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Abstract: Problem statement: Multi-core trends are becoming dominant, creating sophisticated and 
complicated cache structures. One of the easiest ways to design cache memory for increasing 
performance is to double the cache size. The big cache size is directly related to the area and power 
consumption. Especially in mobile processors, simple increase of the cache size may significantly 
affect its chip area and power. Without increasing the size of the cache, we propose a novel method to 
improve the overall performance. Approach: We proposed a composite cache mechanism for 1 and 
L2 cache to maximize cache performance within a given cache size. This technique could be used 
without increasing cache size and set associatively by emphasizing primary way utilization and 
pseudo-associatively. We also added victim cache to composite pseudo associative cache for further 
improvement. Results: Based on our experiments with the sampled SPEC CPU2006 workload, the 
proposed cache mechanism showed the remarkable reduction in cache misses without affecting the 
size. Conclusion/Recommendation: The variation of performance improvement depends on 
benchmark, cache size and set associatively, but the proposed scheme shows more sensitivity to cache 
size increase than set associatively increase. 
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INTRODUCTION 

 
 While processors with multi-cores already 
thrived in general purpose processor area, mobile 
processor companies are recently starting to release 
their multi-core version which are used in net books, 
smart phones or Tablet PCs. Many design issues 
presented in general-purpose processors are more 
critical in mobile processors. Especially, power and 
heating problems are the prominent issues in battery 
operated mobile devices. In order to maximize the 
effectiveness of applying multi-core technologies to 
mobile processors, those problems need to be solved 
with appropriate solutions for future mobile 
processor designs. 
 In general, memory subsystem takes a large portion 
of the die area in the microprocessors and caches 
consumeover 40% of a processor’s total power 
(ShivaKumar and Jouppi, 2001). The reduction of 
cache size and power consumption is one of the main 
design goals for mobile computing devices. 
 One of the easiest ways to design cache memory 
for increasing performance is to double the cache size. 

In mobile processors, however, simple increase of the 
cache size significantly affects chip area and power. As 
multi-coretrends are becoming dominant, cache 
structures turns outto be sophisticated and complicated. 
 The bigger shared level-2 (L2) caches are 
demanded for higher cache performance, but the big 
cache size is directly related to the area of 
interconnection and related power consumption. 
Similarly, higher performance L1 caches are required 
without increasing the size of the cache. As shown in 
Fig. 1, cache performance can be significantly 
increased by doubling cache sizes and increasing set 
associatively, but it results in hardware cost, larger area 
and power consumption. 
 To address this issue, in this study, we propose a 
composite cache mechanism to maximize cache 
performance within a given cache size. We have also 
added victim cache for further improvement in 
performance. Generally, not all the sets require same 
associatively most of the time and the utilization of 
the ways is biased to the first way (Abella and 
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González, 2006). V-way cache is one of the pseudo 
associative techniques (Qureshi, et al., 2005). This 
technique can be used without, size and set 
associatively by increasing cache utilization and 
pseudo-associatively.  
 In our experiments, we use the SPEC CPU2006 
benchmark suite for simulation workloads, since current 
mobile internet devices (e.g., net book) are required to 
run same application that are used in general-purpose 
processor. 
 Based on our experiments with the sampled SPEC 
CPU2006 workload, the proposed cache mechanism 
shows remarkable reduction in cache misses. 
 

 
 
Fig 1: Cache misses (misses per kilo instruction) with 

cache size and set-associativity variations 
 

 
 
Fig. 2: V way Cache with 4-way set associativity 
 

 
 
Fig. 3: Victim cache structure 

Related work: There have been several approaches to 
investigate cache organizations on level-1 and level-2 
caches for CMPs (Qureshi, et al., 2005; Liu et al 2004; 
Davanam and Lee, 2010). Here we are describing some 
of the related techniques. 
 
