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Abstract: Problem statement: Digital transmission over band-limited communication channel 
largely suffers from ISIS and various noise sources. The presence of ISI and noise causes bit errors 
in the received signal. Equalization is necessary at the receiver to overcome these channel 
impairment to recover the original transmitted sequence. Traditionally equalization is considered as 
equivalent to inverse filtering and implemented using linear-perform under severe distortion 
conditions when Signal to Noise Ratio (SNR) is poor. Equalization can be considered as a non-linear 
classification problem and optimum solution is given by Bayesian solution. Non-linear techniques 
like Artificial Neutral Networks (ANN) are very good choice for non-linear classification problems. 
Several non-lines are equalizers have been implemented using ANN which outperformed LTE and 
solved the problem of equalization to the varying degree of sources. Approach: Forward neural 
network architecture with optimum number of nodes was used to achieve adaptive channel 
equalization. Summation at each node was replaced by multiplications which result in powerful 
mapping. The equalizer was tested on Rayleigh fading channel with a BPSK signal. Results: Results 
showed that proposed equalizer provides simplified architecture and improvement in the bit error 
rate at various levels of signal to noise ratio for Rayleigh faded channel. Conclusion: A high order 
feed forward network equalizer with multiplicative neuron is proposed in this study. Use of 
Multiplication allows direct computing of polynomial inputs and approximation with fewer nodes. 
Performance comparison in terms of network architecture and BER performance suggest the better 
classification capability of the proposed MNN equalizer over RRBF. 
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INTRODUCTION 

 
 The growth in communication services during the 
past decades has been phenomenal. With the 
unimaginable development of internal technologies, 
efficient high speed data transmission techniques over 
communication channels introduce distortion in data. In 
digital communication, the transmission signals are 
generally in the form of multilevel rectangular pulses. 
The absolute bandwidth of multilevel rectangular pulses 
is infinity. If these pulses are passed through a band 
limited communication channel, they will spread in 
time. Pulse for each symbol may be smeared into 
adjacent time slot and interface with adjacent symbol. 
This is defined as ISI (Prokias, 1995). Signal 
processing technique is used at the receiver to 

overcome these interfaces so as to restore the 
transmitted symbols and recover their information. 
This technique is referred to as channel equalization or 
simply equalization (Prokias, 1995;Taba et al., 2006). 
 In principle, if the characteristics of channel are 
precisely known, then it is always possible to design a 
pair of transmitting and receiving filters that can 
minimize the effect of ISI and additive noise( Haykin, 
2002). The use of a fixed pair of transmitting and 
receiving filters designed on the basis of average channel 
characteristics may not adequately reduce ISI. Adaptive 
equalization which provides precise control over the time 
response of the channel is widely used to overcome this 
problem. Adaptive equalizers have therefore been 
playing a crucial role in the design of high speed 
communication system. 
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 When significant noise is added to transmitted 
signal, linear boundaries are not optimal. The received 
signal at each instant may be considered as a nonlinear 
function of the past values of transmitted symbols. 
Since the non linear distortion varies with time from 
place to place effectively, the overall channel response 
becomes a nonlinear dynamic mapping. The problem is 
approached by using classification technique. 
 As shown in the wide range of engineering 
applications, neural network has been successfully used 
for modeling complex nonlinear systems (Bang et al, 
1996). A wide range of neural architectures are available 
for modeling the nonlinear phenomenon of channel 
equalization. Feed forward networks, Like Multilayer 
Perception (MLP), contain an input layer, an output layer 
and one or more hidden layers that possess nonlinear 
processing capabilities(Gibson et al., 1989). The back 
propagation which is a supervised learning algorithm is 
used as a training algorithm(Zhang et al.,1990). These 
neuron models process the neural inputs using the 
summation process. 
 Higher order networks recently have drawn great 
attention from researches due to their performance in 
nonlinear input output mapping, function approximation 
and memory storage capacity. Some examples of product 
unit NN are Sigma- Pi Network (SPN) and Pi Sigma-
Networks (PSN). They allow neural networks to learn 
multiplicative interactions. Multiplication plays an 
important role in neural modeling of ANN(Kim et al., 
2002; Lyoda et al., 2002). 
 The multiplicative neuron contains units which 
multiply their inputs instead of summing them and thus 
allow inputs to interface nonlinearly (Schmitt, 2002). In 
the present work, using multiplication neural networks, 
channel equalization has been modeled and 
performance is evaluated. 
 
