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Abstract: Problem statement: A new multi-objective approach, Strength Paretool@onary
Algorithm (SPEA), is presented in this paper tovedihe shortest path routing problem. The routing
problem is formulated as a multi-objective mathécahtprogramming problem which attempts to
minimize both cost and delay objectives simultasouApproach: SPEA handles the shortest path
routing problem as a true multi-objective optimiaatproblem with competing and noncommensurable
objectivesResults: SPEA combines several features of previous mujgative evolutionary algorithms

in a unigue manner. SPEA stores nondominated sokitexternally in another continuously-updated
population and uses a hierarchical clustering #lgorto provide the decision maker with a manageabl
pareto-optimal set. SPEA is applied to a 20 nodeark as well as to large size networks rangingnfro
50-200 nodesConclusion: The results demonstrate the capabilities of thegsed approach to generate
true and well distributed pareto-optimal nondonedagolutions.

Key words: Shortest path routing problem, evolutionary aldori multi-objective optimization,
clustering, strength pareto evolutionary algorith@enetic Algorithm (GA), Particle
Swarm Optimization (PSO), Non-dominated Sorting &ien Algorithm (NSGA),
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INTRODUCTION Current routing protocols use a simple metric and
. . shortest path algorithm so as to work out the muie
A computer network is an interconnected group OfQoS routing, routes must be determined by
computers with the ability to exchange data. TOdayrequirements based on features of the data flows) s
computer networks are the core of modern g cost, delay, and bandwidth (Murad and Al-

communiqation. Routing proplem is one of the impkt Mahadeen, 2007). There are two main goals thatoare
research issues in communication networks (Jayaukum%e achieved by the QoS routing algorithm. The first

and Gopinath, 2008). An ideal routing algorithm o goal is to find a path that satisfies the QoS

strive to find an optimal path for packet transioiss . ) Y
within a specified time so as to satisfy the Quatif requirements. The second goal is to optimize tbéall

Service (QoS). The objective functions related astc Network resource utilization (Rouskas and Baldine,
time, reliability and risk are appropriated foresgting the ~ 1997). Many applications, such as audio, video
most satisfactory route in many communication netwo conferencing or collaborative ~environments and
optimization problems. Traditionally, the routing distributed interactive simulations have multiple®)
problem has been a single-objective problem ofequirements such as bandwidth, packet delay, packe
minimization of either cost or delay. However, & i loss, cost (Sriraret al., 1998).

necessary to take into account that many real world Extensive research has been done on shortest path
problems are multi-objective in nature and so is throuting problems. It includes Dynamic Programming
shortest path routing problem in computer networks.  for directed networks, Dijkstra labeling algorithemd
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Bellman-Ford successive approximation algorithmsolution produced by SPEA, the same problem is
(Lawler, 1976). These algorithms have majorsolved as a single-objective optimization by wegght
shortcomings such as they search only for the sbibrt sum method. The effectiveness and potential of the
route and they exhibit high computational complexit proposed approach to solve the multi-objective
for real-time communications. Artificial Neural shortest path routing problem are demonstrated.
Networks (ANN) has been examined to solve the

shortest path problem relying on their parallelProblem formulation: The routing problem is
architecture to provide a fast solution (Arawgpal., formulated as a multi-objective mathematical
2001). However, the ANN approach has severaprogramming problem which attempts to minimize both
limitations. These include the complexity of the delay and cost simultaneously, while satisfyingftbes
hardware which increases considerably withconservation constraints (Lin and Gen, 2007).
increasing number of network nodes; at the same,tim The topology of a multi-hop network is specified
the reliability of the solution decreases. Secontigy by an undirected graph, where the set of nodesasd/
are less adaptable to topological changes in thée setofits link is E. There is a cogt&sociated with
network graph. Evolutionary algorithms such aseach link. The costs are specified by the costim@te=
Genetic Algorithm (GA) (Ahn and Ramakrishna, [Cil. where G denotes a cost of transmitting a packet
2002) and Particle Swarm Optimization (PS0)©n link (i,j). There are three basic concepts dfage
(Mohemmedet al., 2008) have been used. However,Viz. switching delay, queuing delay and propagation
the approaches are meant to find single-objectivéll@y- It is specified by the delay matrix D =Jid
optimization of either cost or delay, mostly coafyo ~ Where ¢ denotes the propagation delay of transmitting
It is apparent that there is a need for more effici & Packet on link (ij). Since switching delay is a
algorithm which gives multi-objective trade-off consistent value, it is added to the propagatidayde