V-way cache: (Qureshi et al., 2005). Proposed Utility-
based Cache Partitioning which is a low overhead, high 
performance, runtime mechanism to partition shared 
level-2 caches. This work achieved improvement of 
miss rate for L2 cache by choosing a pseudo associative 
cache structure and implementing global replacement 
policy. They proposed a novel cache structure in which 
they have separate tag and data stores as shown in the 
Fig. 2. In their cache structure, the tag and data store are 
independent of each other. The number of tag entries is 
doubled so as to provide more space for tags. The 
entries may be tripled but increase in size also needs to 
be taken into consideration. Generally, if the tag store is 
doubled, the increase in size of cache will be 2 to 3% 
(Qureshi et al., 2005). Each tag will be having a valid 
bit and dirty bit to show the status and FPTR which will 
be pointer associated with the tag pointing to the unique 
data in data store. For data store, each entry will have 
availed bit and RPTR which will be pointing to unique 
tag entry. As the tag and data structure are decoupled, 
data can be mapped to tag globally and there will not be 
one tone corresponding relationship between them. As 
each set will be having different demand, this global 
mapping will help to reduce the miss rate. Form this 
technique; they achieved an average miss rate reduction 
of 13% (Qureshi et al., 2005). 
 
Heterogeneous way size cache: (Abella and González, 
2006). Proposed a Heterogeneous Way-size Cache, in 
which different cache ways have different sizes. They 
applied this mechanism to L1 and L2 caches with 
dynamically adaptive version. Their experiments 
proved that only a small fraction of sets require some 
associativity most of the time and the numbers of sets 
that make effective use of given degree of associativity 
decreases as the associativity increases (Abella and 
González, 2006). They designed a heterogeneous way 
size cache based on this observation such that different 
ways can have different sizes and number of sets in 
each way should be power of 2. 
  
Victim cache: A victim cache, as shown in Fig. 3, is 
a small fully set associative cache used along with 
L1 cache to improve the miss rate. Even though there 
is a tradeoff of area and delay due to the use of 
victim cache, the reduced miss rate will compensate 
them. That is why we generally use 4-6 victim lines 
so that delay and area required do not dominate the 
miss rate reduction. 
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A fully associative software managed cache design: 
Indirect index cache (Hallnor et al., 2000) used a novel 
replacement algorithm called generational 
replacement and give the miss rate performance nearly 
equal to fully associative cache. 
 
Related works: (Liu et al., 2004). Proposed Shared 
Processor-based Split Leaches, statically allocating 
some private banks to each competing applications 
based on profile information. It might be problematic to 
profile if several applications are executed 
concurrently. While some research results focus on 
reducing access time (Jouppi, 1990; Peir, et al., 1998; 
Puzak, 1985; Seznec, 1993; Batson and Vijaykumar, 
2001: Chishti et al., 2003), other approaches are based 
on predicting the way where the data is stored (Belady, 
1966; Calder and Elmer, 1996; Inoue et al., 1999). The 
adaptive group associative cache (Peir, et al., 1998) 
proposes to improve the performance of first level 
cache but its benefit reduces by increasing associativity. 
Prime modulo hashing (Jouppi et al., 1990) and skewed 
associativity (Seznec, 1993). Suggests distributing 
memory access uniformly across cache sets by targeting 
the indexing function but they suffer from negative 
effects of local data replacement due to static mapping 
of tag entries to data lines.Satisg 
  
Composite pseudo associative cache with victim 
cache: The work presented here expands on the initial 
work done in (Qureshi et al., 2005). We have modified 
such that the cache structure is applicable for both L1 
and L2 caches. 
 
 Limitations on performance improvement: Modern 
microprocessors including general purpose processors 
and embedded/mobile processors need to run wide 
range of applications. While some applications are 
sensitive and increased their performance as cache size 
increases, some other applications might have less 
sensitivity or show the saturation in performance 
improvement. As shown in Fig. 1, applications show 
the performances alteration (or small improvement) on 
the cache size increase and set associativity increase. 
This means cache size increase is not a perfect solution 
for all application workloads because each application 
has different 3architectural behavior to hardware 
resources. Especially for battery-powered mobile 
processors, cache size increases hold not is considered 
as a high priority solution due to higher power 
requirement and larger area requirement. In Sock 
design using IPs, another simple way to improve cache 
performance is to increase set associativity with the 

penalty of additional hardware cost and more power 
consumption. Full-way set associative cache with ideal 
replacement method can provide large performance 
improvement, but it is impractical to be implemented. 
By increasing cache set associativity, we can expect 
certain level of performance improvement, but still the 
degree of improvement is saturating at some point in 
most of the applications. 
 
