
validation of the C4.5 decision tree. 
Finally, the results show that data summarization 
performed by DARA, can be beneficial in summarizing 
biomedical datasets in a complex multi-relational 
environment, in which biomedical datasets are stored in 
a multi-level of one-to-many relationships and also in 
the case of datasets stored in more than one one-to-
many relationships with non-target tables.  
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