
Journal of Computer Science 6 (1): 75-79, 2010

ISSN 1549-3636

© 2010 Science Publications

Corresponding Author: Hamed Al Rjoub, Department of Computer Science, Umm Alqura University, Kingdom of Saudi Arabia

75

Parallel Calculation Sensitivity Function for

Multi Tasking Environments

Hamed Al Rjoub and Ahmed Al-Sha’or

Department of Computer Science, Umm Alqura University, Kingdom of Saudi Arabia

Abstract: Problem statement: Calculating sensitive functions for a large dimension control system to

find the unknowns vectors for a linear system in both single and multi processors, is not considered

internally compatible with multi tasking environments, so breaking the process can cost time and

memory and it couldn’t be paused, resumed and saved as patterns for later continuity. This study is an

attempt to solve this problem in parallel to reduce the time factor needed and increase the efficiency by

using parallel calculation sensitivity function for multi tasking environments (PSME) algorithm.

Approach: calculate in parallel sensitivity function using n-1 processors where n is a number of linear

equations which can be represented as TX = W, where T is a matrix of size n1×n2, X = T
−1

W, is a

vector of unknowns and ∂X/∂h = T
−1

((∂T/∂h)-(∂W/∂h)) is a sensitivity function with respect to

variation of system components h. The algorithm (PSME) divides the mathematical input model into

two partitions and uses only (n-1) processors to find the vector of unknowns for original system

x = (x1,x2,…,xn)
T
 and in parallel using (n-1) processors to find the vector of unknowns for similar

system (x’)
t
 = d

t
T
−1

 = (x1’,x2’,…xn’)
T
 by using Net-Processors, where d is a constant vector. Finally,

sensitivity function (with respect to variation of component ∂X/∂hi = (xi×xi’) can be calculated in

parallel by multiplication unknowns Xi×Xi’, where i = 0,1,…n-1. Results: The running time t is

reduced to O(t/n-1) and, the performance of (PSME) was increased by 30-40%. Conclusion: Hence,

used (PSME) algorithm reduced the time to calculate sensitivity function for a large dimension control

system and the performance was increased.

Key words: Sensitivity function, parallel, linear equations, variation, running time, mathematical

model

INTRODUCTION

 Mathematical models of sensitive system that has a

matrix of unknowns exists in all practical knowledge

such as biology, physics, geology and all other applied

life areas and it is possible to simulate those models for

pre use expectation systems to examine those systems

before applying it on real world solutions, specially

when dangerous human life matters can happen on

fractional mistakes when wrong model applied, like

airplane mechanical and electrical systems and space

shuttles systems calculations and another application

when we need computer with mathematical decisions

for next moves on any practical system, beside those

sensitivity systems parallelism approach must

considered on proper with needed speed.

 The use of iterative methods has increased

substantially in many application areas in the last years

(Duff and van de Vorst, 1999). One reason for that is

the advent of parallel Computing and its impact in the

overall performance of various algorithms on numerical

analysis (Duff and van de Vorst, 1999). The use of

clusters plays an important role in such scenario as one

of the most effective manner to improve the

computational power without increasing costs to

prohibitive values. However, in some cases, the

solution of numerical problems frequently presents

accuracy issues increasing the need for computational

power. Verified computing provides an interval result

that surely contains the correct result. Numerical

applications providing automatic result verification may

be useful in many fields like simulation and modeling.

Finding the verified result often increases dramatically

the execution time (Ogita et al., 2005). However, in

some numerical problems, the accuracy is mandatory.

The requirements for achieving this goal are: Interval

arithmetic, high accuracy combined with well suitable

algorithms. The interval arithmetic defines the

operations for interval numbers, such that the result is a

new interval that contains the set of all possible

solutions. The high accuracy arithmetic ensures that the

operation is performed without rounding errors and

J. Computer Sci., 6 (1): 75-79, 2010

76

rounded only once in the end of the computation. The

requirements for this arithmetic are: The four basic

operations with high accuracy, optimal scalar product

and direct rounding. This arithmetic’s should be used in

appropriate algorithms to ensure that those properties

will be hold. There is a multitude of tools that provide

verified computing; among them an attractive option is

C-XSC (C for extended Scientific Computing) (Li and

Coleman, 1989). CXSC is a free and portable

programming environment for C and C++

programming Languages, offering high accuracy and

automatic verified results. This programming Tool

allows the solution of several standard problems,

including many reliable numerical parallel algorithms.