Cache way (sub-array) utilization: Generally, LRU 
replacement policy is popularly used in cache designs 
with several methods of implementations. However, its 
way (physical way in sub-arrays) utilization can be 
categorized into two patterns. A half of benchmarks 
(e.g., vortex) in SPEC CPU2006 show the biased way 
utilization with LRU replacement policy; the rest of 
benchmarks (e.g., bzip2) show relatively balanced 
distribution. Based on the observations, not all the sets 
require some associativity most of the time and the 
utilization of the ways are biased to the primary 
way(s) (Abella and González, 2006). Several schemes 
have been introduced to address this issue such as 
heterogeneous way-size cache, in which different 
cache ways have different sizes. Most of them need 
complex logics to handle different size of ways and to 
add adaptive features. 
 
Composite pseudo associative cache: The proposed 
composite pseudo-associative cache is designed for 
level-1 and level-2 caches(Bobbala et al., 2010). Based 
on the study from (Abella et al., 2006). Only a small 
fraction of sets require some associativity most of the 
time and the utilization of the ways are biased to the 
first way. As the associativity increases, actual set 
utilization will be decreased more. In order to address 
this issue, (Abella and González, 2006). Use 
heterogeneous way-size cache (Abella and González, 
2006) ith the penalty of access time and architectural 
complexity. In this study, however, we proposed 
composite cache mechanism emphasizing primary way 
utilization and pseudo-associativity by reconfiguring 
cache structure. Figure. 4 shows a basic concept of the 
proposed cache scheme. As the first step, data arrays of 
the cache are divided into two parts: the first half of 
data cache for the primary way; the rest of them for all 
other ways. 
 However, tag arrays need to be preserved as in 
traditional cache in order to use the features of set 
associativity. If one wants to design a 4-way 256KB 
cache, 128KB will be used for a primary way and 
another128KB will be shared by other ways. Also, four 
tag arrays for each way need to be maintained for 
getting full benefits from 4-way associativity.  
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 However, we need a special mechanism to provide 
the pseudo-associativity on how to share the other 
data array by three tag arrays. Several different 
approaches for pseudo-associativity have been 
proposed to improve the miss rate of a set associative 
cache,    but  in our   experiment v-way cache 
Qureshi et al., 2005) was selected (TDR=2) and 
integrated into the proposed scheme for enabling the 
pseudo associativity of non-primary ways. 
 
Operation of composite pseudo oassociative cache: 
In the primary way, each block will have valid bit for 
status information, tag bits and FPTR to map to 
particular data line for each tag. Each time the tag gets 
accessed, it will update the count that will in turn be 
used for the choice of tag victim. (Bobbala et al.,2010 
& Bobbala et al., 2011). 
 Least Recently Used (LRU) replacement policy is 
used for the primary way for selecting the tag victim. 
Data will have RPTR, access and reuse bits such that 
RPTR can be used to point FPTR using direct mapping. 
Access and reuse bits can be used to select victims using 
LRU and reuse replacement policy. Random replacement 
policy is also implemented in the simulator for choosing 
data victim. For the primary way, there is one to one 
correspondence between the tag and data; for example, 
each tag is mapped to unique data in the data store. For 
all the other ways, the tag store will have the tag along 
with valid bit and FPTR. The data will have availed bit, 
RPTR pointing to one of the tag entries in the tag store. 
Tag store will use LRU replacement policy to update the 
replacement information where the data store will use 
reuse replacement policy (Puzak, 1985). For the both tag 
data, if the valid bit is unset then the information is 
considered to be invalid. This is applicable for primary 
way also. The TDR (Tag to Data Ratio) is taken as 2 
through hotel the simulations. This value is taken is 2 
because is the optimum value when area, power is also 
taken into consideration. Figure 5 shows the algorithm 
that we have implemented. 
 

 
 
Fig 4: Composite pseudo associative cache with4-way 

set associative 

Operation of composite pseudo associative cache 
with victim cache: Victim caching is implemented for 
the primary way of the Composite Pseudo associative 
cache (CPS). Separate tag and data stores are introduced 
for victim cache, associativity_vc is added to the input 
parameter that defines the number of victim lines and 
fptr-vc is added to the tag to point the data lines in the 
data store of victim cache. The structure of the CPS 
cache is kept constant. Figure 6 shows the basic concept 
and Fig. 7 shows the algorithm of Composite pseudo 
associative cache with victim cache operation. 
 
