
Journal of Computer Science 7 (11): 1633-1638, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Ganapathi Sivagurunathan, Faculty of Computer Science and Engineering, Anna University, Coimbatore,
Tamilnadu, India

1633

Reduction of Key Search Space of Vigenere Cipher

Using Particle Swarm Optimization

1Ganapathi Sivagurunathan and 2T. Purusothaman
1Faculty of Computer Science and Engineering, Anna University, Coimbatore, Tamilnadu,

2Faculty of Computer Science and Engineering Government College of Technology,
Coimbatore, Tamilnadu, India

Abstract: Problem statement: With the demand for effective network security is increasing, it
becomes necessary to find the strength and weaknesses of the existing cryptographic methods.
Vigenere cipher, a classical cipher is analyzed for its strength against a cipher only attack. Approach:
The cipher texts so selected were of various sizes up to 1 Kb. A biologically inspired algorithm,
Particle Swarm Optimization (PSO) was applied to the problem of crypt analyzing the Vigenere
cipher. PSO was an optimization technique and its used on the problem of optimizing the fitness
function designed for Vigenere cipher was performed. Results: It was seen that PSO is able to find the
keyword employed and the other possible combinations for the keyword. Conclusion: PSO is better
than genetic algorithm to solve Vigenere cipher and can be used to find the keyword with lesser size.

Key words: Network security, swarm optimisation, keyword employed, cipher text, Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), vigenere cipher, english
alphabets, plain text

INTRODUCTION

 Cryptanalysis is the process of finding the
Keyword employed for enciphering a plaintext and
hence using the keyword found, finding the Plaintext of
the given cipher text. Cryptanalysis is required to find
the strengths and weaknesses of the cipher method
employed and if the method is found to be vulnerable to
cipher attacks. If the method employed is not strong
against various attacks then it becomes necessary to
reinforce the methodology employed (Al-Saidi and
Said, 2009) or to find an alternate ciphering method. A
symmetric cipher is the one which employs the same
keyword for enciphering and deciphering. Such a
simple classical symmetrical cipher is Vigenère cipher.
Several methods have been employed for the
cryptanalysis of classical ciphers. The application of
Genetic Algorithm (GA) to Vigenère cipher
(Purusothaman et al., 2009) was performed and it was
shown that GA is capable of breaking the Vigenère
cipher. A fitness function was employed to find the
probable keyword and then dictionary analysis was
performed to find the exact key.
 Particle swarm optimization (Park et al., 2010;
AlRashidi and El-Hawary 2009; Montes de Oca et al.,
2009, M. S. Ramli et al., 2009) has demonstrated its

usefulness as a optimization tool in recent years. The
advantage of PSO is that this can be effectively used for
multimodal problems and hence all suitable candidates
satisfying the fitness function can be obtained. Thus the
problem is reduced in finding the candidate solution
which is one among the probable candidates. This was
applied to the problem of Vigenère cipher and the
results were found

Vigenère cipher: The Vigenère cipher proposed by
Blaise de Vigenère from the court of Henry III of
France in the sixteenth century is a progressive
polyalphabetic substitution method. The set of related
mono alphabetic substitution rules makes use of 26
Caesar Ciphers with shifts 0-25. The table used for
encryption can be created for simple alphabet A to E
which can be extended to all letters from A- Z is shown
in Table 1. Each row in a table can be created by a
simple shift of the previous row. Thus a Vigenère
cipher of keyword length one can be considered as a
Caesar cipher as this involves only one shift of the
alphabets and thus forming a Caesar cipher.
 To derive the cipher text using the Table, for each
letter in the plain text, one finds the intersection of the
row given by the corresponding keyword letter and the
column given by the plaintext letter.

J. Computer Sci., 7 (11): 1633-1638, 2011

1634

Table 1: Vigenère table for alphabet A-E
Plaintext key A B C D E
A A B C D E
B B C D E A
C C D E A B
D D E A B C
E E A B C D

 It can be modelled as C=(P +K) %26 where C is
the cipher text and P,K are Plaintext and Key word
letters respectively. Decipherment of an encrypted
message is equally straightforward. This time one uses
the keyword letter to pick a row of the Table and then
traces down the row to the column containing the
cipher text letter. The index of that column is the plain
text letter. It can be modelled mathematically as, P =
(C-K) % 26 .The main problem in breaking Vigenère
ciphers is that the key length is unknown. Once the key
length has been established, the cryptanalysis is reduced
to analysing a number of Caesar ciphers, one for each
character of the key. There are a few different
approaches to finding the key length. The original
method presented by Kasiski involves finding the
distances between repeated patterns in the crypto text
and factoring the most frequently occurring distances.
Vigenère masks the frequency with which a character
appears in a language: One letter in the cipher text
corresponds to multiple letters in the plaintext and thus
it makes the use of frequency analysis more difficult. It
can be also seen that any message encrypted by a
Vigenère cipher is a collection of as many Caesar shift
ciphers as there are letters in the key.

