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Abstract: Problem statement: Digital transmission over band-limited communicatichannel
largely suffers from ISIS and various noise sourddge presence of ISI and noise causes bit errors
in the received signal. Equalization is necessarythe receiver to overcome these channel
impairment to recover the original transmitted sstpe. Traditionally equalization is considered as
equivalent to inverse filtering and implemented ngsilinear-perform under severe distortion
conditions when Signal to Noise Ratio (SNR) is pdegualization can be considered as a non-linear
classification problem and optimum solution is giviey Bayesian solution. Non-linear techniques
like Artificial Neutral Networks (ANN) are very gabchoice for non-linear classification problems.
Several non-lines are equalizers have been implesdamsing ANN which outperformed LTE and
solved the problem of equalization to the varyiregieee of sourcesApproach: Forward neural
network architecture with optimum number of nodeaswused to achieve adaptive channel
equalization. Summation at each node was replagechddtiplications which result in powerful
mapping. The equalizer was tested on Rayleigh tadirannel with a BPSK signdResults. Results
showed that proposed equalizer provides simplifiechitecture and improvement in the bit error
rate at various levels of signal to noise ratio Ratyleigh faded channeConclusion: A high order
feed forward network equalizer with multiplicativeeuron is proposed in this study. Use of
Multiplication allows direct computing of polynontiamputs and approximation with fewer nodes.
Performance comparison in terms of network architecand BER performance suggest the better
classification capability of the proposed MNN edeat over RRBF.

Key words: Channel equalization, Multiplicative Neural NetwdMNN), rayleigh fading, Pi Sigma-
Networks (PSN), polynomial inputs, digital commuation, receiving filters, training
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INTRODUCTION overcome these interfaces so as to restore the
transmitted symbols and recover their information.
The growth in communication services during theThis technique is referred to as channel equatinatr
past decades has been phenomenal. With thsimply equalization (Prokias, 1995;Tadtaal., 2006).
unimaginable development of internal technologies, In principle, if the characteristics of channek ar
efficient high speed data transmission techniques o precisely known, then it is always possible to giesi
communication channels introduce distortion in diata pair of transmitting and receiving filters that can
digital communication, the transmission signals areminimize the effect of ISI and additive noise( Hayk
generally in the form of multilevel rectangular pe$. 2002). The use of a fixed pair of transmitting and
The absolute bandwidth of multilevel rectangulalsps  receiving filters designed on the basis of averdgmnel
is infinity. If these pulses are passed throughaadb characteristics may not adequately reduce ISI. fap
limited communication channel, they will spread inequalization which provides precise control overtime
time. Pulse for each symbol may be smeared inteesponse of the channel is widely used to overcibise
adjacent time slot and interface with adjacent syimb problem. Adaptive equalizers have therefore been
This is defined as ISI (Prokias, 1995). Signalplaying a crucial role in the design of high speed
processing technique is used at the receiver t@ommunication system.
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When significant noise is added to transmittede(k) = g(k) - y(k) (2)
signal, linear boundaries are not optimal. The ixeck

signal at each instant may be considered as areanli he desired sianal i . db Vi h
function of the past values of transmitted symbols, 'he desired signal is estimated by convolving the

Since the non linear distortion varies with timerfr  iNPut signal with impulse response and it is exgedsas:
place to place effectively, the overall channeprese  (EQ. 3)
becomes a nonlinear dynamic mapping. The problem is
approached by using classification technique. — T

As shown in the wide range of engineeringg(k) W - x(k) 3)
applications, neural network has been successhgsigd
for modeling complex nonlinear systems (Bagigal, @ where, x(k) = [x(k), x(k-1), X(k-2) .......... x(k-p) T'
1996). A wide range of neural architectures arél@a is the input signal vector. The filter co-efficieate
for modeling the nonlinear phenomenon of channe(pgated at every instant as: (Eq. 4)
equalization. Feed forward networks, Like Multilaye
Perception (MLP), contain an input layer, an outpyer
and one or more hidden layers that possess nonline¥Vie1 = Wi + AWy 4
processing capabilities(Gibsaat al., 1989). The back

propagation which is a supervised learning algoriik The optimization algorithm can be linear or

used as a training algorithm(zhagal.,1990). These nonlinear. The adaptive neural network equalizer is

neuron models process the neural inputs using the | d b ; feed f q ltiolicati
summation process. implemented by using a feed forward multiplicative

Higher order networks recently have drawn grea{1eural network, whose architecture is shown in Eig.
attention from researches due to their performance The transmitter sends a known training sequence to
nonlinear input output mapping, function approximat the receiver. The discrete-time BPSK signal samptex
and memory storage capacity. Some examples of produrate of f is generated by the following equation: (Eq. 5)
unit NN are Sigma- Pi Network (SPN) and Pi Sigma-
Networks (PSN). They allow neural networks to learn
multiplicative interactions. Multiplication plays na
important role in neural modeling of ANN(Kiret al.,
2002; Lyodeet al., 2002).