Simulations: We modified cache-slim (Burger and 
Austin, 1997) simulator which is a trace driven 
simulator to implement our cache structure.  
 The work load is selected (Table 1) as SPEC CPU 
2006(SPEC) Integer and float ing point suite (Qureshi 
et al., 2005). To generate the L1 and L2missed trace 
information, we used SPEC CPU 2006 integer and 
floating-point suite and the Simple scalar (Burger and 
Austin, 1997) Alpha binaries with skipped 
initialization phase. 
 

 

 
 
Fig. 5:  Algorithm for composite-pseudoassociative 

cache 
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Fig. 6:  Composite pseudo associative cache with victim 

cache 
 
Table 1: Description of SPEC2006 benchmarks 
Benchmark Short description 
Astar It is derived from a portable 2D path‐finding library  
 that is used in games artificial intelligence 
Bzip2 Compression application which is to help isolate the  
 workdone to only the CPU and memory subsystem 
Gobmk Artificial Intelligence i.e., game playing 
Hammer Protein sequence analysis 
Libquantum A library for the simulation of a quantum\computer 
Mcf Application for combinatorial 

optimization/single‐depot vehicle scheduling 
Perl A cut‐down version of Perl v5.8.7,\the popular 

scripting language 
Sjeng A program that plays chess and several chess variants, 
 such as drop‐chess 
Bwaves Computational Fluid Dynamics 
Leslie3d The primary solver used to investigate a wide array of 
 turbulence phenomena 
Grimaces Chemistry of molecular dynamics Gems FDTD 
 Computational Electromagnetics 
Milc Application for simulations of four dimensional SU (3) 
 lattice gauge theory on MIMD parallel  machines 
Namd A parallel program for the simulation of  large bio 
 molecular systems 
Soplex A linear program using the Simplex algorithm 
Zeusmp An application to solve problems in three spatial  
 imensions with a wide variety of boundary conditions 

 
 First 500 million instructions were fast forwarded 
and the following 500 million instructions are simulated 
with the ref input data sets. The baseline configuration 
will be normal cache and v way cache. The results for 
the traditional cache are obtained by giving Tag to Data 
Ratio (TDR) = 1 for the v way cache. This result is 
compared against the results of the composite pseudo 
associative cache (cps) and composite pseudo 
associative cache with victim caching (cpsv). 
 Miss rate Per Kilo Instruction (MPKI) and miss rate 
are used as measurements for miss rate. Two types of 
simulation analysis are performed. 
 A processor model that is considered in the v 
way cache (Qureshi et al., 2005) is used and the results 
are evaluated. This processor has16KB, 64B line size 
and 2-way set-associative L1 cache. 

 

       
 
Fig. 7: Algorithm for composite pseudo associative 

cache with victim cache 
 
 The replacement algorithm for L1 cache is LRU. 
For Simplex and bzip2, L2 cache is of size 256KB, 
128B line size and 8-way set-associative. 
 For the rest of benchmarks, L2cache is 16KB, 
4way set associative and 128B block size because miss 
rate almost reduced to zero for 256KB size. Individual 
variations of MPKI of various parameter sure also 
measured. The parameters for the L1 and L2caches are 
chosen such that both the extremities are covered.L1 
cache simulations are done for cache sizes 8,16, 32, 64 
and 128 KB. The associativity is varied as 2, 4 and 8. 
The line size is varied as 64B and 128B.The 
associatively of the victim cache is varied as 4, 8, 16and 
32. L2 cache simulations are done for cache sizes 8,16, 
32, 64, 128, 256, 512 and 1024KB.The 8KB cache is 
considered for L2 cache simulations because for some 
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of the benchmarks 8KB CPS cache with 32victim lines 
achieved the miss rate equal to traditional cache of 
64KB. All these simulations are done to visualize the 
miss rate variation across different cache sizes. The 
associativity is changed as 4, 8, 16 and 32. The line size 
is kept constant at 128B. L1 and L2 simulations are 
done for the combinations of all the above parameters 
for normal, v way, composite pseudo associative and 
composite pseudo associative with victim cache. The 
following benchmarks are tested. 
 