Particle swarm optimisation: The goal of an
optimization task is to find the parameters in the search
space that maximizes the profit or minimizes the cost of
a function. Particle Swarm Optimisation (PSO) is an
optimization technique used to explore the search space
of a given problem to find the value of the parameters
involved in the function. This method described by
Kennedy and Eberhart (1995) originates from the
swarm intelligence of some animals and evolutionary
computation. The particles or members of the swarm
fly through a multidimensional search space looking for
a potential solution. Each particle adjusts its position in
the search space from time to time according to the
flying experience of its own and of its neighbours (or
colleagues). For a D-dimensional search space the
position of the ith particle is represented as Xi = (xi1,
xi2, …, xiD). Each particle maintains a memory of its
previous best position Pbesti = (pi1, pi2… piD).

 The best one among all the particles in the
population is represented as Pgbest = (pg1, pg2… pgD). The
velocity of each particle is represented as Vi = (vi1, vi2,
… viD). In every iteration, P vector of the particle with
best fitness in the local neighbourhood, designated Pg
and the P vector of the current particle are combined to
adjust the velocity along each dimension and a new
position of the particle is determined using that
velocity. The two basic equations which govern the
working of PSO are that of velocity vector and position
vector given by: (Eq. 2)

t 1 t 1 t t t t
id id 1 1 id id 2 2 gd gdv wv c r (p x) c r (p x)+ += + − + − (1)

t 1 t t 1
id id idx x v+ += + (2)

 The first part of Eq. 1 represents the inertia of the
previous velocity, the second part is the cognition part
and it tells us about the personal thinking of the
particle, the third part represents the cooperation
among particles and is therefore named as the social
component (Li, 2010; Kennedy et al., 2001).
Acceleration constants c1, c2 (Kennedy, 1997; Eberhart
and Shi, 2001) and inertia weight w (Shi and Eberhart,
1998) are the predefined by the user and r1, r2 are the
uniformly generated random numbers in the range of
[0, 1]. Particle’s velocities on each dimension are
clamped to a maximum velocity Vmax. The velocity in
a dimension is limited to Vmax , if the sum of
accelerations cause the velocity on that dimension to
exceed Vmax, which is 26 (as 26 alphabets in English
Language). This process is repeated for a
predetermined number of iterations or till a desired
fitness value is reached.

MATERIALS AND METHODS

 Plaintexts of various sizes up to 1Kb were taken for
this experiment. These texts were taken mainly from
different textbooks. Keywords of varying lengths up to
thirty were used and the plain texts were converted into
cipher texts using Vigenère method. To crack these
cipher texts first we need to know the keyword length.
These lengths were found using Coincidence test
(Friedman, 1922; Ganesan and Sherman 1994). Once the
keyword length is known then the problem is to find each
character in the keyword. Frequency analysis (Friedman,
1980) is a useful tool which gives the average number of
each alphabet normally present in an English text and it
was employed. Fitness function based on the frequency
of the occurrence of each alphabet was designed by using
monogram and bigram statistics of English alphabets.
Code was written using MATlab R2008 and was run on
dual core personal computer.

J. Computer Sci., 7 (11): 1633-1638, 2011

1635

Coincidence test: Since there are 26 letters in English
alphabet, the probability of randomly choosing any
given alphabet is 1/26 for all 26 alphabets. Similarly the
probability of having the same alphabet twice is 1/26 *
1/26. If P(x) is the probability of ‘x’ occurring in any
given plain text then P(a) = 0.32/400, P(b) = 0.6/400,
P(c) = 0.12. Thus probability of ‘a’ followed by ‘a’ is
0.32/400 *0.32/400 , P(cc) = 0.12/400 * 0.12/400 and
P(zz) = 0.1/400 * 0.1/400. The sum of the square of the
probabilities of each alphabet gives the value of 0.0683
for plaintexts and 0.0385 for random texts. This gives
us the coincidence count. These values can be used
effectively to identify when two texts are likely to
contain meaningful information in the same language
using the same alphabet, to discover periods for
repeating keys and to uncover many other kinds of
nonrandom phenomena within or among cipher texts.
 The same idea can be applied to a single text,
where the sample is in effect compared with itself.
Mathematically it can be computed the index of
coincidence IC for a given letter-frequency
distribution as: (Eq. 3)

c

i ii 1
n (n 1)

