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Abstract: Problem statement: The assistance of person with limited ability of arm movement is 
necessary for rehabilitation reasons. This aid is required not only to cover the human performances of 
the arm in motion and force but also to have a strictly stable dynamics. In this study, we proposed a 
cooperative system between a disabled arm and a robotic manipulator to reach such objectives. Desired 
positions and contact forces were imposed by the disabled human whereas appropriate torques were 
applied by the manipulator to follow human intension. Approach: Various control strategies were 
proposed during recent years to solve position/force control problem. The impedance control concept 
was used in this study. A relationship between the dynamics of the robot and its energy was developed 
to derive stability conditions of the robotic system at the constrained motion phase using a suitable 
Lyapunov approach. Results: New sufficient conditions of asymptotic stability were developed. To 
prove the efficiency of the proposed approach, a prototype of a human arm coupled to cooperative 
constrained robotic manipulator was used. The simulation results showed the stability and the 
performances of the proposed approach. Conclusion: Results showed the possibility of their use in a 
real context of rehabilitation of injured and disabled people.  
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INTRODUCTION 

 
 In recent years, many efforts have been devoted to 
develop systems that can help people with limited 
movement or rehabilitate injuries and disabilities. In 
this context, many technologies have been introduced 
through proposed robotic devices that are attached to 
limbs of human body to maintain or improve their 
functions of movement in constrained environment 
(Papageorgiou et al., 2006; Soichi et al., 2008; Ikeura 
and Inooka, 1995). Position/force control of constrained 
robotic systems can be then considered as a very 
important issue in the field of human rehabilitation.  
 Various control strategies are proposed during 
recent years to solve position/force problems. These 
studies were first introduced by Ferrell and Sheridan 
(1967) and leads to an extensive bibliography. The 
handbook of Siciliano and Khatib (2008), the books of 
Fu et al. (1987), Siciliano and Villani (1999); Canudas 
de Wit et al. (1996) and Khalil and Dombre (2002), the 
surveys of Whitney (1987); Patarinski and Botev (1993); 
Volpe  and  Khosla (1995); Zeng and Hemami (1997); 

De Schutter et al. (1998); Chiaverini et al. (1999) and 
Yoshikawa (2000) reveal the wealth, development and 
maturity of this field.  
 According to the control goal, force/position 
control algorithms can be categorized into three classes: 
(1) Force/position control based in desired dynamic 
relationship between the end-effector position and the 
contact force including stiffness control that involves a 
relation between position and applied force (Salisbury, 
1980) and impedance control involving the relation 
between velocity and applied force (Hogan, 1985). (2) 
Simultaneously position/force control including hybrid 
position/force control (Yoshikawa, 2003; Raibert and 
Craig, 1981). (3) Parallel position/force control 
(Chiaverini and Sciavicco, 1993; Siciliano and Villani, 
2000). 
 When the robot is constrained to the environment it 
is possible that instable behavior occur. So, to find 
stability conditions for robotic systems in contact with 
the environment, many researchers used linearized 
models (Karunakar and Goldenberg, 1988; Lawrence, 
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1988). Further analyses are done on the basis of 
nonlinear models and generally use Lyapunov 
approaches. However they generally require very hard 
developments (Chiaverini et al., 1994) or need 
decoupling between the position and force control 
(Yabuta et al., 1988).  
 In this study, we present an improved proof of 
asymptotic stability of constrained robotic systems 
based on the Lyapunov method using a relationship 
between the dynamics of the robot and its energy. The 
proposed approach is an enough straightforward 
Lyapunov approach without force and position control 
separation. This result is applied on a robotic 
manipulator which is attached to a human arm. 
 

MATERIALS AND METHODS 
 
The rehabilitation cooperative system: The 
rehabilitation system is composed of a 2DOF planar 
robotic system which is attached to the disabled human 
arm as seen in Fig. 1. To reach rehabilitation objectives, 
desired positions and contact forces are imposed by the 
disabled human whereas appropriate torques must be 
applied by the robotic system to follow human 
intension.  
 