RESULTS 
 
Miss rate analysis of results: Graphs for only ceta in 
benchmarks are captured due to the limited space. In all 
the graphs (Figs. 8-14), x-axis represents different 
associativities for different cache sizes and y-axis is 
showing Misses per Kilo Instruction. 
 

   
 
Fig. 8: MPKI with various set-associativity and cache 

sizes for L1 cache-Gems FDTD 
 

 
 
Fig. 9: MPKI with various set-associativity and cache 

sizes for L1 cache-namd 
 

 
 
Fig. 10: MPKI with various set-associativity and cache 

sizes for L1 cache-named 

 
 
Fig. 11: MPKI with various set-associativity andcache 

sizes for L1 cache-soplex 
 

 
 
Fig. 12: MPKI with various set-associativity and cache 

sizes for L2 cache-gromcs 
 

 
 
Fig. 13: MPKI with various set-associativity and cache 

sizes for L2 cache-bzip2 
 

 
 
Fig. 14: MPKI with various set-associativity and cache 

sizes for L2 cache-gobmk 
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Also, we used following notations: 
 
• Nor: Traditional set associative cache v way: V-

way cache 
• Cps: Composite pseudo associative cache 
• 4-vl: Composite pseudo associative cache with 

victim cache 
• 8-vl: Composite pseudo associative cache with 

victim cache 
• 16-vl: Composite pseudo associative cache with 

victim cache 
• 32-vl: Composite pseudo associative cache with 

victim cache 
 
 Below is the terminology that we used to analyze 
the miss rate improvement. This is applicable for both 
L1 and L2cache simulations. Maximum reduction of 
miss rate measured for both L1 and L2 caches for all 
the simulations as shown in Table 2-4: 
 
• Intermediate performance-0.5 to 1.0 decrement in 

MPKI 
• Good Performance-More than 1.0 decrement in 

MPKI 
• Less Improvement in performance-Less than 0.5 

decrement in MPKI 
• No Improvement in Performance-MPKI increased 

when compared to other structures. 
• CPS with neither VC to nor - decrement in miss 

rate 
• From CPS with 32 victim lines to traditional set 

associative cache. 
• CPS with VC to v way-decrement in miss rate from 
• CPS with 32 victim lines to v way cache 
 
 Observations from L1 cache results: The 
benchmarks leslie3d, libquantum and mcf are 
computational intensive benchmarks. The increment in 
line size reduces MPKI. It is not affected by cache size, 
associativity or cache structure. This might be due to 
repetition of particular sized blocks. Increase in cache 
size is more when compared to the increase in 
associativity. For the benchmarks Astar, bwaves, bzip2, 
soplex, hmmer and gromcs, there is an intermediate 
improvement in MPKI using the composite pseudo 
associative cache. 
 For Namd, Gems FDTD and gobmk, there is good 
improvement inMPKI using composite pseudo associative 
cache. The benchmarks libquantum, mcf, gromcs, leslie3d 
and zeugma have less improvement in MPKI using 

composite pseudo associative cache. Bwaves is the only 
benchmark which could get good performance 
improvement by adding victim caching to the CPS. 
 
Observations from L2 cache results: The bench mark 
named is not considered for analysis. MPKI is reduced 
to zero at the lowest configuration of cache. For the 
benchmarks milc and libquantum, increment in line 
size-reduces MPKI like L1 cache. 

 

Table 2: Analysis of results for L2 cache simulations 

Benchmark Comments 

Astar Overall CPS with victim lines has good performance 
Bwaves Overall CPS with victim lines has good performance 
GemsFDTD Over all CPS has good performance 
Gobmk Over all CPS has good performance 
Gromcs Over all CPS has Intermediate performance 
Hmmer Over all CPS has Intermediate Performance 
Leslie3d Over all CPS has less performance 
Libquantum CPS has no performance improvement 
Mcf CPS has no performance improvement 