The multiplicative neuron contains units which In order to obtain integral number of samples in
multiply their inputs instead of summing them ahdst  each bit interval, the sampling frequengysfequal to
allow inputs to interface nonlinearly (Schmitt, 200In 1, where my an integer denoting number of samples
the present work, using multiplication neural nete@ o Wit guration. If m is defined as discrete time

channel equalization has been modeled angampled version of the binary sequence (th
performance is evaluated. (5) becomes: (Eq. 6 and 7)

r(KT9 = Aexp{jn/2[1-m(KT)]} (5)
(k=0,+1,+2,.......)

Adaptive channel equalization: The block diagram of

adaptive equalization in Fig. 1 described as fodlow T = Aexp [/2(1-mJ)] (6)
The external time dependent input consists of tira s

of desired signal g(K), the channel nonlinearity aid A

the interfacing noise V(k). The adaptive filter has :{_Aformk —1andfor™ = 1 7

Finite Impulse Response (FIR) structure. The impuls
response is characterized by filter co-efficiertte Tco-

efficient for a filter of order P are defined aBg( 1) A sequence of 6000 equiprobable, BPSK complex
valued symbol set, in which the input signal takes
Wi =[Wk(0),Wk(1). . W(p)]" (1) of the values {-1, 1} is generated. In the absevicthe

noise the output signal occupies well-defined state
A predefined delayed version of original signal the BPSK signal constellation shown in Fig. 3.
forms the training sequence points for the adaptati When the signal is passed through the nonlinear
The parameter considered for the optimization ¢g@st ~ channel, it becomes a stochastic random process.
function on the error signal which is differencévibeen ~ Decision boundaries can be formed in the observe
the desired signal and estimated signal giventby: ) ~ pattern space to classify the observedtors.
1647



J. Computer i, 7 (11): 1646-1651, 2011

Noise
Input + Output
W e p
a
* Equalizer

yd Training
algorithm

Fig. 4: Multiplicative neural network based channel
equalizer

where, the input Xt) = xr(t) + ixg(t)

And:
&__/ Levell hidden LevelM output Xa(t) = Xor(t) + iX2(t) 9)
Level0 input layer layer
layer

Learning rule for multiplicative neuron: A bipolar
sigmoidal activation function is used at each nddes

kind of neuron itself looks complex in the firsstance

but when it is used to solve a complicated probiem
needs less number of parameters as compared to the
existing conventional models. An error Back
Propagation (BP) based learning using a norm-sguare

Fig. 2: Architecture of multiplicative neural netio

A

Imaginary error function is described in (Yadaat al., 2007;
Complex Burseet al., 2009). The symbols used are:
Plane - >
‘_A A Xo = The number of inputs in the input layer
X = The number of hidden layers in the FF network
Fig. 3: BPSK signal in complex plane Xx =The number % of neurons in the X hidden
F(_)r equalization, the adaptive filter is u§ed imiese X :I'?zgrjth neuron of the xth hidden layer
with the unknown system on the test signal d(k) by *
minimizing the squared difference between adaptivdx = Tthe output of the jth neuron of the xth hidden
equalizer output and the delayed test signal. @bk of layer
the equalizer is to set its coefficients in suchay that Ya« = The desired output of the"kneuron in the
the output y(k) is a close estimate of the desmefgbut output layer
vector, where the equalizer tries to estimate apuip Y« = The actual output of thé"kneuron in the output
which is closed to one of the transmittealues. layer
The neural equalizer separately processes the redl,,,; = The weight of the connection between
and imaginary part using the multiplicative, split jth neuron of the (x-f) layer and the
complex, neural network model (Kantsiaal., 2004, i neuron of the R layer

Burseet al., 2008). The block diagram of the channely,

. The bias of the connection between
equalizer using MNN is shown in Fig. 4. (Eq. 8 &)d bt

jth neuron of the (x-1 layer and the
F(x(t)) = f(xer(t), Xor(t))+if(XLI(t),X2 (1)) (8) j™ neuron of the R layer
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The output of the'j neuron in the first hidden layer 0Bl
is given as: (Eg. 10) Aw,, = HW
X
x x (16)
1 Nx-1 - n6 [n;:‘(:l(wijij + bij )j| yx
Vi =t [ Wik +X o) | (10) “ (wgyitb,) T

Forjl=1.2,...... ,N1 and,—a«epresents“] input in 1 o
the input layer and f(.) is the activation function 5k:ﬁ[quzpﬂ(ygk‘VE)~[(1/2)(1+ yE)(l—yf]} 17
defined by: (Eq. 11)

fly) ==& (11) Dby =nd, [ (i )|
1+¢g” (ijxijx + by, ) (18)
_Awy,
The output of the"j neuron in the % hidden layer Ty

is given as: (Eq. 12)
Weight between®and (x-1' hidden layer is: (Eq.