IC
N(N 1) / c

=
−

=
−

∑ (3)

where, N is the length of the text and n1 through nc are
the frequencies (as integers) of the c letters of the
alphabet (c = 26 for English). The sum of the ni is
necessarily N.
 The products n(n-1) count the number of
combinations of n elements taken two at a time. Each of
the ni occurrences of the i-th letter matches each of the
remaining ni -1 occurrences of the same letter. There are
a total of N(N-1) letter pairs in the entire text and 1 / c
is the probability of a match for each pair, assuming a
uniform random distribution of the characters. Thus,
this formula gives the ratio of the total number of
coincidences observed to the total number of
coincidences that one would expect.
 The expected average value for the I.C. can be
computed from the relative letter frequencies fi of the
source language: (Eq. 4)

c 1
ii 1

exp ected

f
IC

1 / c
== ∑ (4)

 If all c letters of an alphabet were equally
distributed, the expected index would be 0.0683 for
plaintext. So, this value can be calculated for every
keyword length. The keyword length to which the given
cipher text gives a coincidence value around 0.06

corresponds to the original keyword length. For
example if the keyword length is 4 then for keyword
lengths of 4 ,8 and 12 etc will have IC count of 0.06 .
The maximum length can be safely assumed to be the
keyword length.

Fitness function: To implement this fitness function,
the frequency of each character in the decrypted text is
calculated. This frequency is normalized by dividing it
by the total number of characters in the file. This
normalized frequency is then subtracted from the
expected frequency of the character in normal English
text. The absolute value of this difference is taken. The
differences for all characters are added together. The
normalization takes care that this value always lies
between 0 and 1. The bigram is an extension of
unigram to two characters. Now rather than calculating
frequency of individual character, we calculate
frequency of “pairs” of letters. For example, a pair “an”
will always appear more frequently than pair “bt”.
Again statistics for the frequencies of these pairs are
also available. These statistics are compared with the
statistics obtained from the decrypted text. To
implement this fitness function, the frequency of each
pair of letters in the decrypted text is calculated. This
frequency is normalized by dividing it by the total
number of pairs in the file. This normalized frequency
is then subtracted from the expected frequency of the
pair in normal English text. The absolute value of this
difference is taken. The differences for all pairs are
added together. The normalization takes care that this
value always lies between 0 and 1. The fitness function
based on monogram and bigram is given by: (Eq. 5)

zo

i 1

zo zo

i 1 j 2

fitness a * SF(1) DF(i)

b * SDF(1) DDF(1)

=

= =

= − +

−

∑

∑∑
 (5)

 Here the letters A…Z are referenced by the indices
1…26, SF(i) is the standard frequency of character i in
English, DF(i) is the measured frequency of the character
i in English. SDF is the standard bigram frequency and
DDF is the decoded bigram frequency. If the
experimental key is closer to the key employed then this
difference will be less and if this difference is large then
the experimental key is not closer to the key employed.
Now this problem has been reduced to an optimisation
problem where it is required to reduce the error or the
difference in the fitness function to minimum.

J. Computer Sci., 7 (11): 1633-1638, 2011

1636

Application of PSO: The objective is to minimize the
error in the objective function which is the difference of
the expected frequency count with the observed
frequency count of the decrypted cipher text. Since we
deal with statistical values it is possible to get exact
keyword only if the cipher texts are large enough (say >
50 Kb). With cipher texts which are less than 1Kb it is
difficult to get the exact keyword or to put in other
words, there may be multiple candidates satisfying the
minimum fitness value and hence it is possible to have
several alternate solutions. Mathematically we have a
multimodal function which has several valleys. PSO is
capable of solving multimodal objective functions and
it was applied to this problem. Swarm size was selected
as 100 and the number of iterations was limited to 25.
Each character in the keyword is 26 dimensional since
the character maybe any alphabet from A-Z.
 PSO was applied and it was seen that the global
minima in each character was intimated to other
members in the swarm. The individual moved towards
the global minima if necessary and found its local best
solution. This process was repeated till the overall
fitness of swarm reached a tolerance value or 100
iterations whichever was earlier.
 The parameters of the optimization function were:

• Acceleration constants c1,c2 = 2.0
• Inertia weight w = 0.9
• Random weights r1,r2 = 0.4

RESULTS

 Sample plain texts were taken from different text
books and keywords of varying length 5-30 were
applied and their corresponding cipher texts were
obtained. Thus the program was tested for different
cipher texts with different keyword lengths. The search
space size is calculated based on brute force attack. The
results are tabulated in Table (2 and 3).
 Normally, the keyword length will be around ten as
it may be difficult to remember bigger length keywords.
So, experiments were conducted to determine the
minimum required size of the cipher text so that the
keywords can be found without error.

DISCUSSION

 The solution space for each cipher text was
performed with different weights to the digram
frequency. The process was repeated with two different
weights and the intersection of these spaces were
selected and this provides the reduced search space.

Table 2: Reduction in search space for different keyword lengths
 Alternate
 solutions Reduction
Keyword Size of obtained in search
length search space (average) space (%)
5 11881376 2 100
10 1.411E+14 2 100
15 1.677E+21 6 100
20 1.992E+28 8 100
25 2.367E+35 8 100

Table 3: Minimum size of cipher text required for different keyword

lengths
Keyword length Size of cipher text required (minimum)
5 200 characters
10 400 characters
25 1024 characters (1 Kb)

 From Table 2,It was seen that for smaller
keyword lengths, the search space is so reduced that it
provides one or two possible solutions, but as the
keyword length increases then the possible solutions
also increases , but by a small value. It can be seen
that the maximum possible solutions obtained was
only 8 and it was for keyword length of 25. Hence, the
minimum number of cipher characters required for
different keyword lengths was found and shown in
Table 3. It can be safely stated that 1kb of cipher text
is sufficient to cryptanalyse Vigenere cipher whose
keyword length is less than or equal to 25.
 When tested with keyword lengths greater than 25,
it was found that one or two characters were
erroneously identified. This was due to the fact that
only 1024 cipher text characters were available and
when they are distributed to 30 characters of keyword
then for each character of the keyword we would get
less than 35 characters (approx), which is not sufficient
for applying frequency analysis. But it was seen that
even with this lesser characters it was able to find most
of the characters in the keyword. If the cipher text is
>1Kb or if the keyword length is less than 30 then it is
possible to find the keyword using reduced search space
provided by the PSO with cipher text of size 1Kb.
 It was also considered that a keyword length of 10
was normally the length of keyword employed. When it
becomes large people tend to forget the keyword and
hence tests were carried out with cipher texts of size 100
and 200 characters and with keyword lengths of 8 and
10. It was already established that for keyword lengths
greater than 5 we need at least 400 characters of cipher
text to find the keyword. With the limitation of available
cipher text size reduced to 100 and 200 characters it was
not able to find the whole keyword but a portion of the
keyword was found as shown in Fig. 1 and 2.

J. Computer Sci., 7 (11): 1633-1638, 2011

1637

Fig. 1: Percentage of keyword found for keyword

length of 8 with varying size of cipher text

Fig. 2: Percentage of keyword found for fixed cipher

text size with varying length of keyword

 Minimum 30% of keyword was found when the
cipher texts were of 100 characters and when the size of
cipher texts were doubled the minimum keyword
percentage found rose to 80%. It was also seen that for
60% of the given cipher texts, all the keyword
characters were found, where as it was only 20% for
100 character cipher texts.
 For a given cipher text of size 200 characters it was
able to find minimum of 60% of keyword characters for
a keyword length of 10 characters. But, when the
keyword length got decreased to 8, nearly 90% of
keyword characters were found. In both the cases, few
100% keyword characters were also found.

CONCLUSION

 Experiments were conducted on Vigenère cipher
with varying keyword and cipher text sizes. It was seen
that the size of the reduced solution space using PSO is
negligible as shown in Table 2. Further, from Table 3 we

were able to calculate the minimum required size of
cipher text required to find the keyword for different
keyword sizes. It was also seen that even if the available
cipher text is lesser than that the required size then more
than 50% of the keyword can be found depending on
the size of cipher text available. Thus it can be
concluded that PSO performs better than Genetic
algorithm with lesser amount of cipher text. The
amount of cipher text required is only 25% of the
cipher text required for genetic algorithm
(Purusothaman et al., 2009). With 1Kb of available
cipher text a keyword size of 25 was easily found.

