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Abstract: Problem statement: Calculating sensitive functions for a large dimension control system to 

find the unknowns vectors for a linear system in both single and multi processors, is not considered 

internally compatible with multi tasking environments, so breaking the process can cost time and 

memory and it couldn’t be paused, resumed and saved as patterns for later continuity. This study is an 

attempt to solve this problem in parallel to reduce the time factor needed and increase the efficiency by 

using parallel calculation sensitivity function for multi tasking environments (PSME) algorithm. 

Approach: calculate in parallel sensitivity function using n-1 processors where n is a number of linear 

equations which can be represented as TX = W, where T is a matrix of size n1×n2, X = T
−1

W, is a 

vector of unknowns and ∂X/∂h = T
−1

((∂T/∂h)-( ∂W/∂h)) is a sensitivity function with respect to 

variation of system components h. The algorithm (PSME) divides the mathematical input model into 

two partitions and  uses  only (n-1) processors to find the vector of unknowns for original system 

x = (x1,x2,…,xn)
T
 and in parallel using (n-1) processors to find the vector of unknowns for similar 

system (x’)
t
 = d

t
T
−1

 = (x1’,x2’,…xn’)
T
 by using Net-Processors, where d is a constant vector. Finally, 

sensitivity function (with respect to variation of component ∂X/∂hi = (xi×xi’) can be calculated in 

parallel by multiplication unknowns Xi×Xi’, where i = 0,1,…n-1. Results: The running time t is 

reduced to O(t/n-1) and, the performance of (PSME) was increased by 30-40%. Conclusion: Hence, 

used (PSME) algorithm reduced the time to calculate sensitivity function for a large dimension control 

system and the performance was increased. 
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INTRODUCTION 

 

 Mathematical models of sensitive system that has a 

matrix of unknowns exists in all practical knowledge 

such as biology, physics, geology and all other applied 

life areas and it is possible to simulate those models for 

pre use expectation systems to examine those systems 

before applying it on real world solutions, specially 

when dangerous human life matters can happen on 

fractional mistakes when wrong model applied, like 

airplane mechanical and electrical systems and space 

shuttles systems calculations and another application 

when we need computer with mathematical decisions 

for next moves on any practical system, beside those 

sensitivity systems parallelism approach must 

considered on proper with needed speed. 

 The use of iterative methods has increased 

substantially in many application areas in the last years 

(Duff and van de Vorst, 1999). One reason for that is 

the advent of parallel Computing and its impact in the 

overall performance of various algorithms on numerical 

analysis (Duff and van de Vorst, 1999). The use of 

clusters plays an important role in such scenario as one 

of the most effective manner to improve the 

computational power without increasing costs to 

prohibitive values. However, in some cases, the 

solution of numerical problems frequently presents 

accuracy issues increasing the need for computational 

power. Verified computing provides an interval result 

that surely contains the correct result. Numerical 

applications providing automatic result verification may 

be useful in many fields like simulation and modeling. 

Finding the verified result often increases dramatically 

the execution time (Ogita et al., 2005). However, in 

some numerical problems, the accuracy is mandatory. 

The requirements for achieving this goal are: Interval 

arithmetic, high accuracy combined with well suitable 

algorithms. The interval arithmetic defines the 

operations for interval numbers, such that the result is a 

new interval that contains the set of all possible 

solutions. The high accuracy arithmetic ensures that the 

operation is performed without rounding errors and 
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rounded only once in the end of the computation. The 

requirements for this arithmetic are: The four basic 

operations with high accuracy, optimal scalar product 

and direct rounding. This arithmetic’s should be used in 

appropriate algorithms to ensure that those properties 

will be hold. There is a multitude of tools that provide 

verified computing; among them an attractive option is 

C-XSC (C for extended Scientific Computing) (Li and 

Coleman, 1989). CXSC is a free and portable 

programming environment for C and C++ 

programming Languages, offering high accuracy and 

automatic verified results. This programming Tool 

allows the solution of several standard problems, 

including many reliable numerical parallel algorithms. 