solutions involving cost. delay and bandwidth Also, queuing delay makes little difference in the
9 ' y ' computation, the total delay is taken as only pgagian

The_ S|mp_Ie mUIt"Oble.Ct'Ve method Is to form a gelay. Source and destination nodes are denot&daoyl
composite objective function as the weighted sum Of "~ regpectively. Each link has the link connection
the ob!ect|ves, where a weight for an _objecnve iSindicator denoted by X providing information on
proportional to the preference factor assignedhtt t \yhether the link from node i to node j is includeda
particular objective. This method of secularizing a routing path or not. If the link is used then ttiaaoy
objective vector into a single composite objectivevariable is 1 else it is 0. A path from nodgd/node Vis
function converts the multi-objective optimization a sequence of nodes from V in which no node appears
problem into a single-objective optimization prable more than once. A path can also be equivalently
In an ideal multi-objective optimization procedure, represented as a sequence of nodgsvy. . . M, V).
multiple trade-off solutions are found. Higher leve For example, referring to Fig. 1, (1, 2), (2, 3, 8) and
information is used to choose one of the trade-of{8, 14), (14, 20) is a path from node 1 to nodegAn
solutions. It is realized that, single-objectivdimization ~ and Ramakrishna, 2002). The path representatidn &
is a degenerate case of multi-objective optimizatio 3: 8, 14, 20). Thus, the problem is to find a gattween
Srinivas and Deb (1994) developed Non-dominatedhe source_a_nd destination nodes having minimuai tot
Sorting Genetic Algorithm (NSGA) in which a ranking €0Stand minimum end to end delay.
selection method emphasizes current non-dominated
solutions and a niching method maintains diversity
the population. Chitra and Subbaraj (2010) applied
NSGA to shortest path routing problem and compared
its validity with single-objective optimization.
However, NSGA suffers from three weaknesses:
computational complexity, non-elitist approach and
the need to specify a sharing parameter.

In this study, SPEA is applied to route the tiaffi
in communication network. Simulation results
considering two objectives are presented for a few
sample test networks. A hierarchical clustering
technique is implemented to provide the routing
problem with a representative and manageable Raretéig. 1: A simple undirected graph with 20 nodes 48d
optimal set. To analyze and compare the quality of edges
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Objective functions: general multi-objective optimization problem cotsis
Cost: The total cost function is the sum of cost of link of a number of objectives to be optimized
along the path from the source to the destinafidve  simultaneously and is associated with a number of

cost can be expressed as: equality and inequality constraints. It can be folated
as follows.

Minimize: Minimize:
fl - (i§ECinii (1) fm (X) m= 112131 I\Abjectives (7)
Delay: The total delay function is the sum of delay of Subject to:
the link along the path from the source to the;Lg x)=0,9=12.3,..G (8)
destination.