REFERENCES

AlRashidi, M.R. and M.E. El-Hawary, 2009 A survey

of particle swarm optimization applications in
electric power systems. IEEE Trans. Evolut.
Comput., 13: 913-918. DOI:
10.1109/TEVC.2006.880326

Al-Saidi, N.M.G. and M.R.M. Said, 2009. A new
approach in cryptographic systems using fractal
image coding. J. Math. Stat., 5: 183-189. DOI:
10.3844/jmssp.2009.183.189

Eberhart, R.C. and Y. Shi, 2001. Particle swarm
optimization: developments, applications and
resources. Proceeding of the IEEE International
Conference on Evolutionary Computation, May
27-30, IEEE Xplore Press, Seoul, South Korea, pp:
81-86. DOI: 10.1109/CEC.2001.934374

Friedman, W.F., 1922. The Index and Coincidence and
its Applications in Cryptography. 1st Edn., L.
Fournier, Paris, pp: 87.

Friedman, W.F., 1980. Military Cryptanalysis. 1st Edn.,
Aegean Park Press, Laguna Hills, Calif, ISBN:
0894120441, pp: 77.

Ganesan, R. and A.T. Sherman, 1994. Statistical
techniques for language recognition: An empirical
study using real and simulated English. Crytologia,
8: 289-331. DOI: 10.1080/0161-119491882919

Kennedy, J. and R. Eberhart, 1995. Particle swarm
optimization. Proceeding of the IEEE International
Conference on Neural Networks, Nov. 27-1, IEEE
Xplore Press, Perth, WA, Australia, pp: 1942-1948.
DOI: 10.1109/ICNN.1995.488968

Kennedy, J., 1997. The particle swarm: Social
adaptation of knowledge. Proceeding of the IEEE
International Conference on Evolutionary
Computation, Apr. 13-16, IEEE Xplore Press,
Indianapolis, IN, USA, pp: 303-308. DOI:
10.1109/ICEC.1997.592326

J. Computer Sci., 7 (11): 1633-1638, 2011

1638

Kennedy, J.F., J. Kennedy, R.C. Eberhart and Y. Shi,
2001. Swarm Intelligence. 1st Edn., Morgan
Kaufmann, San Francisco, ISBN: 1558605959,
pp: 512.

Li, X., 2010. Niching without niching parameters:
Particle swarm optimization using a ring topology.
IEEE Trans. Evolut. Comput., 14: 150-169. DOI:
10.1109/TEVC.2009.2026270

Montes de Oca, M.A., T. Stutzle, M. Birattari and M.
Dorigo, 2009 Frankenstein?s PSO: A composite
particle swarm optimization algorithm. IEEE
Trans. Evolut. Comput., 13: 1120-1132. DOI:
10.1109/TEVC.2009.2021465

Park, J.B., Y.W. Jeong, J.R. Shin and K.Y. Lee, 2010
An improved particle swarm optimization for
nonconvex economic dispatch problems. IEEE
Trans. Power Syst., 25: 156-166. DOI:
10.1109/TPWRS.2009.2030293

Purusothaman, T., V. Gopalakrishnan, S. Arumugam,
V. Palanisamy and S. Balraja et al., 2009.
Cryptanalysis of vigenere cipher using genetic
algorithm and dictionary analysis. The IASTED
International Conference on Technology for
Education.

Ramli, M.S., T.R. Ismail, M.A. Ahmad, S.M. Nawi and
M.V. Mat, 2009. Improved coupled tank liquid
levels system based on swarm adaptive tuning of
hybrid proportional-integral neural network
controller. Am. J. Eng. Applied Sci., 2: 669-675.
DOI: 10.3844/ajeassp.2009.669.675

Shi, Y.H. and R.C. Eberhart, 1998. A modified particle
swarm optimizer. Proceeding of the IEEE
International Conference on Evolutionary
Computation, May 4-9, IEEE Xplore Press,
Anchorage, AK, USA., pp: 69-73. DOI:
10.1109/ICEC.1998.699146