The need to solve systems of linear algebraic equations

arises frequently in scientific and engineering

applications, with the solution being useful either by

itself or as an intermediate step in solving a larger

problem. In practical problems, the order, n, may in

many cases be large (100-1000) or very large (many

tens or hundreds of thousands). The cost of a numerical

procedure is clearly an important consideration-so too

is the accuracy of the method. Let us consider a system

of linear algebraic equations:

AX = B (1)

Where:

A = {aij}
n

i,j = 1 is a given matrix

B = (b1, …, bn)
t
 is a given vector

 It is well known (Duff, 2000) that the solution, x,

xЄR
n
, when it exists, can be found using-direct

methods, such as Gaussian elimination and LU and

Cholesky decomposition, taking O(n
3
) time; -stationary

iterative methods, such as the Jacobi, Gauss- Seidel and

various relaxation techniques, which reduce the system

to the form:

x = Lx+f (2)

and then apply iterations as follows:

(0) (k) (k 1)

x f ,x Lx f ,k 1,2
−

= = + = (3)

until desired accuracy is achieved; this takes O(n

2
) time

per iteration. Monte Carlo methods (MC) use

independent random walks to give an Approximation to

the truncated sum (3):

1
(1) k

k 0

x L f

=

=∑ (4)

 Taking time O(n) (to find n components of the

solution) per random step. Keeping in mind that the

convergence rate of MC is O(N
−1/2

), where N is the

number of random walks, millions of random steps are

typically needed to achieve acceptable accuracy. The

description of the MC method used for linear systems

can be found in (Pan and Reif, 1989; Eisentat and

Heath, 1988; Holbig and Morandi, 2004). Different

improvements have been proposed, for example,

including sequential MC techniques (Duff and van de

Vorst, 1999), resolve-based MC methods (Duff and van

de Vorst, 1999) and have been successfully

implemented to reduce the number of random steps. In

this study we study the Quasi-Monte Carlo (QMC)

approach to solve linear systems with an emphasis on

the parallel implementation of the corresponding

algorithm. The use of quasirandom sequences improves

the accuracy of the method and preserves its

traditionally good parallel efficiency.

MATERIALS AND METHODS

 Solution of large (dense or sparse) linear systems is

considered an important Part of numerical analysis and

often requires a large amount of scientific computations

(Duff and van de Vorst, 1999; Saad, 1996). More

specifically, the most time consuming operations in

iterative methods for solving linear equations are inner

products, vector successively updates, matrix-vector

products and also iterative refinements (Eisentat and

Heath, 1988). Tests pointed out that the Newton-like

iterative method presents a iterative refinement step and

uses a inverse matrix obtained through the

backward/forward substitution (after LU

decomposition), which are the most time consuming

operations. The parallel solutions for linear solvers

found in the literature explore many aspects and

constraints related to the adaptation of the numerical

methods to high performance environments (Li and

Coleman, 1989). However, the proposed solutions are

not often realistic and mostly deal with unsuitable

models for high performance environments of

distributed memory as clusters of workstations. In many

theoretical models (such as the PRAM family) the

transmission cost to data exchange is not considered

(Ogita et al., 2005), but in distributed memory

architectures this issue is crucial to gain performance.

Nevertheless, the difficulty in parallelizing some

numerical methods, mainly iterative schemes, in an

environment of distributed memory, is the

interdependency among data (e.g., the LU

decomposition) and the consequent overhead needed to

perform Inter Process Communication (IPC) (Li and

Coleman, 1989). Due to this, in a first approach some

modifications were done in the backward/forward

J. Computer Sci., 6 (1): 75-79, 2010

77

substitution procedure (Liu and Cheung, 1997) to allow

less Communications and independent computations

over the matrix. Another possible optimization when

implementing for such parallel environments is to reduce

communication cost through the use of load balance

techniques, as we can see in some recent parallel

solutions for linear systems solvers (Saad, 1996).

Anyway, their focus was toward the issues related to

MPI implementation through a theoretical performance

analysis. Few researches were found related to numerical

analysis of parallel implementations of iterative solvers,

mainly using MPI. Moreover, some interesting papers

found present algorithm, which allow the use of different

parallel environments (Eisentat and Heath, 1988).

However, those papers (like others) do not deal with

verified computation. We also found some works which

focus on verified computing (Liu and Cheung, 1997) and

both verified computing and parallel implementations

(Feng, 2002), but these thesis implement other

numerical problems or use a different Parallel approach.