The delay can be expressed as: ut(x)<0,h=1,2,3,..H 9)
Minimize: Where:

_ fon = The nf' objective function

fo= (i%Ediixii @) X = A decision vector that represents a solution

Mobjectives = The number of objectives
Subject to the constraints:
For a multi-objective optimization problem, any
DXy )X =Li=S (3)  two solutions can have one of two possibilitiese on
(DCE (.)TE dominates or covers the other or none dominates the

. other. In a minimization problem, without loss of
2 X 2 Xy =Li=D (4)  generality, a solution covers or dominates if the

GheE e following two conditions are satisfied:

X, = Y X, =0;i#S,i#D 5
(i%E : (i% : ( ) Ok D{l,2,..., Mobjectives}:f l(x ) <f (X ) (10)
Xj=0orl 6) 0002, Myenedif (x ) <F(x ) (11)

Constraints (3), (4) and (5) are flow conservation N o
constraints. Constraint (3) ensures that the ttital If any of the above conditions is violated, the
emerging from ingress node to egress node should be Solution x does not dominate the solution. 3f x;
Constraint (4) ensures that the total flow comimgards ~dominates x the solution, xis called the nondominated
an egress node should 1. Constraint (5) ensurégotha soll_mon. The solutions that are nondominated W|t_he
any intermediate node, the sum of their output-dlow entire search space are denoted as Pareto-optiidal a
minus the input-flows should be zero. The variabjén ~ constitute the Pareto-optimal set. This set is &tsmwn
(6) takes values 0 or 1, to show whether or notitike(i, ~ @s Pareto-optimal front.

j) is used to carry information to the egress node o . .
Principle of strength Pareto evolutionary algorithm:

Concepts of multi-objective optimization: Many real- Overview: The studies on evolutionary allgprithms have
world problems involve simultaneous optimization of Shown that these algorithms can be efficiently used
several objective functions. Generally, these fiomst eliminate most of the difficulties of classical retls
are noncommensurable and often competing an#’at can be summarized as:
conflicting objectives. Multi-objective optimizatio ) ) ) ]
with such conflicting objective functions givesaito a * An algorithm has to be applied many times to find
set of optimal solutions, instead of one optiméliion. multiple Pareto-optimal solutions
The reason for the optimality of many solutiongtiat *  Most algorithms demand some knowledge about
no one can be considered to be better than any othe the problem being solved
with respect to all objective functions. These wti * Some algorithms are sensitive to the shape of the
solutions are known as Pareto-optimal solutions  Pareto-optimal front
(Abido, 2003; 2006; Bueno and Oliveira, 2010;* The spread of Pareto-optimal solutions depends on
Mendozaet al., 2006; Taher, and Tabei, 2008). A efficiency of the single-objective optimizer
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[ Current population ] Pareto set Fitness of population individuals: The fithess of each
individual in the population is the sum of the styths

of all external Pareto optimal solutions by whithisi
covered. The fithess of a population member is
determined only from the individuals stored in the
external set. This reduces significantly the
computational burden of the fithess assignmentgssc
The strength of a Pareto optimal solution is atshme
time its fitness.

The SPEA algorithm is described in the following
steps:

Generationi

Extend Pareto set

[Reduce?aremetby clustering ] Step 1: Generate an initial population and create a
empty external Pareto-optimal set.

Step 2: Update the external Pareto optimal set.

Step 3: Calculate the fitness values of individuals
both external Pareto set and the population.

Step 4. Combine the population and the external set
individuals. Select two individuals at random
compare their fithess. Select the better one to

----------------------------------------------- the mating pool.

Generationi+ 1

> Step 5: Perform the crossover and mutation operstio
ati areto set . . el
[ Currentpopulation ] @ according to their probabilities to generate the

new population.

: : Step 6: Terminate if the generation counter exceetls
. value.
___________________ Generationi+2 The computational flowchart of the SPEA

