
Journal of Computer Science 6 (4): 461-469, 2010
ISSN 1549-3636
© 2010 Science Publications

461

A Novel Methodology for Designing Radix-2n Serial-Serial Multipliers

Abdurazzag Sulaiman Almiladi

Department of Computer Science, King Saud University, HCC,
P.O. Box 266, Huraimla 11962, Saudi Arabia

Abstract: Problem statement: The fast growth and increase in complexity of digital and image
processing systems necessitate the migration from ad hoc design methods to methodological ones.
Methodologies will certainly ease the trade off selection for those systems and shortens the design
time. To increase those gained values and expand the searching space more appropriate methodologies
need to be developed. Approach: A new methodology (table methodology) to design radix-2n serial-
serial multipliers was presented. Unlike other methodologies, the table methodology was used for the
full design cycle, from the algorithm to the detailed fine control. Results: The methodology was used
to identify the drawbacks in existing radix-2n serial-serial multipliers as well as deriving new efficient
ones. Conclusion/Recommendations: To the author’s knowledge this is the first time tables are used
in this novel way in tackling the complete solution space of serial-serial multipliers. One important
merit of the new methodology is that it made it clear that there is no need of parallel loading in serial-
parallel architectures and hence they can be transferred to serial-serial ones and a as a consequence a
huge saving of bus width, I/O pins, area and energy will be achieved.

Key words: Design methodologies, digit serial architecture, DSP

INTRODUCTION

 Recently, several methodologies have been
proposed to design digit-serial architectures which will
be described, briefly, bellow with their features and
draw backs. In this study a new methodology (which
will be termed the Table Methodology (TM) in the
remainder of this study) for designing radix-2n Serial
Serial Multipliers (SSMs) is introduced. This is the first
time it is used in this novel way of designing SSMs,
where the algorithms, architectures, Basic Cells (BCs)
and their fine controls are derived in a systematic way
directly from the multiplication table. One significant
advantage of the TM is its richness in carrying
important information and exposing them in a clear
way, which leads to many significant achievements.
One such important achievement is the proof,
systematically, that parallel loading of one of the
operands in digit serial-parallel multiplication
algorithms is no longer needed and the same
functionality can be achieved with only a mixed radix-
2n Serial-Serial (S/S) feeding (where one operand fed
one digit at a time and the other fed two digits at a time)
(Almiladi and Ibrahim, 2009). This important result
will lead to a noticeable saving of bus width, I/O pins,
area and energy. Another powerful aspect of TM is that

it shows, clearly, the difference in design and nature
(synthesis/implementation) between inherent and non-
inherent S/S algorithms as will be shown in primary
rules.
 It is worth mentioning, that multiplication tables
(before the TM) was only used as a mean of showing
correctness of the derived structures. However, in the
TM, tables are used to proof correctness of existent
structures as well as, deriving new ones in an easy and
systematic ways.

Some existent digit-serial design methodologies:
Several approaches have been proposed to design digit-
serial architectures based on two’s complement number
representation which are summarized in Fig. 1 (Wu and
Cappello, 1989; Smith et al., 1987; Aggoun et al.,
1998a).
 The description of these approaches along with
their drawbacks can be found in (Aggoun et al., 1998b).

Fig. 1: Digit-serial methodologies (Aggoun et al.,

1998b)

J. Computer Sci., 6 (4): 461-469, 2010

462

 Recently, a new approach for designing digit-serial
structures has been proposed (Aggoun et al., 1998a;
1998b). It can be described by three main steps,
namely, (i) writing the algorithm using the radix-2n
arithmetic, (ii) generating the Dependency Graph (DG)
and selecting the projection direction and (iii) design
and optimization of the radix-2n cell.
 More recently, the same design methodology
proposed for designing digit serial-parallel structures in
(Aggoun et al., 1998b) is used in (Aggoun et al., 2004)
to design digit S/S structures. The new DG, which
allows computation of the radix-2n S/S multiplication
was shown in (Aggoun et al., 2004) for K = 4 (where K
is the number of digits used). To obtain digit S/S
architectures, the DG in (Aggoun et al., 2004) is
projected onto the line l = 0 (i.e., onto the k axis) in the
direction [1, 1]T. However, although most of the design
cycle in (Aggoun et al., 2004) was derived in a
methodological way, some parts of the design are done
in an ad hoc manner. For instance, making the most
significant digits available to re-enter the structure,
again, at the Kth cycle has not been done in a systematic
way. In (Aggoun et al., 2004) an ad hoc approach of
modifying the interface by introducing K/2 shift
registers to store the most significant digits of both
operands is adopted. This ad hoc approach renders the
original scalable architectures non scalable. Also
because of the limited amount of information the DG is
carrying, only a subset of the solution space can be
derived systematically using it. For instance the twin
pipe version of both the unidirectional and bidirectional
digit SSMs cannot be derived systematically in an easy
way using the DG. Also the new mixed radix-2n SSMs,
which will be explained later and proved the
redundancy in digit serial-parallel architectures, cannot
be observed or derived from the DG.