Another concern is the implementation of self-verified

numerical solvers, which allow high accuracy

operations. The researches already made, show that the

execution time of the algorithms using this kind of

routines is much larger than the execution time of the

algorithms, which do not use it (Saad, 1996; Feng,

2002). The C-XSC library was developed to provide

functionality and portability, but early researches indicate

that more optimizations may be done to provide more

efficiency, due to additional computational cost in

sequential and consequently for other environments as

Itanium clusters. Some experiments were conducted over

Intel clusters to parallelize self-verified numerical

solvers that use Newton-based techniques but there are

more tests that may be done.

 Sensitivity analysis defines the relative sensitivity

function for time independent parameters as:

i, j i i
S x / h=∂ ∂ (5)

Where:

Xi = The i-th state variable

hj = The element of the parameter vector

 Hence the sensitivity is given by the so-called

sensitivity matrix S, containing the sensitivity coefficient

Si,j, Eq. 5 The direct approach of numerically

differentiating by means of numerical field calculation

software will lead to diverse difficulties (Duff and van

de Vorst, 1999; Li and Coleman, 1989). Therefore, some

ideas to overcome those problems aim at performing

differentiations necessary for sensitivity analysis prior to

any numerical treatment. Further calculations are then

carried out with a commercially available field

calculation program. Such approach has already been

practical successfully (Eisentat and Heath, 1988).

 We consider the linear system (1) where A is a

tridiagonal matrix of order n of the form shown in (6):

Step 1: Build first diagonal Matrix V size(m×n)

for the input matrix A(nxm)

Step 2: Build C1 vector of the unknowns

Step 3: Calculate C1(1xm) vector of unknowns

where:

 C1(1) = (A(n,1) * V1(2,m)) / (A(n,1) * V1(1,m))

 .

 .

 .

 .

 C(m) = (A(n,m) * V1(n,m)) / (A(n,m) * V1(n-1,m))

Step 4: Build and calculate vector V2 where:

 V2(2,m) = V1(2,m) – C1(2) * V1 (1,m)

 .

 .

 .

 .

Step log m: Build and calculate matrix Vx(2×2)

where:

 Vx(2,m) = V(x-1)(2,m) – Cx(2) * Vx (1,m)

 *when we reach to final V we will find the

solution of the unknowns already solved

in the last v matrix.

Numerical example: The linear equation:

1 2

1 2

2x 4x 4

2x 2x 5

+ =

+ =

 Could be represents as follow:

A =
2 4 4

A

2 2 5

 −
=  

−  

 We build the diagonal working area for the

previous matrix A:

1 0 0

V 0 1 0

0 0 1

 
 =  
  

J. Computer Sci., 6 (1): 75-79, 2010

78

Where:

0

0

1

v1 0

0

0

v2 1

0

 
 =  
  

 
 =  
  

0

0

V3 0

1

 
 =  
  

 In the first cycle and in parallel we calculate C2

1
,

C3
1
 values:

C2
1
 = A1.V2

0
/A

1
.V1

0

C3
1
 = A1.V3

0
/A1.V1

0

 Where A1 is the first row of matrix A:

[] []1

0 1

C2 2 4 4 1 2 4 4 0 2

0 0

   
   = − ⋅ ÷ − ⋅ =   
      

[] []1

0 1

C3 2 4 4 0 2 4 4 0 2

1 0

   
   = − ⋅ ÷ − ⋅ = −   
      

 Now we calculate in parallel:

1 0 1 0

0 2 2

v2 v2 – c2 . v1 1 0 1

0 0 0

−     
     = = − =     
          

1 0 1 0

0 2 2

v3 v3 – c3 . v1 0 0 0

1 0 1

−     
     = = − =     
          

Calculate:

[]

[]

2 1 1

2

c3 A2 . V3 / A2 . V2 2 2 5 0

1

2

2 2 5 1 1 / 2

0

 
 = = − ⋅ ÷ 
  

− 
 − ⋅ = 
  

 Now we find the solution (X1, X2):

2 1 2 1

2 1 3 x1

V3 V3 – C3 .v2 0 1 / 2 1 / 2 x2

1 0 1 1

−       
       = = − = − =       
              

RESULTS

 To calculate the accurate time and performance we

repeat the process m times then we divide the measured

time on m for both single and multi thread versions, for

single thread we start basic multiplication division and

subtraction inside the Matrix until we get the upper of

that matrix, for multi threading we use R-1 threads

where R is the count of desired Matrix rows, we

measure the longest thread which is the last one in our

case, then every thread takes a part of the Matrix basic

operations and we do that in parallel for origin and

similar systems.