The need to solve systems of linear algebraic equations 

arises frequently in scientific and engineering 

applications, with the solution being useful either by 

itself or as an intermediate step in solving a larger 

problem. In practical problems, the order, n, may in 

many cases be large (100-1000) or very large (many 

tens or hundreds of thousands). The cost of a numerical 

procedure is clearly an important consideration-so too 

is the accuracy of the method. Let us consider a system 

of linear algebraic equations: 
 
AX = B (1) 
 
Where: 

A = {aij}
n

i,j = 1 is a given matrix 

B = (b1, …, bn)
t
 is a given vector 

 
 It is well known (Duff, 2000) that the solution, x, 

xЄR
n
, when it exists, can be found using-direct 

methods, such as Gaussian elimination and LU and 

Cholesky decomposition, taking O(n
3
) time; -stationary 

iterative methods, such as the Jacobi, Gauss- Seidel and 

various relaxation techniques, which reduce the system 

to the form: 

 
x = Lx+f (2) 
 
and then apply iterations as follows: 

 
(0) (k) (k 1)

x f ,x Lx f ,k 1,2
−

= = + =  (3) 

 
until desired accuracy is achieved; this takes O(n

2
) time 

per iteration. Monte Carlo methods (MC) use 

independent random walks to give an Approximation to 

the truncated sum (3): 
 

1
(1) k

k 0

x L f

=

=∑  (4) 

 Taking time O(n) (to find n components of the 

solution) per random step. Keeping in mind that the 

convergence rate of MC is O(N
−1/2

), where N is the 

number of random walks, millions of random steps are 

typically needed to achieve acceptable accuracy. The 

description of the MC method used for linear systems 

can be found in (Pan and Reif, 1989; Eisentat and 

Heath, 1988; Holbig and Morandi, 2004). Different 

improvements have been proposed, for example, 

including sequential MC techniques (Duff and van de 

Vorst, 1999), resolve-based MC methods (Duff and van 

de Vorst, 1999) and have been successfully 

implemented to reduce the number of random steps. In 

this study we study the Quasi-Monte Carlo (QMC) 

approach to solve linear systems with an emphasis on 

the parallel implementation of the corresponding 

algorithm. The use of quasirandom sequences improves 

the accuracy of the method and preserves its 

traditionally good parallel efficiency. 

 

MATERIALS AND METHODS 
  
 Solution of large (dense or sparse) linear systems is 

considered an important Part of numerical analysis and 

often requires a large amount of scientific computations 

(Duff and van de Vorst, 1999; Saad, 1996). More 

specifically, the most time consuming operations in 

iterative methods for solving linear equations are inner 

products, vector successively updates, matrix-vector 

products and also iterative refinements (Eisentat and 

Heath, 1988). Tests pointed out that the Newton-like 

iterative method presents a iterative refinement step and 

uses a inverse matrix obtained through the 

backward/forward substitution (after LU 

decomposition), which are the most time consuming 

operations. The parallel solutions for linear solvers 

found in the literature explore many aspects and 

constraints related to the adaptation of the numerical 

methods to high performance environments (Li and 

Coleman, 1989). However, the proposed solutions are 

not often realistic and mostly deal with unsuitable 

models for high performance environments of 

distributed memory as clusters of workstations. In many 

theoretical models (such as the PRAM family) the 

transmission cost to data exchange is not considered 

(Ogita et al., 2005), but in distributed memory 

architectures this issue is crucial to gain performance. 

Nevertheless, the difficulty in parallelizing some 

numerical methods, mainly iterative schemes, in an 

environment of distributed memory, is the 

interdependency among data (e.g., the LU 

decomposition) and the consequent overhead needed to 

perform Inter Process Communication (IPC) (Li and 

Coleman, 1989). Due to this, in a first approach some 

modifications were done in the backward/forward 
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substitution procedure (Liu and Cheung, 1997) to allow 

less Communications and independent computations 

over the matrix. Another possible optimization when 

implementing for such parallel environments is to reduce 

communication cost through the use of load balance 

techniques, as we can see in some recent parallel 

solutions for linear systems solvers (Saad, 1996). 