MATERIALS AND METHODS

The new Methodology (TM): A new methodology
for designing multiplication structures is presented here.
The new Methodology (TM) is effectively a mapping of
different aspects of the multiplication operation into a
hierarchical tabular representation. The mapping of
aspects into the tabular representation is based on rules.
Each aspect could have its own space (table), such as
variables, temporal, spatial, control and so on.
Transformation rules are also introduced as part of the
new methodology which allows the manipulation of
tables without losing their basic functionality.
 The TM captures, in an easy way, the entire digit
SSMs spectrum as well as producing new novel
efficient ones. Unlike other methodologies, the TM is
used for the full design cycle, from the algorithm to the
detailed architecture along with all the detailed

enhancements (twin pipe, area efficient and so on) and
the fine controls needed for those architectures. There
are two types of rules, namely primary and secondary
rules. These rules will be described in detail in the next
two subsections and used in generating the whole
classes of S/S algorithms.

Primary rules: There are four primary transformation
rules, two of them (Map and Split) will be used to
construct the main multiplication table, while the other
two (Fold and Merge) will be used in generating the
main families of radix-2n S/S algorithms, namely the
inherent and non-inherent S/S algorithms

Constructing the main multiplication table using
map and split: Mapping is a simple rule which maps an
equation into a table or map one table into another, while
Split rule is used to partition a table cell into smaller
cells according to certain rules. In what follows, these
two rules will be used in constructing the main
multiplication table.
 The multiplication of two numbers (U and V) can be
written as:

K 1 K 1
(j i)n

j i
j 0 i 0

P (u v)2
− −

+

= =

= ⋅∑∑ (1)

where, uj and vi represent the jth and ith digits of U and V,
respectively.
 To perform the multiplication recursively, the
above equation will be modified by introducing a
dummy variable, k (where, k = i+j and represents the
significance). The new multiplication equation is given
by:

2K 2 k
kn

j k j
k 0 j 0

P (u v)2
−

−
= =

= ⋅∑ ∑ (2)

where, ui and vi = 0 for i<0 and i>K-1.
 The main multiplication table can be constructed as
follows:

• Use Map rule to map the above multiplication

equation into a table to obtain Table 1
• The split rule is applied to Table 1 to split it into

two cells (Table 2) showing inputs, operation and
outputs

• Thirdly, the split rule is applied again to Table 2 to
split the computation of the outer sigma into 2K-1
rows as shown in Table 3. Since the index, k, of the
outer sigma represents significance, each row in
Table 3 represents a different significance where
the first row has significance zero and subsequent
rows increase in significance until the (2K-1)th row
which has significance (2K-2)

J. Computer Sci., 6 (4): 461-469, 2010

463

Table 1: The main multiplication table
2K 2 k

kn
j k j

k 0 j 0

P (u v)2
−

−
= =

= ⋅∑∑

Table 2: The main multiplication table after the first split

2K 2 k
kn

j k j
k 0 j 0

P (u v)2
−

−
= =

= ⋅∑∑

Table 3: The modified table (splitting Table 2 into 2K-1 rows)

P

∑
0

0
j 0 j

j 0

u v 2−
=

⋅∑

1

n
j 1 j

j 0

u v 2−
=

⋅∑

.

.

.

2K 2

(2K 2)n
j 2K 2 j

j 0

u v 2
−

−
− −

=

⋅∑

Table 4: Splitting Table 3 into the weighting of the significance and

the inner sigma

P nk*2

∑ k = 0

0

j 0 j
j 0

u v −
=

⋅∑

 K = 1
1

j 1 j
j 0

u v −
=

⋅∑

.

.
.

.
.

.