approach is presented in Fig. 2.
Fig. 2: Strength Pareto evolutionary algorithm

Implementation of Shortest Path Routing Problem
In general, the goal of a multi-objective (SPEA):
optimization algorithm is not only guide the searchlnitialization: routing path is encoded by a string of
towards the Pareto-optimal front but also maintainpositive integers that represent the nodes througbh
population diversity in the set of nondominatedthe path passes. Each locus of the string repsesent
solutions (Zitzler and Thiele, 1999; Deb, 2001;200  order of a node that is indicated by the gene ef th
locus. The gene of the first locus is for the seunode
Procedure: The basic elements of the SPEA techniqueand the one at the last locus is for the destinatimde.
are briefly stated and defined as follows. The length of a routing path should not exceed the
maximum length n, where n is the number of nodes in
External set: It is a set of Pareto-optimal solutions. the network. Special difficulties arise when a ramd
These solutions are stored externally and updategiequence of edges usually does not correspond to a
continuously. Ultimately, the solutions storedliistset path. To overcome such difficulties, an indirect
represent the Pareto-optimal set. approach is adopted by encoding some guiding
information to construct a path. The path is getegra
Strength of a Pareto optimal solution: It is an by sequential node appending procedure beginning
assigned real valued§0,1) for each individual in the from the specified node 1 and terminating at the
external set. The strength of an individual isspecified node n, where n=20. At each stegetiare
proportional to the number of individuals covergdtb usually several nodes available for odesition.
20
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Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Priority 2 5 7 6 3 1 9 4 10 8 14 16 30 20 44 70 57 46 35 90

Fig. 3: Example of Priority-based encoding

Each node is assigned a priority with a randomAfterwards, the individuals in the population P are
mechanism and adds the one with the highest prioritevaluated (Deb, 2001).

into path (Chen and Sun, 2005). A gene in a

chromosome is characterized by two factors: ‘locus’ Step 1: Each solutionP* is assigned a real value,
i.e., the position of gene located within the stnoe of Si0[0, 1), called strength;;Ss proportional to
chromosome and ‘allele’, i.e., the value the gerked. the number, nof current popqlatmn members
In the priority-based encoding method, the positba that an external solution i dominates:

gene is used to represent the node and its valuses n

to represent the priority of the node for consingta N Jirl (12)
path among candidates. A path can be uniquely
determined from this encoding scheme (Mukeesl., ~ Where: o . .

n = The number of individuals in population P

2008; Craveirinhat al., 2008).

An example of chromosome generated usinq\I
priority based encoding scheme is shown in Figl'.
find a path from source node 1 to destination r2@iea
node which is connected to node 1 is identifiest fiAs fi=S (13)
seen from Fig. 1, the nodes 2, 3, 4 and 5 are s0dhs
to be considered. The priorities for them are 5 @nd
3 respectively. The node 3 has the highest pricritgt
is put into the path. The possible nodes from riddee
nodes 1, 2, 4, 7, 8 and 9. The priorities of thesges

that are covered by i,
= The size of randomly created population.
The fitness;fof i is equal to its strength:

Step 2: The fitness of an individual® is calculated by
summing the strengths of all external
nondominated solutiond1P* that cover j. The
fitness of the current population is member j is
assigned as one more than the sum of the

are 2,5,6,9,4 and 10 respectively. _Since nobasda strength values of all external population
larger value than the other nodes, it is takerhasext members which weakly dominate j:

node while constructing the path. Then, the setoofes

that are available for next consideration are chasel ~ f, =1+ > § (14)

iOP" Di<j

the one with the highest priority among them iestld
(Pangilinan and Janssens, 2007). The same procisdure  The addition of one makes the fitness of any

repeated until a complete path from the source hodle current population member P to be more than the
the destination node 20 is obtained (1, 3, 9, 0%, 2 fitness of any external population member. Phis

method of fitness assignment suggests that a ebluti
Update of external Pareto-optimal set: The external with a smaller fitness is better.