 
Table 3: Analysis of Results for L1 cache simulations 
     CPS with 
 CPS with VCCPS with VCCPS with VC VC to 
Benchmark to nor‐L1 vway‐L1 to nor‐L2 vway‐L2 
Astar 12.22 5.81 15.1 6.2 
Bwaves 13.26 14.26 3.5 1 
Bzip2 7.79 5.79 8.1  5.25 
Gemfdtd 17.98 15.74 -- -- 
Hmmer 8.1 12.6 5.82 7.42 
Gobmnk 22.63 22.63 8 6.35 
Gromcs 8.67 4.51  7.08 7.08 
Lelie3d 7.87 12.21 3.46 -- 
Soplex 13.54 9.36 11.68 -- 
Zeusmp 2.4 2.4 15.7 -- 
Hmmer 8.1 12.6 5.82 -- 
Lelie3d 7.87 12.21 3.46 -- 

 

Table 4: Results for L1 and L2 cache simulations for the alpha 
processor configuration 

Benchmark Comments 
Astar  Overall CPS with victim cache has good reduction in  
 MPKI 
Bwaves CPS performance is less than victim cache 
Gobmk  Overall CPS with victim cache has good performance 
Gromcs Overall CPS with victim cache has good performance 
Hammer  Overall CPS with victim cache has good performance 
Leslie3d  Overall CPS with victim cache has relatively Less  
 performance improvement 
Libquantum CPS has no performance improvement 
Mcf  CPS has no performance improvement 
Soplex  CPS has intermediate improvement in MPKI when  
 compa-red to v way 
Zeusmp CPS has less improvement in miss rate when compared  
 to v way 
Bzip2 Overall CPS with victim cache has good performance 
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Table 5: Percentage numbers of hits for 256KB, 8 way associative 
composite pseudo associative caches for astar benchmark 

Way  Number of hits (%) 
0  5959086  (39.21) 
1  1349358 (8.88) 
2  1331165  (8.76) 
3 1401675  (9.22) 
4  1305575  (8.59) 
5  1288913  (8.48) 
6 1288585 (8.48) 
7  1273056 (8.38) 

 
MPKI not affected by cache size, associativity or cache 
structure. This might be due to repetition of particular 
sized blocks. For rest of the benchmarks, v way showed 
good performance than CPS at the cache size 8KB and 
CPS is good than v way when the cache size more than 
8KB.This is because as the number of entries in 
primary way increases as the cache size increases. Then 
the direct memory part of the CPS cache works well as 
it gets more data which is having locality. 
 For bwaves, change in cache size and associativity 
has no effect. MPKI got reduced only with the use of 
composite pseudo associative cache structure. Astar, 
soplex, bzip2, Gombak and hammer, there is 
intermediate improvement in the MPKI. For the 
benchmarks bwaves, leslie3d and zeusmp, there is less 
improvement in the MPKI. For gromcs, there is good 
improvement in MPKI. We observe that, in all the L2 
cache simulations, there is less impact of introducing 
victim cache. 

 
 Storage cost and delay analysis for CPS and V way: 
A physical address space of 36 bits is assumed for the 
below analysis. Block size of 128 bytes is assumed. Then 
the number of tag bits will be 36-log2 (sets)-log2 (block 
size). The number of tag store entries is assumed as 2048 
and the associativity is 8 for the traditional cache. Table 
5 shows the hit rates obtained by composite pseudo 
associative cache when simulated for astar benchmark 
whose cache size is 256KB and associativity is 8. It has 
miss rate of 0.88%. Table 6 describes the storage cost 
analysis for different types of caches. 
 From the Table 5, maximum number of hit entries 
fromway0 comes around 40%. CPS needs an extra 
multiplexer to select between the different ways. But, it 
has direct memory cache whose latency will be less 
when compared to other types of caches. As the number 
of hit’s in way0 is far bigger when compared to that of 
other ways, the latency of the CPS cache will be less 
than v way cach. 