 K = (2K-2)
2K 2

j 2K 2 j
j 0

u v
−

− −
=

⋅∑

• The split rule is applied to Table 3 to split the

computation into the weighting of the significance
and the inner sigma as shown in Table 4

• Finally, split rule is applied to Table 4 to split each
row into K columns so that each cell contains one
partial product computation as shown in Table 5

 This will allow the computation of the sigma in
each row in an iterative manner by distributing the
partial products along columns. In Table 5, the index of
the operand, U, is mapped to the column index. The
following notes is noteworthy:

• This way each column has different digits of V
• Since k = i+j, each column has the same

multiplicand, U

Table 5: The modified table (split each row of Table 4 into K columns)

P nk*2

∑ k = 0

 ∑

 0 0u v

 K = 1 0 1u v 1 0u v - -

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 K = K-1 0 K 1u v − 1 K 2u v − 2 K 3u v − K 1 0u v−

 1 K 1u v − 2 K 2u v − . . . K 1 1u v−

 2 K 1u v − . . .

 . . .
 k = 2K-2 . . . K 1 K 1u v− −

Table 6: The main multiplication Table (for K = 4)
T P 0 1 2 3 P
0 P0 u0v0 P0

1 P1 u0v1 u1v0 P1

2 P2 u0v2 u1v1 u2v0 P2
3 P3 u0v3 u1v2 u2v1 u3v0 P3
4 P4 u1v3 u2v2 u3v1 P4
5 P5 u2v3 u3v2 P5
6 P6 u3v3 P6
7 P7 P7

• The index of V increases by 1 in each successive

row
• The index of V decreases by 1 in each successive

column
• Each column has exactly K partial products

 As can be seen from Table 5, each row represents a
specific significance and the sum accumulated
horizontally along the rows in the east/west direction
for unidirectional/bidirectional algorithms and the carry
can be transferred to any cell in next row (significance).
This means that the columns order in Table 5 is
insignificant and hence can be interchanged. This is
another merit of the TM over the DG.
 Table 6 which is a specific case of Table 5 (for
K = 4), is the main multiplication table that will be used
in the remainder of this study to derive all classes of
possible radix-2n S/S algorithms and architectures.

Designing inherent S/S algorithms by applying the
Folding rule: The Folding rule is applied only to cells
which are engaged in generating partial products along
a row. These cells are termed the active row. In this
rule, each active row is folded on its centre. To apply
this rule, all rows are scanned and each active row is
folded on its centre. For instance, the first row, row 0,

J. Computer Sci., 6 (4): 461-469, 2010

464

has only one active cell, u0v0, so no action will be
taken. Row 1, has two (even) active cells and their
centre lies between them, so the right cell, u1v0, will be
folded on the left cell, u0v1 as shown in Table 7. Row 2,
has three (odd) active cells and their centre is the
middle cell, u1v1. So, the cells on the right of the middle
cell, u2v0 will be folded on the cells on its left, u0v2, as
shown in Table 7. The remaining rows will be
processed in the same manner.
 It is worth noting that the number of columns after
applying the Folding rule will not be changed.
Furthermore, the Folding rule will ensure that the digits
of the two input operands of a multiplication operation
have the same temporal-spatial mapping (distribution).
These algorithms, where both operands have the same
temporal-spatial mapping will result in inherent S/S
algorithms. Table 7, will be processed more in later,

using the secondary rules) to result in more efficient
algorithms.

Designing non-inherent S/S algorithms using merge
rule: In merging, the cells along the rows of two
adjacent columns are combined together to form one
column. If the merge rule is applied to Table 6, it will
produce Table 8 (the last two columns have been added
to explain an important merit of the TM).
 It is clear from Table 8 that the merging process
will cause the digits of the two input operands to have
different temporal-spatial mappings. Such tables will
result in non-inherent S/S algorithms. The reason those
algorithms are termed non-inherent S/S algorithms is
that they are originally a serial-parallel algorithms
where the multiplicand, U, is distributed and latched
one significance per column, while the multiplier, V, is
propagating through the columns and multiplied by the
relevant multiplicand digit. However, it is obvious,
from the right most two columns in Table 8, that no
more than one new operand from the multiplicand, U
and the multiplier, V, is needed at any cycle. This
means that the same functionality can be achieved by
serial feeding. As a consequence, there is no need for
parallel loading the multiplicand, U and hence the name
non-inherent S/S algorithms (i.e., serial-parallel
algorithms transformed to S/S ones). Table 8, will be
processed more in later, (using the secondary rules) to
result in more efficient algorithms.