Anyway, their focus was toward the issues related to 

MPI implementation through a theoretical performance 

analysis. Few researches were found related to numerical 

analysis of parallel implementations of iterative solvers, 

mainly using MPI. Moreover, some interesting papers 

found present algorithm, which allow the use of different 

parallel environments (Eisentat and Heath, 1988). 

However, those papers (like others) do not deal with 

verified computation. We also found some works which 

focus on verified computing (Liu and Cheung, 1997) and 

both verified computing and parallel implementations 

(Feng, 2002), but these thesis implement other 

numerical problems or use a different Parallel approach. 

Another concern is the implementation of self-verified 

numerical solvers, which allow high accuracy 

operations. The researches already made, show that the 

execution time of the algorithms using this kind of 

routines is much larger than the execution time of the 

algorithms, which do not use it (Saad, 1996; Feng, 

2002). The C-XSC library was developed to provide 

functionality and portability, but early researches indicate 

that more optimizations may be done to provide more 

efficiency, due to additional computational cost in 

sequential and consequently for other environments as 

Itanium clusters. Some experiments were conducted over 

Intel clusters to parallelize self-verified numerical 

solvers that use Newton-based techniques but there are 

more tests that may be done.  

 Sensitivity analysis defines the relative sensitivity 

function for time independent parameters as: 

 

i, j i i
S x / h=∂ ∂   (5) 

 

Where: 

Xi = The i-th state variable 

hj = The element of the parameter vector 

 Hence the sensitivity is given by the so-called 

sensitivity matrix S, containing the sensitivity coefficient 

Si,j, Eq. 5 The direct approach of numerically 

differentiating by means of numerical field calculation 

software will  lead  to  diverse  difficulties  (Duff and van 

de Vorst, 1999; Li and Coleman, 1989). Therefore, some 

ideas to overcome those problems aim at performing 

differentiations necessary for sensitivity analysis prior to 

any numerical treatment. Further calculations are then 

carried out with a commercially available field 

calculation program. Such approach has already been 

practical successfully (Eisentat and Heath, 1988).  

 We consider the linear system (1) where A is a 

tridiagonal matrix of order n of the form shown in (6): 

 

Step 1: Build first diagonal Matrix V size(m×n) 

for the input matrix A(nxm) 

Step 2: Build C1 vector of the unknowns  

Step 3:  Calculate C1(1xm) vector of unknowns 

where: 

  

 C1(1) = (A(n,1) * V1(2,m)) / (A(n,1) * V1(1,m)) 

 . 

 . 

 . 

 . 

 C(m) = (A(n,m) * V1(n,m)) / (A(n,m) * V1(n-1,m)) 

 

Step 4: Build and calculate vector V2 where: 

 

 V2(2,m) = V1(2,m) – C1(2) * V1 (1,m) 

 . 

 . 

 . 

 . 
 

Step log m: Build and calculate matrix Vx(2×2) 

where: 
 
  Vx(2,m) = V(x-1)(2,m) – Cx(2) * Vx (1,m) 

 

 *when we reach to final V we will find the 

solution of the unknowns already solved 

in the last v matrix. 
 
Numerical example:  The linear equation: 
 

1 2

1 2

2x 4x 4

2x 2x 5

+ =

+ =

 

 
 Could be represents as follow: 
 

A = 
2 4 4

A

2 2 5

 −
=  

−    
 
 We build the diagonal working area for the 

previous matrix A: 

 

1 0 0

V 0 1 0

0 0 1

 
 =  
    
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Where:  

0

0 

1

v1  0

0

0

v2 1

0

 
 =  
  

 
 =  
  

 

0

0

V3 0

1

 
 =  
  

 

 
 In the first cycle and in parallel we calculate C2

1
, 

C3
1
 values: 

 

C2
1
 = A1.V2

0
/A

1
.V1

0
 

C3
1
 = A1.V3

0
/A1.V1

0
 

 