The human arm: The human arm parameters are 
shown in Table 1 (Aloulou and Boubaker,  2010).  For 
i = 1, 2, the inertia parameters are computed by the well 

known relation 
2

i i
i

m L
I

12
= . 

 
Table 1: Human arm parameters 

Bodies mi(Kg)  Li(m)  ki(m) Ii(Kg m−2) 
Arm 1.960 0.321 0.140 0.016 
Forearm 1.120 0.253 0.109 0.006 

 

 
 
Fig. 1: A robotic manipulator attached to a human arm 

 The parameters mi, Li and ki design mass, length 
and position of gravity center of the right arm and 
forearm of a human person, respectively. Desired 
contact forces are imposed by the human whereas 
appropriate torques are applied by the manipulator to 
follow human intension as shown in Fig. 2. 
 
The robotic manipulator: The manipulator is a Two 
planar Degrees Of Freedom (2DOF) robot. The robot 
arm has the same parameters as the human arm. Its end-
effector positionX (x, y)= and velocity X (x, y)=ɺ ɺ ɺ  are 
respectively computed using the direct kinematic models: 
 

1 1 2 2

1 1 2 2

x L cos L cos

y L sin L sin

= θ + θ
 = θ + θ

  (1) 

 
and 
 
X J( )= θ θɺɺ

  (2) 
 
where, n nJ( ) R ×θ ∈  is the Jacobian matrix given by: 
 

1 1 2 2

1 1 2 2

L sin L sin
J( )

L cos L cos

− θ − θ 
θ =  θ θ 

 

 
 The dynamical model of a constrained robotic 
system is described by the following equation 
(Chiaverini et al., 1999):  
 

TM( ) H( , ) G( ) U J ( )Fθ θ + θ θ + θ = − θɺɺ ɺ   (3) 
 
Where: 

n, , Rθ θ θ∈ɺ ɺɺ  = Joint position, velocity and acceleration 
vectors respectively  

nM( ) Rθ ∈  = The inertia matrix 

( ) nH , Rθ θ ∈ɺ  = The vector of centrifugal and Coriolis 

forces 
nG( ) Rθ ∈  = The vector of gravity terms 

nU R∈  = The generalized joint force vector 
nF R∈  = The vector of contact generalized forces 

exerted by the manipulator on the 
environment 

 

 
 
Fig. 2: Desired forces imposed by a human arm 
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 The different matrices of the dynamic model are 
given by: 
 

( )

2 2
1 1 1 2 1 2 1 2 1 2

2
2 1 2 1 2 2 2 2

2
2 1 2 1 2 1

2
2 1 2 1 2 2

1 1 1 1 1

2 2 2

I m k m L m L k cos( )
M( )

m L k cos( ) I m k

0 m L k sin( )
H ,

m L k sin( ) 0

(m L m k )cos
G( ) g

m k cos

 + + θ − θ
θ =  θ − θ + 

θ − θ  θ 
θ θ =   − θ − θ θ   

+ θ 
θ =  θ 

ɺ
ɺ

ɺ
 

 
The position/force controller: Impedance control 
design, that will be used to solve the position/force 
control problem, is based on the following concept: the 
controller ensures desired impedance dynamics while 
regulates position in all directions (Hogan, 1985). The 
desired impedance is defined by:

  

d
d

d

F F
Z     

X X

−=
−

  (4) 

 
where, dX and dF  are desired Cartesian position and 

desired contact force. It is generally required that the 
desired impedance verifies: 
 

2
d d d dZ K B s M s= + +   (5)  

 
n n

d d dK ,B ,M R ×∈  are desired stiffness, damping and 

inertia matrices and s is the Laplace operator. 
Substituting (4) in (5) gives:  
 

d d d d d d dF F K (X X) B (X X) M (X X)− = − + − + −ɺ ɺ ɺɺ ɺɺ   (6) 

 
nX,X,X R∈ɺ ɺɺ are Cartesian end-effector position, velocity 

and acceleration respectively. The block diagram of the 
entire control system is shown by the Fig. 3 (Hogan, 
1984).