Pareto-optimal set is updated as follows: ) )
Selection: The population and the external set

dindividuals are combined and any two individuals at
random are selected. Based on their fithess fumctie
elaetter one is moved to the mating pool.

e« Search the population for the nondominate
individuals and copy them to the external Pareto se
» Search the external Pareto set for the nondominat
individuals and remove them all from the set Crossover and mutation:

» If the number of the individuals externally stoied Crossover: The first genetic operation done to the
the Pareto set exceeds a prespecified maximumhromosomes in the mating pool is crossover. Tha id
size, reduce the set by means of clustering behind crossover is to create an information exgban

between two chromosomes. By doing so, the algorithm

Fitness assignment: The fitness assignment will explore new paths and hopefully be able todfin

procedure is a two-stage process. First, the iddals  better paths in the process. The crossover scheahést

in the external nondominated set P* are rankedapplied here is Partially Mapped Crossover (PMX).
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Parent 1: N, N, N3 Ny —>N; > N >N, >Ng >Ny

Parent 2: N; N- N5 N; N Ng N, Ny Nsg

Fig. 4: Parents for Partially mapped crossover

Offspring 1 N, N, N3 N; Ns Ng Ny Ng Ny

(i)ﬁ‘Spl'illg 2: Nl N5 N5 N4 N5 N6 N, N4 N’!O

Fig. 5: Offspring’s after mapping sections crossed

Offspring 1: N, N, N, N3y —> Ns —> Ny —> N, —>N; —> N,

Offspring 2: N, N5 Ng Ny N5 Ng N> N; Ny

Fig. 6: Production of offsprings after crossover

PMX is a crossover of permutations which guaranteeelements of offspringl can be taken from the fiestent.
all positions that will be found exactly once incka However, the eighth element of the offspringl wolodd
offspring, i.e., both offspring receive a full coement of  Ng, which is already present. Because of the mapjing
genes, followed by the corresponding filling-inalleles <« Ng <> Ng, it is chosen as N\ Thus, offspringl and

from their parents. PMX proceeds as follows: offspring2 are formed and is shown in Fig. 6.
) Here, the source node and the destination noées ar
+ The two chromosomes are aligned fixed. Each partial route is exchanged and assemble
Two crossing sites are selected uniformly at randongnd thus, two new routes are produced. In other
along the strings, defining a matching section crossover techniques available, there is a potgilif
* The matching section is used to cross throughoop formation after crossover. In order to avditsta
position-by-position exchange operation repair function must be used as a countermeasure. B
» For illustration, the following two parents are in PMX, loop formation is avoided, because, theraa
considered repetition of nodes. The repetition of nodes isided

by a mapping function. Therefore, PMX finds many
new paths without increasing the computational
complexity as no repair function is needed.

Alleles are moved to their new positions in the
offspring. For illustration, the two parents are
considered as shown in Fig. 4.

First, two cutpoints are selected uniformly pytation: The objective of mutation is to create
atrandom along the parent strings. The sub stringgjversity in the population. The population undergo
between the cut points are called the mapping@®ti  mytation by an actual change or flipping of onettef

Now the mapping section of the first parent is edpi genes of the candidate chromosomes, thereby keeping
into the second offspring and the mapping sectibn oaway from local optima.

the second parent is copied into the first offagsims

shown in Fig. 5. Stopping criteria; Check for stopping criteria. The
Then offspringl is filled up by copying the first search will be terminated if the generation counter

two elements N N, of the first parent. In case a node is exceeds set value.

already present in the offspring it is replacedoading

to the mapping. Here the mapping is defined as-N  Reducing Pareto set by clustering: In some problems,

N3, Ns < Ng < Ng. For example the first two elements the Pareto optimal set can be extremely large enev

of parentl N N, are copied as the first two elements ofcontain an infinite number of solutions. In thissea

the offspringl. The third element would bg, Nke the  reducing the set of nondominated solutions without

first element of the mapped sections in offspringd. destroying the characteristics of the trade-ofinfres

there is already a JNpresent in offspringl. Hence, desirable from the decision maker's point of vieAm

because of the mapping, N> Nsthe third element of the average linkage based hierarchical clustering algar

offspringl is chosen to be,NThe seventh and ninth is employed to reduce the Pareto set to manageable
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size. It works iteratively by joining the adjacefiisters  parameters, they are chosen by trial and error.afor
until the required number of groups is obtainede Th the runs, the sender is always the first node &ed t
algorithm is illustrated in the following steps: receiver is the twentieth node since that wouldegiv
. the largest number of possible paths in the network
Step 1: Initialize cluster set C; each individualPl  The higher the population size and/or the number of

constitutes a distinct cluster. generations, the larger the number of solution:ifou
Step 2: If number of clusters {O*, then go to Step 5, Several runs have been carried out to set the
else go to Step 3. parameters and after experimentation, the populatio