Secondary rules: All algorithms (tables) generated by
the previous rules can be processed further to yield a
variety of other more efficient multiplication algorithms
(tables) by applying seven secondary rules.
 The convention in this study is to use temporal
mapping for rows and spatial mapping for columns

(Although, the reverse can be used as multiplication is
commutative). Accordingly, seven secondary rules are
developed and used in this study.

Shift time forward: Since different rows represent
different time cycles, by shifting contents of cells along
a column down implies shifting the content forward by
one cycle in time. The shift time forward can be
performed in either of the following two ways:

• In a recursive way: Where at each stage, the first

column will be fixed and the rest are shifted down
one step (time unit). The output of each stage, the
shifted block, will be processed in the same manner

• Order way: Each column will be shifted down
according to its order. For example the first column
which has order zero will not be shifted, the second
column will be shifted by one step and so on

Systolise: This rule is similar to the previous rule,
except that it is applied to every other column instead of
each column. In this rule, column2j (where j represents
the column index and (0≤j≤K/2-1)) will be fixed and all
columns on its right are shifted down one step. This
rule will be used to systolise bi-directional structures
and hence the name of the rule.

Shift time backward: As different rows represent
different time cycles, shifting contents of cells along a
column up implies shifting the content backward by one
cycle in time. The shift time backward can be
performed following the same procedure used for Shift
time forward, with replacing a shift down action by a
shift up one.

Table 7: General inherent S/S algorithm
T P 0 1 2 3 P
0 p0 u0 v0 p0
1 p1 u0v1+u1v0 p1
2 p2 u0v2+u2v0 u1v1 p2
3 p3 u0v3+u3v0 u1v2+u2v1 p3
4 p4 u1v3+u3v1 u2v2 p4
5 p5 u2v3+u3v2 p5
6 p6 u3v3 p6
7 p7 p7

Table 8: Generic non-inherent S/S algorithm
T P 0 1 P New u New v
0 p0 u0 v0 p0 u0 v0
1 p1 u0v1+u1v0 p1 u1 v1
2 p2 u0v2+u1v1 u2 v0 p2 u2 v2
3 p3 u0 v3+u1v2 u2v1+u3v0 p3 u3 v3
4 p4 u1v3 u2v2+u3v1 p4 - -
5 p5 u2v3+u3v2 p5 - -
6 p6 u3v3 p6 - -
7 p7 p7 - -

J. Computer Sci., 6 (4): 461-469, 2010

465

 It is significant to make the following notes about
the above secondary rules:

• The shift time rules can be interpreted in terms of

adding or removing delay elements from data path
of multiplication structures

• When data paths move in the same direction
(unidirectional algorithms), the Shift Time rules are
equivalent to the unidirectional cut set rules (Kung,
1988)

• When data paths move in opposite directions
(bidirectional algorithms), the Shift Time rules are
equivalent to the bidirectional cut-set rules (Kung,
1988)

Cell duplicate: This rule duplicates the contents of a
group of cells to another empty ones. As will be seen in
later, this rule is used to generate twin pipe algorithms.
Twin pipe algorithms are simply derived by taking a
copy of any active cells and pasting them into inactive
cells to duplicate the same computation. If a new
computation is required at every l cycles (where l = the
maximum number of cycles in columns engaged in
generating partial products), the cells that correspond to
this computation are pasted at the lth cycle. In twin pipe
algorithms a new result will be available every l cycles
as opposed to classical one pipe structures where 2 K
cycles are needed to complete the computation:

Slide back: This rule is used in deriving area efficient
algorithms, where a ~50% silicon saving is achieved.
To apply this rule the following conditions have to be
satisfied:

• There should be K columns in the original

algorithm
• Whenever a cell in the region K/2 to K-1 become

busy in generating partial products, a cell or more
in the region 1 to K /2 in the same significance line
should be free to generate the same number of
partial products

 As a consequence, the region K/2 to K-1 can be
shifted back by K/2 positions along the significance line
and the (K/2)th columns and above is accommodated by
columns 0 to K/2-1 at the last K cycles. In this way a
full utilization of columns 0 to K/2-1 can be achieved
and ~50% of area will be saved. However, for this
technique to work, the K/2 most significant digits need
to be made available to the algorithm again at the last K
cycles, which can be achieved, systematically as well,
by applying the next rule (Data-feedback).