 gX f ( )= θ  is the direct kinematic model of the 

constrained robotic system. 
n n

p v fK ,K ,K R ×∈  are position, velocity and force gain 

matrices respectively. Based on Fig. 3, the control law 
is then given by: 
 

T
p d v d f d dU J K (X X) K (X X) K (F F) F G = − + − + − + + 

ɺ ɺ

  (7)  

 
Position/force problem: Design a control law 

nU R∈ under a force law nF R∈  that satisfied 
asymptotic stability of the constrained robotic system 
described by the dynamical model (3) and the kinematic 
model (2).  

 
 
Fig. 3: Impedance controller 
 
 The last problem will be solved under the 
following assumptions: 
 
Assumption 1: The entire vectors of force, position and 
velocity are measured. 
 
Assumption 2: All feedback gains, used to solve the 
control problem are diagonal matrix with equal 
elements.  
 
Assumption 3: The constrained environment of the 
robotic system is static.  
 

RESULTS 
 
Relationship between the dynamics of the 
constrained robotic system and its energy: Let Φ 
andY( )Φ  the errors in the joint and task space of the 
constrained robotic system defined respectively by: 
 

dΦ = θ − θ   (8)  

 

dY( ) X( ) XΦ = θ −   (9)  

 
 Consider the constrained robot system described by 
the dynamic model (3) for the force design (6) and the 
control law (7). Using the relations (8) and (9) we can 
write: 
 

T
1

T T
2 3

M( ) H( , ) J ( )K Y( )

J ( )K Y( ) J ( )K Y( ) 0

Φ Φ + Φ Φ + Φ Φ

+ Φ Φ + Φ Φ =

ɺɺ ɺ

ɺ ɺɺ

  

(10) 

 
Where: 
 

1 p f d

2 v f d

3 f d

K K (I K )K

K K (I K )B

K (I K )M

= + +

= + +
= +   

(11) 
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 Recall that the Lagrange equation of a constrained 
robotic system is described by (Yabuta et al., 1988): 
 
d T T P D

0
dt

∂ ∂ ∂ ∂  − + + = ∂Φ ∂Φ ∂Φ ∂Φ ɺ ɺ

  
(12)  

 
T( , )Φ Φɺ

 
is the kinetic energy of the constrained robotic 

system (3) defined by: 
 

T1
 T( , ) M( )

2
Φ Φ = Φ Φ Φɺ ɺ ɺ

  
(13)  

 
P( ),D( , )Φ Φ Φɺ  are potential energy and dissipation 
function respectively. We can show that (Mehdi and 
Boubaker, 2010):  
 

T
1

P
J ( )K Y( )

∂ = Φ Φ
∂Φ   

(14)  

 
T T

2 3

D
J ( )K Y( ) J ( )K Y( )

∂ = Φ Φ + Φ Φ
∂Φ

ɺ ɺɺ

ɺ
  

(15)  

 

i

i

d M
H( , )

dt 2

 Φ ∂ ΦΦ Φ =  ∂Φ 
∑

ɺ
ɺ

  
(16)  

 
New sufficient stability conditions: Impose to the 
system (10) to have a Lyapunov Hamiltonian function 
defined by (Yabuta et al., 1988): 
 
V( , ) T( , ) P( ) P(0)Φ Φ = Φ Φ + Φ −ɺ ɺ

  (17) 
 
 The error dynamics (10) are asymptotically stable 
if V( , )Φ Φɺ  satisfies the following conditions (Slotine 
and Li, 1991):  
 
V(0,0) 0   if  0,  0        = Φ = Φ =ɺ  (18)  
 
V( , ) 0  if  0, 0 Φ Φ > Φ ≠ Φ ≠ɺ ɺ

  (19) 
  
V( , ) 0  if  0, 0Φ Φ < Φ ≠ Φ ≠ɺ ɺ ɺ

  (20)  
 