Adaptive channel equalization: The block diagram of 
adaptive equalization in Fig. 1 described as follows. 
The external time dependent input consists of the sum 
of desired signal g(K), the channel nonlinearity NL and 
the interfacing noise V(k). The adaptive filter has a 
Finite Impulse Response (FIR) structure. The impulse 
response is characterized by filter co-efficient. The co-
efficient for a filter of order P are defined as: (Eq. 1) 
 
WK=[WK(0),WK(1). . .WK(p)]T  (1) 
 
 A predefined delayed version of original signal 
forms the training sequence points for the adaptation. 
The parameter considered for the optimization is a cost 
function on the error signal which is difference between 
the desired signal and estimated signal given by: (Eq. 2) 

e(k) = g(k) - y(k) (2) 

 
 The desired signal is estimated by convolving the 
input signal with impulse response and it is expressed as: 
(Eq. 3) 

 
g(k) = wk 

T . x(k)  (3) 

 
where, x(k) = [x(k), x(k-1), x(k-2) ………… x(k-p) ]T 
is the input signal vector. The filter co-efficient are 
updated at every instant as: (Eq. 4) 

 
Wk+1 = Wk + ∆Wk  (4) 

 
 The optimization algorithm can be linear or 
nonlinear. The adaptive neural network equalizer is 
implemented by using a feed forward multiplicative 
neural network, whose architecture is shown in Fig. 2. 
 The transmitter sends a known training sequence to 
the receiver. The discrete-time BPSK signal sampled at a 
rate of fs is generated by the following equation: (Eq. 5) 

 
rk(kTs) = Aexp{jπ/2[1-m(kTs)]} (5) 
(k = 0, ±1, ±2,…….) 

 
 In order to obtain integral number of samples in 
each bit interval, the sampling frequency fs is equal to 
ms/tb where ms an integer denoting number of samples 
per bit duration. If mk is defined as discrete time 
sampled  version  of  the  binary   sequence   m   (t), 
(5) becomes: (Eq. 6 and 7) 

 
rk = Aexp [jπ/2(1-mk)] (6) 

 

k
k

A
m 1

Afor m 1andfor


= = −− =

 (7) 

 
 A sequence of 6000 equiprobable, BPSK complex 
valued symbol set, in which the input signal takes one 
of the values {-1, 1} is generated. In the absence of the 
noise the output signal occupies well-defined states of 
the BPSK signal constellation shown in Fig. 3. 
 When the signal is passed through the nonlinear 
channel, it becomes a stochastic random process. 
Decision boundaries can   be  formed in the observed 
pattern    space   to    classify   the   observed  vectors. 
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Fig.1: Schematic of adaptive channel equalization 
 

 
 
Fig. 2: Architecture of multiplicative neural network 
 

 
 
Fig. 3: BPSK signal in complex plane 
 
For equalization, the adaptive filter is used in series 
with the unknown system on the test signal d(k) by 
minimizing the squared difference between adaptive 
equalizer output and the delayed test signal. The task of 
the equalizer is to set its coefficients in such a way that 
the output y(k) is a close estimate of the desired output 
vector, where the equalizer tries to estimate an output, 
which   is   closed   to  one  of the transmitted  values. 
 The neural equalizer separately processes the real 
and imaginary part using the multiplicative, split 
complex, neural network model (Kantsila et al., 2004; 
Burse et al., 2008). The block diagram of the channel 
equalizer using MNN is shown in Fig. 4. (Eq. 8 and 9) 
 
F(x(t)) = f(x1R(t),x2R(t))+if(x1I(t),x2I(t)) (8) 

 
 
Fig. 4: Multiplicative neural network based channel 

equalizer 
 
where, the input x1(t) = x1R(t) + ix1I(t) 
 
And: 

 
 x2(t) = x2R(t) + ix2I(t) (9) 

 
Learning rule for multiplicative neuron: A bipolar 
sigmoidal activation function is used at each node. This 
kind of neuron itself looks complex in the first instance 
but when it is used to solve a complicated problem it 
needs less number of parameters as compared to the 
existing conventional models. An error Back 
Propagation (BP) based learning using a norm-squared 
error function is described in (Yadav et al., 2007; 
Burse et al., 2009). The symbols used are: 

 
X0  = The number of inputs in the input layer 
x  = The number of hidden layers in the FF network 
Xx  = The number xth of neurons in the Xth hidden 

layer 
x
jxY   = The jth neuron of the xth hidden layer 

jx  = Tthe output of the jth neuron of the xth hidden 
layer 

Ydk  = The desired output of the kth neuron in the 
output layer 

Yk  = The actual output of the kth neuron in the output 
layer 

Wjxjx-1 = The weight of the connection between 
jth neuron of the (x-1)th layer and the 
j th neuron of the xth layer 

bjxjx-1  = The bias of the connection between 
jth neuron of the (x-1)th layer and the 
j th neuron of the xth layer 
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 The output of the jth neuron in the first hidden layer 
is given as: (Eq. 10) 

 

( )Nx 11
j1 j1j0 j0 j1j0jx 1 1

Y f W x x
−

− =
 = +
 Π  (10) 

 
 For j1 = 1,2,……,N1 and xjo represents jth input in 
the input layer and f(.) is the activation function 
defined by: (Eq. 11) 

 
y

y

1 e
f (y)

1 e

−

−

−=
+

 (11) 

 
 The output of the jth neuron in the xth hidden layer 
is given as: (Eq. 12) 

 

( )N12 1
j2 j2 j2 j1 j2 j1j1 1

2 2

Y f W y b

For j 1,2, ..N

=
 = +
 

= …
Π  (12) 