Step 3: Calculate the distance of all possiblespal  gjz¢ was set as 200. The size of the Pareto-optatal
cIusters..ThZ dfl_staélcayd)ert]ween two cIu;terlgéC was chosen as 40. If the number of nondominated
and G is defined as the average Eucl eanPareto-optimal solutions  exceeds thimund,

ﬂigtan?e (I)ftal(lj pai_rs othoqul'?ionfﬂG:l andt.DC?)' the hierarchical clustering technique icalled.
IS calculated using the Toflowing equation: Since the population in SPEA is augmented to irelud

1 the externally stored set for selection procesg th

y = > d(x.y) (15)  population size in SPEA was reduced to 160 indizislu
My X Ny xec e, only. Crossover and mutation probabilities weresgm
as 0.8 and 0.01 respectively, in all simulationstun
Where: o , The Pareto-optimal front for the best optimization
M = The numbers of individuals in clusters C s ghtained by SPEA is shown in Fig. 7. It is thor
n, = The numbers of individuals in clusters C

mentioning that the Pareto optimal set has 23
nondominated solutions generated by a single
simulation run. The average CPU execution time was
found to be 59 sec.

For completeness and comparison purposes, the
problem was also treated as a single-objective
optimization problem by linear combination of cast

Step 4: Determine two clusters with minimal dis&n
d,,. Merge these clusters together. This reduce
the number of clusters by one. Go to Step 2.

Step 5: For each cluster, find the centroid aneéctel
the nearest individual to the centroid as a
representative and remove all other individuals

from the cluster. delay as follows (Deb, 2008):
Step 6: Compute the reduced nondominated set bk;l_ L
uniting the representatives of the clusters. Inimize:
MATERIALSAND METHODS wf+(@1-w)b

The SPEA for shortest path search is tested owhere, w is the weighting factor.
networks with randomly varying topologies through
computer simulations. Simulation runs were cardatl Strength Pareto evolutionary algorithm

100 times with MATLAB 7.4 software package on 170
IBM PC with Pentium dual core processor. 165 | °

RESULTSAND DISCUSSION 6o
Simulation results for a fixed network with 20 7 1557 ‘
nodes. In order to test the capability of SPEA for a 5 ‘..
shortest path routing problem, the simulation ssdi .,
involve the undirected, weighted network topologshw 145 e,
20 nodes depicted in Fig. 1. Each of the linksha t e,
network is associated with two QoS parameters, cost 140 . .
and delay. The range of cost varies from 10-250thed J , . ‘ . . ‘
range of delay from 5-200. In general, any evohaiy 370 160 1s0 200 220 240 260
search algorithm shows improved performance with Cost

relatively larger population. As there are no gaher
guidelines available at present for the selectidn oFig. 7: Pareto-optimal front of SPEA in last gertiena
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170 — . Weightedsummethod ‘ *+ The CPU execution time of SPEA is much less
. than that of the weighted sum method as it
1651+ 1 produces all the Pareto optimal solutions in one
Y single run
160 1 . 7« The minimum cost of 142 Units and delay of 140
z *y Units are reached in a single run by SPEA. All the
g " | solutions provided are best solutions and it igaup
150 + | the decision maker to choose one among them
X depending upon the requirement
145 | e 4 + No need to give any weightage for any particular
N objective in SPEA, whereas in weighted sum
140 | . method, the solutions are found by varying the
weighting factor, w

140 160 180 200 220 240 260 i _ _
Cost Simulation results for random network topologies:

A serial of optimization runs were conducted with

random and varying topologies of 50-200 nodes

through computer simulations. The main objective of

separate runs : ' . ) . ) ;
P these simulation experiments is to investigatequnaity