Data-feedback: This rule is applied, only, to
algorithms (tables) after applying the Slide back rule.

For this rule to be applied the following condition has
to be satisfied: (The data needed by the last K/2
columns (BCs) have to be available at column K/2-1,
which is the last active column (A column is active if it
is performing some computation) after applying the
slide back rule, at cycle k≤K+1).
 As will be seen later, to apply this rule, the data
will be fed back when it reaches the K/2 column; either
by broadcasting if it arrives at cycle k = K+1 or through
some delay elements if it arrives at cycle k<K+1.

Split-and-shift: This rule is used to gain more efficient
implementation, where each partial product, which is a
2n-bit number, is divided into least significant n-bit
number, LSD and most significant n-bit number, MSD.
To carry out the radix-2n computation, it is necessary that
either the LSD or the MSD are moved from cell (k,j) to
cell (k-1, j) or (k+1, j), respectively, where k denotes rows
and j denotes columns.
 It is worth mentioning that the first six rules bring
efficiency at the array level, while the seventh rule
brings the efficiency at the BC level.

More efficient inherent S/S algorithms: Table 7 can
be synthesized into two S/S classes of architectures,
namely unidirectional and bidirectional depending on
the accumulation direction. It is clear that the
synthesized architectures will not be efficient as the
accumulation path (critical path) is too long (spanning
the whole row). However, Shift time forward/backward
rules can be applied Table 7 to generate another two
algorithms, which can be synthesized to more efficient
S/S classes of architectures. The reason is that the
accumulation path will be localized and reduced to only
one column at a time.
 Table 9 is the result of applying Shift time forward
rule and represents a family of fully systolic
unidirectional algorithms. On the other side, Table 10 is
the result of applying Shift time backward rule and
represents a family of semi systolic bidirectional
algorithms which can be made fully systolic by
applying Systolise rule.

Table 9: Systolic unidirectional inherent S/S algorithm
T 0 1 2 3 P
0 u0 v0
1 u0v1+u1v0
2 u0v2+u2v0
3 u0v3+u3v0 u1v1 p0
4 u1v2+u2v1 p1
5 u1v3+u3v1 p2
6 u2v2 p3
7 u2v3+u3v2 p4
8 p5
9 u3v3 p6
10 p7

J. Computer Sci., 6 (4): 461-469, 2010

466

Table 10: Semi systolic bidirectional inherent S/S algorithm
T P 0 1 2 3
0 p0 u0 v0
1 p1 u0v1+u1v0 u1v1
2 p2 u0v2+u2v0 u1v2+u2v1 u2v2
3 p3 u0v3+u3v0 u1v3+u3v1 u2v3+u3v2 u3v3
4 p4
5 p5
6 p6
7 p7

Table 11: General twin pipe inherent S/S algorithm
T P1 P2 0 1 2 3 P1 P2

0 p0 u0 v0 p0
1 p1 u0v1+u1v0 p1
2 p2 u0v2+u2v0 u1v1 p2
3 p3 u0v3+u3v0 u1v2+u2v1 p3
4 p0 p4 u0 v0 u1v3+u3v1 u2v2 p0 p4
5 p1 p5 u0v1+u1v0 u2v3+u3v2 p1 p5
6 p2 p6 u0v2+u2v0 u1v1 u3v3 p2 p6
7 p3 p7 u0v3+u3v0 u1v2+u2v1 p3 p7
8 p4 u1v3+u3v1 u2v2 p4
9 p5 u2v3+u3v2 p5
10 p6 u3v3 p6
11 p7 p7

Table 12: General Area efficient inherent S/S algorithm
T P 0 1 P
0 p0 u0 v0 p0
1 p1 u0v1+u1v0 p1
2 p2 u0v2+u2v0 u1v1 p2
3 p3 u0v3+u3v0 u1v2+u2v1 p3
4 p4 u2v2 u1v3+u3v1 p4
5 p5 u2v3+u3v2 p5
6 p6 u3v3 p6
7 p7 p7