Table 6: Storage cost analysis for traditional cache, v way cache and 
composite pseudo associative cache 

 Traditional    
Storage cache VWAY CPS 
Each tag-store entry Contains (bits) 
Status (v+dirty+LRU) 5000 5  5 
Tag 2100 20 20 
FPTR  11 11 
Total number of tag bits 2600 36 36 
Each data-store entry Contains  (bits) 
Status (v+reuse)  3 3 
Data 128*8 128*8 128*8 
RPTR  12 12 
Total number of bits in 1024  1039 1039 
data store entry 
Number of tag store Entries 2048 4096
 256+3584=3840 
Number of data store Entries 2048 2048 2048 
Size of tag store 6.7KB 18.43KB  17.2KB 
Size of data store  256KB 259KB 259KB 
Total size of cache 262.7KB  277.4KB 276.2K 

 
 This is true for all the benchmarks who achieved 
intermediate-and good performance compared to that 
of v way cache because the MPKI has reduced to the 
increase of number of hits in the direct memory cache. 
From Table 6, it is evident that CPS occupies less area 
when compared to v way cache. So, we can achieve 
the savings in delay and area for the composite pseudo 
associative  cache  when   compared  to   v   way 
cache for the benchmarks who achieved intermediate 
and good performance. 
 

CONCLUSION 
 
 The performance of cache is very important in the 
memory design as it will have huge impact on the speed 
and power of the processor. As the usage of multi-core 
processors in mobile devices is becoming prevalent, 
there is a need for the high performance caches with 
minimum area. Composite pseudo associative with 
victim cache is one of such techniques which attempt to 
increase the performance of the cache without 
increasing the area. This work is developed from the 
simulator of v way cache (Puzak, 1985). Composite 
pseudo associative cache uses direct memory cache as 
primary way and pseudo associative cache for other 
ways. A victim cache is added to the primary way of 
the composite pseudo associative cache for further 
improvement in the performance. A 16KB, 2-way set 
associative, 64B block size L1 CPS cache with 32 
victim lines outperforms the traditional cache by 16.7% 
and v way cache by 8.86%.  A 256KB, 8-way set-
associative, 128B block size L2 cache is considered for 
soplex andbzip2 benchmarks where as 16KB, 4-way 
set-associative, 128B block size is considered for rest of 
the bench marks.This is due to the reduction of miss 
rate to very less for the other benchmarks at 256KB, 8-
way configuration. CPS cache with victim cache 
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achieved an average of 8.7% better per for mance when 
compared to traditional set associative cache and 5.47% 
better than v way cache. Simulations for different 
cache sizes and associativity are done for choosing the 
best configuration. 
 CPS cache will also help to reduce the overall 
latency and size when compared to the v way cache. 
This in turn will reduce the power. The results from this 
cache configuration can be effectively used for multi-
core designs in mobile processors for which area and 
power is a major constraint. Future work will 
concentrate on more effective designs for pseudo 
associative cache, estimation of exact power and 
latency (using Wilton et al., 1996)  implementing 
composite pseudo associative cache technique on multi-
core simulators and retrieving the exact trace data for 
multi-core mobile processors. 
 

REFERENCES 
 
Abella, J. and A. González, 2006. Heterogeneous waym 

size cache. Proceeding of the International 
Conference on Supercomputing, (ICS '06), ACM 
New York, USA, pp: 239-248.  
DOI: 10.1145/1183401.1183436 

Albonesi, D. and H. Selective 1999. Cache Ways: On 
demand cache resource allocation. Proceedings of 
32nd Annual International Symposium on Micro 
Architecture, (MICRO-32), IEEE Xplore Press, 
Haifa, Israel, pp: 248-259. DOI: 
10.1109/MICRO.1999.809463  

Batson, B.M. and T.N. Vijaykumar, 2001. Reactive 
Associative Caches. Proceeding of the 2001 
International Conference on Parallel Architectures 
and Compilation Techniques, Sep. 8-12, IEEE 
Xplore Press, Barcelona, Spain, 49-60. DOI: 
10.1109/PACT.2001.953287 

Belady, L.A., 1966. A study of replacement algorithms 
for a virtual storage computer. IBM Syst. J., 5: 78-
101. DOI: 10.1147/sj.52.0078  

Bobbala, L.D, Byeong K.L, 2011. Hybrid way cache 
for mobile processors. Proceeding of the eigth 
International Conference on Information 
Technology, Apriel 11-13, IEEE Xplore Press, Las 
Vegas, NV, USA, pp: 707-712. DOI: 
10.1109/ITNG.2011.125   