_ N1
szz =f [I_I jl:l(WJZJZyjll +b1211)} (12) 19 and 20)
Forj=12,...N B
AWj><j>< A= N
awjxjx—l
The output of the"j neurons in the%hidden layer 0 [ ar ] oy
is given as: (Eq. 13) = oK DI I —yE)-aWﬁ awij (19)
jn jxjx -1
X rl?(x_ (W X y>< +b,. ):| ayx
Y" =f I_Ix 1 (W 7y_x—71 +b. 7) =|’]5 |: x=1\ Wigx Y jx kjx AW ix
X x —1=1 jxjx 1 jx -1 jxjx 4 k X - kjx *
Forj, = 1[2 | N, } (13) (Wi ¥ + by ) oW
_Awy,

Ab (20)

kix —

The output of the kth neuron in the output layer i

. y?(x
given as: (Eq. 14) :

Similarly, we can write equations for weight
Y =f 1P (W, X b ) | change between the hidden layer 1 and the inpat.lay
“ [l_l e (W 4 )J (14)  The weights and biases are updated as: (Eq. 222nd

Fork=1,2.. .k

W™ = w ™+ Aw, (21)

A simple gradient decent rule, using a mean square
error function is used for computation of weightlafe: ~ b/®* = b +Ah (22)
(Eq. 15)
RESULTSAND DISCUSSION
1 2

Evse :ﬁZLlZL(yﬂk -yh) (15) The equalizer structure was trained with 3000

iterations and tested over 10000 samples to sthdy t

BER performance. A fading channel is a
where, y¢ and yf, are the actual and desired values,communication channel that experiences fading due t
respectively, of the output of thd' kieuron for the p  multipath propagation. In wireless communicatichs,
pattern in the output layer. P is the number ahing  presence of reflection in the environment surrongdi
patterns in the input space. The weights are uddade the transmitter and receiver create multiple patiat
below. Weights between output layer and the nththe transmitted signal can traverse. At the recdivere
hidden layer are given by: (Eq. 16-18) is a superposition of these multipath signals which
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experience different attenuation, delay and phage s Signal constellation for BPSK

This can result in either constructive or destmcti 1

interference, amplifying or attenuating the sigpaiver 0.8

seen at the receiver. Strong destructive interfardn 0.6

known as deep fade. The fading process is . 04

characterized by a Rayleigh distribution for a ey % 0.2

of-sight path. The coherence time of the channel is 8 oot .
related to the quality known as Doppler spreadhef t ¥ 02

channel. When the user or the reflectors in the 0.4

environment are mobile, the users velocity causes a -0.6

shift in the frequency of the signal transmittedrg -0.8

each signal path. The difference in Doppler shifts -1

between different signal components contributingato -1 0.5 0 0.5 1
single fading channel tap is known as Doppler ghrea I-pHie

The coherence time is inversely proportional to theFig. 5: Signal constellation for BPSK
Doppler spread and is given by: (Eg. 23)

Signal constellation for BPSK after passing through
rayleigh channel and additive noise

K
T. =5 (23) |
Where: 1
TX = The coherent time B o
DZ = The Doppler spread and T
K = Constant taking on values between 0.25-0.5 = °[

In flat fading, the coherence bandwidth of the 4
channel is larger than the bandwidth of the signal ;|
Therefore, all frequency components of the signidll w
experience the same magnitude of fading. In ou

experiments we have simulated frequency-flat (‘leing 5 = , e D ,
path”) Rayleigh fading channel as a linear FIRefilt 25 o8 S ook BE BO0E ¥ s @ 2§
with tap weights given by: (Eq. 24) RS

Fig. 6: Received noisy constellation at 25 db SNR

g, =sinc{_|_rkj h for- N< x< N, (24) s
—x :
Equalized signal

The summation has one term for each major path. L S—
1 IS the set of path delays and T is the input seampl
period. N and N are chosen so that |g(n)| is small. N o5
determines the channel filter delay. Is the set 2
of complex path gains which are not cated e :
to each other. =

The received signal in Rayleigh fading channel is
of the form: (Eq. 25) &
y=hx+v (25) )
where, h is the complex scaling factor correspogdn 15 P S R R S ————
Rayleigh multipath channel, x is the BPSK 0 200 400 600 800 100 1200 1400 1600 1800 2000
transmitted symbol and v is the AWGN noise. The Sample numbers
simulation results are shown in the Fig. 5-8 where
the SNR is 25db. Fig. 7: Equalized signal samples at 25 db SNR
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