 In addition, it is clear from Table 7 that the area
utilization of the columns decreased linearly as we
move from cell 0 to cell K-1. In the 2nd K cycles the
grey cells are used, only, in propagating the results (in
bidirectional algorithms) or staying idle (in the
unidirectional ones).
 To maximize the efficiency of these algorithms,
two techniques, namely the twin piping and the cell re-
mapping (area efficiency) can be derived systematically
from the inherent S/S algorithm (Table 7). These two
techniques are derived by applying Cell Duplicate and
Slide back rules.
 Table 11, which is a generic twin pipe algorithm, is
the result of applying Cell Duplicate rule. Furthermore,
Table 11can be modified in the same systematic way
described previously, by applying the Shift time
forward/ backward rules, to yield systolic unidirectional
and semi systolic bidirectional twin pipe algorithms
respectively. Furthermore, the semi systolic algorithms
can be made fully systolic by applying the Systolise
rule.

Table 13: Systolic unidirectional non-inherent S/S algorithm
T 0 1 P New u New v
0 u0 v0 u0 v0
1 u0v1+u1v0 p0 u1 v1
2 u0v2+u1v1 p1 - v2
3 u0 v3+u1v2 u2 v0 p2 u2 v3
4 u1v3 u2v1+u3v0 p3 u3 -
5 u2v2+u3v1 p4 - -
6 u2v3+u3v2 p5 - -
7 u3v3 p6 - -
8 p7 - -

 The second technique, cell re-mapping, can be
achieved by applying Slide back rule. It can be seen
from Table 7 that the conditions of Slide back are
satisfied; so this rule can be applied to Table 7 to
generate a generic area efficient algorithm (Table 12).
 As mentioned early, for this technique to work, the
K/2 most significant digits need to be made available to
the algorithm again at the last K cycles. Furthermore,
instead of modifying the interface in an ad hoc manner
(by using shift registers at the front end of the structures
derived from this algorithm, which is the case in the
non scalable area efficient structures reported in the
open literature (Aggoun et al., 2004) the Data-feedback
rule can be applied. It is worth mentioning that area
efficient algorithms derived using the proposed TM
have three merits. Firstly, they are developed in a
systematic way; secondly they preserve the true
scalability of the original algorithm as they avoid the
use of word length dependent elements; and finally they
ended up using less silicon compared with area efficient
algorithms which have been designed in an ad hoc
manner. The area efficient algorithm, Table 12, can
then be modified in the same systematic way described
previously, by applying the Shift time
forward/backward rules, to yield systolic unidirectional
and semi systolic bidirectional area efficient algorithms.
 Furthermore, the semi systolic algorithms can be
made fully systolic by applying the Systolise rule.

More efficient non-inherent S/S algorithms: Table 8,
can be synthesized into two S/S classes of architectures
(unidirectional and bidirectional) depending on the
accumulation direction. It should be noted that the
synthesized architectures will not be efficient as the
accumulation path is too long (spanning the whole row).
 However, Shift time forward/backward rules, can
be applied to Table 8 to generate more efficient S/S
algorithms. The reason is that the accumulation path
will be localized and reduced to only one column at a
time. Table 13 is the result of applying shift time
forward rule and represents a family of fully systolic
unidirectional algorithms. On the other side, Table 14 is
the result of applying Shift time backward rule and
represents a family of semi systolic bidirectional
algorithms which can be made fully systolic by
applying the Systolise rule.

J. Computer Sci., 6 (4): 461-469, 2010

467

Table 14: Semi systolic bidirectional non-inherent S/S algorithm
T P 0 1 New u New v
0 p0 u0 v0 u0 v0
1 p1 u0v1+u1v0 u2 v0 u1 u2 v1
2 p2 u0v2+u1v1 u2v1+u3v0 u3 v2
3 p3 u0 v3+u1v2 u2v2+u3v1 - v3
4 p4 u1v3 u2v3+u3v2 - -
5 p5 u3v3 - -
6 p6 - -
7 p7 - -