Bobbala, L.D, Salvatierra. J,Lee B.K, 2010 Composite 
pseudo associative cache for mobile processors. 
Proceeding of the 18th IEEE International 
Symposium on Modelling Analysis and Simulation 
of Computer and Telecommunication systems, 
Aug. 17-19, IEEE Xplore Press, Miami Beach, FL, 
pp: 394-396. DOI: 10.1109/MASCOTS.2010.49  

Burger, D.C., and T.M. Austin, 1997. The simple scalar 
tool set, version 2.0. ACM SIGARCH Comput. 
Archit. News, 25: 13-25. DOI: 
10.1145/268806.268810  

Calder, D.G.B., and J. Elmer, 1996. Predictive 
sequential associative cache. Proceedings of the 
IEEE International Symposium on High 
Performance Computer Architecture, Feb. 3-7, 
IEEE Xplore Press, San Jose, CA , USA, pp: 244-
253. DOI: 10.1109/HPCA.1996.501190 

Chishti, Z., M.D. Powell and T.N. Vijaykumar, 2003. 
Distanceassociativity for high‐performance 
energy‐efficient nonuni form cache architectures. 
Proceedings of the 36th Annual ACM/IEEE Int. 
Symposium on Micro architecture, (MICRO 36), 
IEEE Computer Society Washington, DC, USA, 
pp: 55-66. 

Davanam, N., and B.K. Lee, April 2010. Towards 
smaller‐sized cache formobile pro cessors using 
shared set associativity. Proceeding of the 7th 
International Conference on Information 
Technology New Generation, April 12-14, IEEE 
Xplore Press, Las Vegas, NV, pp: 1-6. DOI: 
10.1109/ITNG.2010.120 

Hallnor, E.G. and S.K. Reinhardt, 2000. A fully 
associative software managed cache design. 
Proceedings of the 27th Annual International 
Symposium on Computer Architecture, (ISCA '00), 
ACM New York, NY, USA, pp: 107-116.DOI: 
10.1145/339647.339660  

Inoue, K., T. Ishihara and K. Murakami, 1999. 
Way‐predictive set associative cache for high 
performance and low. Proceedings 1999 
International Symposium of Low power 
Electronics and Design, (ISLPED '99), ACM New 
York, USA, pp: 272-275. DOI: 
10.1145/313817.313948 

Jouppi, N.P., 1990. Improving direct‐mapped cache 
performance by the addition of a small 
fully ‐associative cache and prefetchbuffers. 
Proceedings of the 17th Annual International 
Symposium on Computer Architecture, May 28-31, 
IEEE Xplore Press, Seattle, WA , USA, pp: 364-
373. DOI: 10.1109/ISCA.1990.134547 

Liu, C, A. Sivasubramaniam and M. Kandemir, 2004. 
Organizing the Last Line of Defense before Hitting 
the Memory Wall for CMPs. Proceedings IEE, 
Software, Feb. 14-18, IEEE Xplore Press, USA,  
pp: 176-185. DOI: 10.1109/HPCA.2004.10017  



 J. Computer Sci., 7 (10): 1448-1457, 2011 
 

1457 

Peir, J.K., Y. Lee, and W.W. Hsu, 1998. Capturing 
dynamic memory reference behavior with adaptive 
cache topology. Proceeding of the 8th International 
Conference on Architectural Support for 
Programming Languages and Operating Systems, 
(ASPLOS-VIII), ACM New York, USA, pp: 240-
250. DOI: 10.1145/291069.291053 

Puzak, T.R., 1985. Analysis of cache replacement 
algorithms. University of Massachusetts. 

Qureshi, M.K., D. Thompson and Y.N. Patt, 2005 The 
V Way Cache: Demand Based Associativity via 
Global Replacement. Proc. Int. Symp. Comput. 
Arc., 33: 176-185. DOI: 10.1145/1080695.1070015  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Seznec, A., 1993. A case for two way skewed 
associative caches. Proc. Ann. Int. Sympos. 
Comput. Arch., 21: 169-178. DOI:  
10.1145/173682.165152 

ShivaKumar P. and N. Jouppi, 2001. CACTI 3.0: An 
Integrated Cache Timing Power and Area Model. 
Western Research Laboratory. 

Wilton, S.E. and N. Jouppi, 1996. Cacti: An enhanced 
cache access and cycle time model. IEEE J. Solid 
State Circ., 31: 677-688. DOI: 10.1109/4.509850 

 