Table 1: Route Optimal Rate for networks of varyiogologies of SO|Ut!On and convergence speed for differentvogk
Number Population Route CPU topologies and number of nodes. For the randomly
of nodes size optimal rate time (in sec) generated networks with 50-200 nodes with randomly
50 500 96 70 assigned link costs and link delays are investibe

Igo 56%8 gg Z;f—, shortest path solution. The cost and delay of éte/orks

195 600 87 o1 are randomly chosen_ in the interval [10,_5(!]@]_61"

150 750 86 99 the cases, the priority based encodeayding

175 900 82 102 and  partially  mapped crossoveis used.
200 1000 79 112

The quality of solution, in terms of Pareto-optinfraint
. . and the performance in terms of route optimal eate
To generate 20 nondominated solutions, theapulated in Table 1. The route optimal rate isrdef

algorithm was run 20 times with varying w as a @nd s the rate at which the algorithm reached thenti
number, w = rand [0,1]. The solutions obtained bysoplution in 100 runs. The population size of difetr
weighted sum method for the routing problemnodes with the obtained route optimal rate is tateal
considered are plotted in Fig. 8. The executioretis  in Table 2. For all the simulation runs of networks
found to be 205 sec just to generate 20 solutidfith  having nodes varying from 50-200, the crossover
the solutions detected by SPEA, the decision-mbéisr  probability and mutation probability is uniformlgtsas

the opportunity to visualize trade-offs and may beg.g and 0.01 respectively for fair comparison. Hesve

inclined to accept a very small violation of thelaye  the increase in the number of nodes warrants the
requirement for a large cost saving. Comparing thgopulation size to be increased.
results shown in Fig. 7 and 8, it can be conclutiett When the number of nodes and number of edges

are increased in this randomly varying topology
The 23 solutions shown in Fig. 7 represent thenetwork, the algorithm works better and finds all
results of the SPEA technique obtained in a singlehondominated solutions. From the simulation resitilts
run while the 20 solutions by weighted sumis clear that as the population size is increaBeddute
method shown in Fig. 8 has been obtained in 2@®ptimal rate also increases. But when the populatio

separate runs size is increased the computational time increases.
* The solutions of SPEA approach shown in Fig. 7
have better diversity characteristics and well- CONCLUSION
distributed solutions over the trade-off surfacanth
weighted sum method In this study, investigative results on using SPEA

The number of solutions found depends on the codb solve the shortest path routing problem havenbee

and delay data available which is generatedeported. SPEA is capable of exploring more effitie

randomly and non-inferior solutions. This demonstrates that
24



J. Computer Sci., 7 (1): 17-26, 2011

search of SPEA span over the entire trade off sarfa Chitra, C. and P. Subbaraj, 2010. A nondominated
The SPEA based search used a modified indirect path sorting genetic algorithm for shortest path routing
encoding scheme, called the priority based encoding problem. Int. J. Comput. Sci., 5: 55-63.

scheme and partially mapped crossover scheme, so &saveirinha, J., R. Girao-Silva and J. Climaco, 208

to widen the scope of search space. It also rediees meta-model for multiobjective routing in MPLS
probability of invalid path/loop creation duringetipath networks. Central Eur. J. Operat. Res. (Springer),
construction procedure using a heuristic operaibe 16: 79-105. DOI: 10.1007/s10100-007-0044-9

performance of the SPEA has been compared with thBeb. K., 2001. Multi-Objective Optimization using
weighted sum method. The results obtained by SPEA  Evolutionary Algorithms. 1st Edn., John Wiley and
are superior to weighted sum method and also dsfin Sons, ISBN: 10: 047187339X, pp: 518.

all the possible solutions in a single run, thugirg@g  Deb, K. and S. Tiwari, 2008. Omni-optimizer: A
computer execution time. SPEA is applied to network generic evolutionary algorithm for single and
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