 Where A1 is the first row of matrix A:  

 

[ ] [ ]1

0 1

C2 2 4 4 1 2 4 4 0 2

0 0

   
   = − ⋅ ÷ − ⋅ =   
      

 

[ ] [ ]1

0 1

C3 2 4 4 0 2 4 4 0 2

1 0

   
   = − ⋅ ÷ − ⋅ = −   
      

 

 

 Now we calculate in parallel: 

 

1 0 1 0

0 2 2

v2 v2 – c2 . v1 1 0 1

0 0 0

−     
     = = − =     
          

 

1 0 1 0

0 2 2

v3 v3 – c3 . v1 0 0 0

1 0 1

−     
     = = − =     
          

 

 

Calculate: 

 

[ ]

[ ]

2 1 1

2

c3 A2 . V3  /  A2 . V2 2 2 5 0

1

2

2 2 5 1  1 / 2

0

 
 = = − ⋅ ÷ 
  

− 
 − ⋅ = 
  

 

 

 Now we find the solution (X1, X2): 

2 1 2 1 

2 1 3 x1

V3 V3 –  C3 .v2 0 1 / 2 1 / 2 x2

1 0 1 1

−       
       = = − = − =       
              

  

 

RESULTS 

 

 To calculate the accurate time and performance we 

repeat the process m times then we divide the measured 

time on m for both single and multi thread versions, for 

single thread we start basic multiplication division and 

subtraction inside the Matrix until we get the upper of 

that matrix, for multi threading we use R-1 threads 

where R is the count of desired Matrix rows, we 

measure the longest thread which is the last one in our 

case, then every thread takes a part of the Matrix basic 

operations and we do that in parallel for origin and 

similar systems. 

 Table 1 shows the time results done on Pentium 

Due 1.8 GHZ processor with 1 GB Ram and shows the 

time when we use one processor (single thread) and the 

time when we use a multi processors in parallel (multi 

thread) to calculate the unknowns vector. From the 

Table 1, Fig. 1 and 2, we can see that performance 

increase with respect to the size of matrix, which 

represents the linear system. 

 
Table 1: Comparison between single and multithread  

 Single Multi 

Matrix thread, thread, 

dimension time/MS time/MS Performance 

2×3 0.000119 0.000347 0.34293948 

3×4 0.000425 0.000314 1.35350318 

4×5 0.001073 0.000234 4.58547009 

5×6 0.001718 0.000308 5.57792208 

 

 
 

Fig. 1: Time comparison between single and parallel to 

calculate unknown’s vector 
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Fig. 2: System performance chart 
 

DISCUSSION 
 
 The application of high performance programming 

techniques for solution of electric power systems 

problems has been increasing. Particularly, parallel 

processing present’s very remising perspectives when 

heavy amputation is required. It may consist in a 

feasible alternative for solution of several large-scale 

problems, which are not well conditioned for a 

sequential approach. Despite its potentiality in 

engineering software development, parallel algorithm 

philosophy is quite different from that adopted by 

sequential programs. This work presents investigations 

regarding the application of parallel processing to 

calculate sensitivity function for a large dimension 

control system, which we can write its mathematical 

model as a system of linear equations.  
 
PSME algorithm description: The main goal of 

PSME algorithm is resolving in parallel linear 

equations which represents as AX = W and calculate 

sensitivity function of electric power systems to obtain 

the result with respect to variation any component of 

output function F with respect to any component of 

electric power systems h( f / h)∂ ∂ . PSME algorithm 

contains the next stages: distribution data (rows matrix 

T and components vector W) to the p processors where 

p = n-1 (n is the number of equations) which represents 

the mathematical model of electric system and calculate 

in parallel unknown vector for origin system  
 

CONCLUSION 

 

 The (PSME) algorithm to find the vector of 

unknowns for calculated in parallel sensitivity function 

and one thread was simulated and proved that (PSME) 

algorithm is more efficient. The running time was 

reduced to O(t/n-1) and the efficiency was increased by 

40-55%. 
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