 It should be noted that, for the bidirectional semi
systolic algorithm (Table 14) two operands from U are
required at some cycles; so for this algorithm to work in
a S/S fashion, two operands of U have to be fed at each
cycle. It is worth pointing out that Table 14 is the
essence of the bit serial-parallel algorithm in (Ait-
Boudaoud et al., 1991) and the digit serial-parallel
algorithm of (Ashur et al., 1996). This demonstrates
clearly the power of the TM, which proves that there is
no need to make all the bits/digits of the multiplicand,
U, available (by parallel loading) at each cycle, thus
noticeable saving in I/O pins, area and energy will be
gained.
 Moreover, following the same procedure described
early, Table 8 can be made more efficient by applying
cell duplicate rule to produce a twin pipe algorithm.
This generic twin pipe algorithm can be modified in the
same systematic way described early by applying Shift
time forward/backward rules, to yield systolic
unidirectional and semi systolic bidirectional twin pipe
algorithms. Furthermore, the semi systolic bidirectional
twin pipe algorithms can be made fully systolic by
applying the Systolise rule.
 It should be mentioned that area efficient
algorithms cannot be generated from non-inherent S/S
algorithms as they do not satisfy the conditions of the
Slide back rule. The reason is that the number of
columns is already halved by the merging process and
no more scope for any further remapping. This is
another merit of the TM where, at the table level and
before any synthesis, it shows the maximum level of
efficiency that can be gained from structures generated
from a specific algorithm. This will definitely save time
and efforts and shorten the time to market period.
 As a final remark, all algorithms can be made more
efficient, at the BC level, by applying the Split-and-
Shift rule.

RESULTS

Detailed case study: New high performance scalable
non-inherent unidirectional radix-2n SSMs: The TM
is utilized, here, in designing a new unidirectional
radix-2n SSM., Table 15 is the result of applying the
Split-and-Shift rule to the systolic unidirectional
algorithm (Table 13).

Table 15: Systolic uni-non-inherent radix-2n S/S algorithm

T BC 0 BC 1 P

0 (u0 v0)L
1 (u0 v0)H + (u0v1+u1v0)L
2 (u0v1+u1v0)H + (u0v2+u1v1)L
3 (u0v2+u1v1)H + (u0 v3+u1v2)L (u2 v0)L p0
4 (u0 v3+u1v2)H + (u1v3)L (u2 v0)H + (u2v1+u3v0)L p1
5 (u1v3)H (u2v1+u3v0)H + (u2v2+u3v1)L p2
6 (u2v2+u3v1)H + (u2v3+u3v2)L p3
7 (u2v3+u3v2)H + (u3v3)L p4
8 (u3v3)H p5
9 p6
10 p7

Fig. 2: Non-inherent systolic unidirectional radix-2n S/S

architecture

 Figure 2 shows the unidirectional digit SSM
synthesized from Table 15. It consists of K/2 BCs,
which corresponds to the mapping of all cells (i, j) with
i≥j onto a single BC j, where j = 0, 1, 2,…,(K/2-1).
 Due to the chosen mapping, it can be seen that the
carry digit, Cout, generated by BC, j, is delayed then fed
back to the same BC. The multiplicand U pass through
K holding latches, where each one is devoted to a
specific significance by the use of specific control
signals, Con. However, the multiplier, V, propagate
through a set of delay elements. A BC, j, start by
computing the product u2jvi-3j during cycle i = 3j and
then the terms [u2jvi-3j+u2j+1vi-3j-1] are computed during
the next K cycles. The terms computed in BC j will be
added to an accumulating result from the BC, j-1 and
then propagated in the next cycle to the BC, j+1.
Following the above discussion, a BC, j, should contain
two n-bit multipliers, accumulators and latches controlled
by a control signal, Con, to allow storage of the input
data u2j and u2j+1. The BC is shown in Fig. 3 and the
multiplier structure is depicted in Fig. 4. Carry save
arithmetic implemented using n-bit 4-2 compressors is
used for the accumulation of the partial results to reduce
the hardware cost (Almiladi and Ibrahim, 2009). The BC
is subdivided into two stages working in a pipeline
manner. The first stage deals with the multiplication
process of the relevant data, while the second stage
performs the addition of the result of the first stage with
the shifted result from the neighbor BC on the left.