 
 The output of the jth neurons in the xth hidden layer 
is given as: (Eq. 13) 

 

( )Xx 1n x 1
jx jxjx 1 jx 1 jxjx 1jx 1 1

x x

Y f W y b

For j 1,2 N

− −
− − −− =

 = +
 

= ……
Π  (13) 

 
 The output of the kth neuron in the output layer is 
given as: (Eq. 14) 

 

( )Xx 1 x
k kjx 1 jx kjxjx 1

Y f W y b ;

For k 1,2 .,k

−
−=

 = +
 

= …
Π  (14) 

 
 A simple gradient decent rule, using a mean square 
error function is used for computation of weight update: 
(Eq. 15) 

 
2k p p p

MSE dk kk 1 p 1

1
E (y y )

2PK = =
= −∑ ∑  (15) 

 
where, p

ky  and p
dky are the actual and desired values, 

respectively, of the output of the kth neuron for the pth 
pattern in the output layer. P is the number of training 
patterns in the input space. The weights are updated as 
below. Weights between output layer and the nth 
hidden layer are given by: (Eq. 16-18) 

( )
( )

MSE
kjz

kjx

Nx x
jx 1 kjx jx kjx x

k jxx
kjx jx kjx

E 1
w

w

w y b
.y

w y b

=

∂∆ = η
∂
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 (16) 

 

( )k p p p p p
k dk k k kk 1 p 1

1
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 Weight between xth and (x-1)th hidden layer is: (Eq. 
19 and 20) 
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 kjx
kjx x

jx

w
b

y

∆
∆ =  (20) 

 
 Similarly, we can write equations for weight 
change between the hidden layer 1 and the input layer. 
The weights and biases are updated as: (Eq. 21 and 22) 
 

new old
i i iw w w= + ∆  (21) 

 
new old
i i ib b b= + ∆   (22) 

 
RESULTS AND DISCUSSION 

 
 The equalizer structure was trained with 3000 
iterations and tested over 10000 samples to study the 
BER performance. A fading channel is a 
communication channel that experiences fading due to 
multipath propagation. In wireless communications, the 
presence of reflection in the environment surrounding 
the transmitter and receiver create multiple paths that 
the transmitted signal can traverse. At the receiver there 
is a superposition of these multipath signals which 
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experience different attenuation, delay and phase shift. 
This can result in either constructive or destructive 
interference, amplifying or attenuating the signal power 
seen at the receiver. Strong destructive interference is 
known as deep fade. The fading process is 
characterized by a Rayleigh distribution for a nonline-
of-sight path. The coherence time of the channel is 
related to the quality known as Doppler spread of the 
channel. When the user or the reflectors in the 
environment are mobile, the users velocity causes a 
shift in the frequency of the signal transmitted along 
each signal path. The difference in Doppler shifts 
between different signal components contributing to a 
single fading channel tap is known as Doppler spread. 
The coherence time is inversely proportional to the 
Doppler spread and is given by: (Eq. 23) 

 

c
s

K
T

D
=   (23) 

 
Where: 
TX = The coherent time 
DZ = The Doppler spread and  
K = Constant taking on values between 0.25-0.5 
 
 In flat fading, the coherence bandwidth of the 
channel is larger than the bandwidth of the signal. 
Therefore, all frequency components of the signal will 
experience the same magnitude of fading. In our 
experiments we have simulated frequency-flat (“single 
path”) Rayleigh fading channel as a linear FIR filter, 
with tap weights given by: (Eq. 24) 
 

k
x k 1 2g sin c h for N x N

T x

 τ
= − ≤ ≤ − 

 (24) 

 
 The summation has one term for each major path. 
τk is the set of path delays and T is the input sample 
period. N1 and N2 are chosen so that |g(n)| is small. N1 
determines  the  channel  filter  delay. hk  is  the   set 
of   complex  path   gains   which   are not correlated 
to each other. 
 The received signal in Rayleigh fading channel is 
of the form: (Eq. 25) 
 
y = hx + v  (25) 
 
where, h is the complex scaling factor corresponding to 
Rayleigh multipath channel, x is the BPSK 
transmitted symbol and v is the AWGN noise. The 
simulation results are shown in the Fig. 5-8 where 
the SNR is 25db. 

  
Fig. 5: Signal constellation for BPSK 
 

 
 
Fig. 6: Received noisy constellation at 25 db SNR 
 

 
 
Fig. 7: Equalized signal samples at 25 db SNR 



J. Computer Sci., 7 (11): 1646-1651, 2011 
 

1651 

 
 
Fig. 8: BER Vs SNR for Rayleigh channel 
 

CONCLUSION 
 
 A high order feed forward network equalizer with 
multiplicative neuron is proposed in this study. Use of 
multiplication allows direct computing of polynomial 
inputs and approximation with fewer nodes. 
Performance comparison in terms of network 
architecture and BER performance suggest the better 
classification capability of the proposed MNN 
equalizer over RRBF. 
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