Theorem: For desired matrices Kd, Bd, Md∈Rn×n and if 
there exist diagonal matrices p v fK ,K ,K n nR ×∈ such that 

the following conditions: 
 

p f d

v f d

d

K (I K )K 0

K (I K )B 0

 M 0

+ + >
 + + >
 =

  (21) 

or 
 

p

v

f

K 0

K 0

K I  

>
 >
 = −

  (22)  

 
are satisfied, then the system described by (2) and (3) is 
asymptotically stable under the force model described 
by: 
 

d d d d d d dF F -K (X X) B (X X) M (X X)= − − − − −ɺ ɺ ɺɺ ɺɺ

  (23)  

 
and the control law: 
 

( )T
p d v d f d fU J K (X X) K (X X) K I F K F G = − + − + + − + 

ɺ ɺ

 
(24)  

 
Proof: See (Mehdi and Boubaker, 2010) 
 
Simulations: Stability conditions (21) are tested on the 
rehabilitation cooperative system shown by Fig. 1. 
Numerical parameters of the constrained robotic system 
are those of the human arm exposed in Table 1. We 
adopt, for the control and force laws (23) and (24) the 
following numerical values: 
 

dK diag[10 10]= , [ ]dB diag 5 5= , 3 3
pK diag 10 10 =  

[ ]vK diag 30 30= , [ ]fK diag 20 20=  

 
 The desired positions and forces are chosen as 
follows: T

dX [0.25 0] ,= T
dF [0 5]= . Figure 4-7 show 

that desired positions and forces are followed 
respectively whereas Fig. 8 prove that control laws are 
smooth and realizable. 
 

 
 
Fig. 4: End-effector position in the x axis 
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Fig. 5: End-effector position in the y axis 
 

 
 

Fig. 6: Contact force response in the x axis 
 

 
 
Fig. 7: Contact force response in the y axis 

 
 

Fig. 8: Control laws 
 

 
 

Fig. 9: Gain position Kp effect on the end-effector 
position in the x axis 

 
DISCUSSION 

 
 To reveal the effect of tuning parameters p v fk ,k ,k  

and 1
d dB K −  on the dynamics of the controlled system we 

have performed different simulations. Figure 9 and 10 
show the effect of the position gain pK  and the velocity 

gain vK respectively on the dynamics of the Cartesian 

positions whereas Fig. 11 proves the effect of the force 
gain fK on the contact force responses.   

 Figure 12 and 13 illustrate the effect of the pole 
assignment of the transfer function d1 / Z (s)    on the 

end-effector position and contact force respectively. To 
improve the adaptability of constrained robotic system 
to its environment, it is clear that an appropriate 
selection    of   the  tuning  parameters pK , vK , fK  and 
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Fig. 10: Gain velocity Kv effect on end-effector 

position in the x axis 
 

 
 
Fig. 11: Gain force Kf effect on end-effector contact 

force in the y axis 
 

 
 

Fig. 12: Pole assignment effect of the transfer function 
on the end-effector position in the x axis 

 
 
Fig. 13: Pole assignment effect of the transfer function 

d1 / Z (s)on contact force in the y axis 

 
1

d dB K −  must be achieved to find a compromise between 

fast transit response and low overshoot of state 
variables and control laws. By the proposed approach, 
the controlled system can achieve high accuracy, not 
only on the position and force but also achieve high 
speed response. 
 

CONCLUSION 
 
 In this study, the problem of rehabilitation of 
disabled people arm was discussed using a cooperative 
constrained robotic manipulator. A position force 
control approach is applied to the robotic system 
attached to the human arm to follow the human 
intention of movement. The considered approach was 
achieved using Lyapunov theory and proposes new 
sufficient conditions of stability to the cooperative 
system. Simulation results confirmed the effectiveness 
and performance of our method. Discussions are 
presented around improvement of the adaptability of 
the rehabilitation robotic device attached to the human 
arm to its environment and enhancement of its 
dynamical response via a suitable selection of tuning 
parameters of the planned control and force laws which 
can be achieved in future study by computational 
intelligent tools. 
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