J. Computer Sci., 6 (4): 461-469, 2010

468

Fig. 3: BC of the non-inherent unidirectional radix-2n

SSM

Fig. 4: A non-inherent systolic unidirectional radix-2n

SSM

The first part of the first stage of the BC is implemented
using two PPGs and log2(n) rows of n-bit 4-2
compressors arranged in a tree type structure as shown
in Fig. 3 for n = 4 and can be generalized for any digit-
size. The carry digit, Cout, consist of the MSDs of the
two partial products, u2jvi-3j and u2j+1vi-3j-1 and all the
carry bits generated by the n-bit 4-2 compressors. The
carry digit, Cout, is delayed and then fed back into the
same BC as shown in Fig. 2. The delay and feed back to
the same BC, j, of the MSDs of all the partial products,
u2jvi-3j and u2j+1vi-3j-1, is carried out by delaying these
MSDs and adding them to the LSDs of the same partial
products generated in the following cycle. This is
achieved by delaying the input data, vi--3j during cycles
i = 3j and vi--3j and vi-3j-1, (during the next K cycles)
prior to their multiplication with the stored data u2j and
u2j+1 (Almiladi and Ibrahim, 2009). This results in the
reduction of the number of delay elements from n(n-1)/2
to (n-1) per PPG. This is a total of K (n-1)(n-2) reduction
in the total number of delay elements. The partial product
generated by the first stage is shifted to the second stage,
which consists of an n-bit 4-2 compressor. The second
stage is used to add the carry and sum word from the first
stage to the partial sums, S1in and S2in transferred from the

neighboring BC on the left. The output of the second
stage is shifted to the next BC on the right and the process
is repeated. As shown in Fig. 4, a final adder is needed
to sum the two digits, S1out and S2out produced by the last
BC on the right hand side of the multiplier to obtain the
correct result.

DISCUSSION

The case study presented in the previous
section showed the power of the TM in designing new
efficient serial multipliers in an easy way. Before the
TM tables where used to prove functionality but not
designing architectures. Now tables are used for the full
design cycle, from the algorithm to the detailed
architecture along with all the detailed enhancements
(twin pipe, area efficient and so on) and the fine control
needed for those architecture as proved in the previous
section. The merit of TM over other methodologies
comes from the fact that tables carry more information.
In addition, the information contained in the tables are
explicit and leads to straightforward algorithms
derivation and architectures implementation.

CONCLUSION

 In this study a new design methodology for the
design of radix-2n SSMs is presented. The methodology
is a table based one, where the radix-2n arithmetic, as
well as two primary rules, is used to construct the main
multiplication table. Another two primary rules are then
applied to the main table to derive the main two
families of multiplication algorithms namely, inherent
S/S algorithms and non-inherent S/S algorithms. The
resulting algorithms are processed further by applying
other seven secondary rules to yield various more
efficient S/S multiplication algorithms. Also, a detailed
case study of using the TM in designing new highly
regular, modular and scalable non-inherent digit SSMs
is presented. This design proves the power of TM in
designating efficient multipliers in an easy and
systematic way.

REFERENCES

Aggoun, A., M.K. Ibrahim and A. Ashur, 1998a.

Design methodology for sub-digit pipelined digit-
serial IIR filters. J. Sig. Process., 68: 73-86. DOI:
10.1016/S0165-1684(98)00058-9

Aggoun, A., M.K. Ibrahim and A. Ashur, 1998b. Bit-
level pipelined digit-serial array processors. IEEE
Trans. Circ. Syst., 45: 857-868. DOI:
10.1109/82.700933

J. Computer Sci., 6 (4): 461-469, 2010

469

Aggoun, A., A.F. Farwan, M.K. Ibrahim and A. Ashur,
2004. Radix-2n serial-serial multipliers. IEE Proc.
Circ. Devices Syst., 151: 503-509. DOI:
10.1049/ip-cds:20040412

Ait-Boudaoud, D., M.K. Ibrahim and B.R. Hayesgill,
1991. Novel cell architecture for bit level systolic
arrays multiplication. IEE Proc. E, 138: 21-26.

Almiladi, A. and M.K. Ibrahim, 2009. High
performance scalable radix-2n Gf(2n) serial-serial
multipliers. J. Circ. Syst. Comput., 18: 11-30.
DOI: 10.1142/S0218126609004892

Ashur, A., A. Aggoun and M.K. Ibrahim, 1996.
Systolic digit-serial multiplier. IEE Proc. Circ.
Devi. Syst., 143: 14-20.

Kung, S.Y., 1988. VLSI Array Processors. Prentice-
Hall, ISBN: 13: 978-0139427497, pp: 600.

Smith, S., M. McGregor and P. Denyer, 1987.
Techniques to increase the computational
throughput of bit-serial architectures. IEEE Int.
Conf. Acoust. Speech Sign. Process., 12: 543-546.

Wu, C.W. and P.R. Cappello, 1989. Block multipliers
unify bit-level cellular multiplications. Int. J.
Comp. Aid. VLSI Des., 1: 113-125.