 Table 1 shows the time results done on Pentium

Due 1.8 GHZ processor with 1 GB Ram and shows the

time when we use one processor (single thread) and the

time when we use a multi processors in parallel (multi

thread) to calculate the unknowns vector. From the

Table 1, Fig. 1 and 2, we can see that performance

increase with respect to the size of matrix, which

represents the linear system.

Table 1: Comparison between single and multithread

 Single Multi

Matrix thread, thread,

dimension time/MS time/MS Performance

2×3 0.000119 0.000347 0.34293948

3×4 0.000425 0.000314 1.35350318

4×5 0.001073 0.000234 4.58547009

5×6 0.001718 0.000308 5.57792208

Fig. 1: Time comparison between single and parallel to

calculate unknown’s vector

J. Computer Sci., 6 (1): 75-79, 2010

79

Fig. 2: System performance chart

DISCUSSION

 The application of high performance programming

techniques for solution of electric power systems

problems has been increasing. Particularly, parallel

processing present’s very remising perspectives when

heavy amputation is required. It may consist in a

feasible alternative for solution of several large-scale

problems, which are not well conditioned for a

sequential approach. Despite its potentiality in

engineering software development, parallel algorithm

philosophy is quite different from that adopted by

sequential programs. This work presents investigations

regarding the application of parallel processing to

calculate sensitivity function for a large dimension

control system, which we can write its mathematical

model as a system of linear equations.

PSME algorithm description: The main goal of

PSME algorithm is resolving in parallel linear

equations which represents as AX = W and calculate

sensitivity function of electric power systems to obtain

the result with respect to variation any component of

output function F with respect to any component of

electric power systems h(f / h)∂ ∂ . PSME algorithm

contains the next stages: distribution data (rows matrix

T and components vector W) to the p processors where

p = n-1 (n is the number of equations) which represents

the mathematical model of electric system and calculate

in parallel unknown vector for origin system

CONCLUSION

 The (PSME) algorithm to find the vector of

unknowns for calculated in parallel sensitivity function

and one thread was simulated and proved that (PSME)

algorithm is more efficient. The running time was

reduced to O(t/n-1) and the efficiency was increased by

40-55%.

REFERENCES

Duff, I.S. and H.A. van de Vorst, 1999. Developments

and trends in parallel solution of linear systems.

Parall. Comput., 25: 1931-1970. DOI:

10.1016/S0167-8191(99)00077-0

Duff, I.S., 2000. The impact of high performance

computing in the solution of linear systems: Trend
and problems. J. Comput. Applied Math., 123: 515-530.

DOI: 10.1016/S0377-0427(00)00401-5

Eisentat, S.C. and M.T. Heath, 1988. Modified cyclic

algorithm for solving triangular system on

distributed-memory multiprocessor. SIAM J. Stat.

Comput., 9: 589-600.

http://scitation.aip.org/getabs/servlet/GetabsServlet

?prog=normal&id=SJOCE3000009000003000589

000001&idtype=cvips&gifs=yes

Feng, T., 2002. A message-passing distributed-memory

Newton-GMRES parallel power flow algorithm.

Proceeding of the IEEE Meeting on Power

Engineering Society Summer, July 25-25, Chicago,

IL., USA., pp: 1477-1482.

Holbig, C.A. and P.S. Morandi, 2004. Selfverifying

solvers for linear systems of equations in C-XSC.

Lecture Notes Comput. Sci., 3019: 292-297. DOI:

10.1007/b97218

Li, G. and T.F. Coleman, 1989. A new method for

solving triangular system on distributed memory

message-passing multiprocessors. SIAM J. Sci.

Stat. Comput., 10: 382-396.

Liu, Z. and D.W. Cheung, 1997. Efficient parallel

algorithm for dense matrix LU decomposition with

pivoting on hypercubes. Comput. Math. Applied,

33: 39-50.

Ogita, T., S.M. Rump and S. Oishi, 2005. Accurate sum

and dot product. SIAM. J. Sci. Comput., 26: 1955-1988.
http://www.ti3.tu-harburg.de/paper/rump/OgRuOi05.pdf

Pan, V. and J. Reif, 1989. Fast and efficient parallel

solution of dense linear system. Comput. Math.

Applied, 17: 1481-1491.

Saad, Y., 1996. Iterative Methods for Sparse Linear

Systems. Proceeding of the 99th ACM Symposium

on FPGAs. ACM Press, New York, pp: 157-166.

