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Abstract: Problem statement: The fast growth and increase in complexity of digital and image 
processing systems necessitate the migration from ad hoc design methods to methodological ones. 
Methodologies will certainly ease the trade off selection for those systems and shortens the design 
time. To increase those gained values and expand the searching space more appropriate methodologies 
need to be developed. Approach: A new methodology (table methodology) to design radix-2n serial-
serial multipliers was presented. Unlike other methodologies, the table methodology was used for the 
full design cycle, from the algorithm to the detailed fine control. Results: The methodology was used 
to identify the drawbacks in existing radix-2n serial-serial multipliers as well as deriving new efficient 
ones. Conclusion/Recommendations: To the author’s knowledge this is the first time tables are used 
in this novel way in tackling the complete solution space of serial-serial multipliers. One important 
merit of the new methodology is that it made it clear that there is no need of parallel loading in serial-
parallel architectures and hence they can be transferred to serial-serial ones and a as a consequence a 
huge saving of bus width, I/O pins, area and energy will be achieved.  
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INTRODUCTION 

  
 Recently, several methodologies have been 
proposed to design digit-serial architectures which will 
be described, briefly, bellow with their features and 
draw backs. In this study a new methodology (which 
will be termed the Table Methodology (TM) in the 
remainder of this study) for designing radix-2n Serial 
Serial Multipliers (SSMs) is introduced. This is the first 
time it is used in this novel way of designing SSMs, 
where the algorithms, architectures, Basic Cells (BCs) 
and their fine controls are derived in a systematic way 
directly from the multiplication table. One significant 
advantage of the TM is its richness in carrying 
important information and exposing them in a clear 
way, which leads to many significant achievements. 
One such important achievement is the proof, 
systematically, that parallel loading of one of the 
operands in digit serial-parallel multiplication 
algorithms is no longer needed and the same 
functionality can be achieved with only a mixed radix-
2n Serial-Serial (S/S) feeding (where one operand fed 
one digit at a time and the other fed two digits at a time) 
(Almiladi and Ibrahim, 2009). This important result 
will lead to a noticeable saving of bus width, I/O pins, 
area and energy. Another powerful aspect of TM is that 

it shows, clearly, the difference in design and nature 
(synthesis/implementation) between inherent and non-
inherent S/S algorithms as will be shown in primary 
rules.  
 It is worth mentioning, that multiplication tables 
(before the TM) was only used as a mean of showing 
correctness of the derived structures. However, in the 
TM, tables are used to proof correctness of existent 
structures as well as, deriving new ones in an easy and 
systematic ways.   
 
Some existent digit-serial design methodologies: 
Several approaches have been proposed to design digit-
serial architectures based on two’s complement number 
representation which are summarized in Fig. 1 (Wu and 
Cappello, 1989; Smith et al., 1987; Aggoun et al., 
1998a).  
 The description of these approaches along with 
their drawbacks can be found in (Aggoun et al., 1998b). 

 

 
 
Fig. 1: Digit-serial methodologies (Aggoun et al., 

1998b)  
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 Recently, a new approach for designing digit-serial 
structures has been proposed (Aggoun et al., 1998a; 
1998b). It can be described by three main steps, 
namely, (i) writing the algorithm using the radix-2n 
arithmetic, (ii) generating the Dependency Graph (DG) 
and selecting the projection direction and (iii) design 
and optimization of the radix-2n cell. 
 More recently, the same design methodology 
proposed for designing digit serial-parallel structures in 
(Aggoun et al., 1998b) is used in (Aggoun et al., 2004) 
to design digit S/S structures. The new DG, which 
allows computation of the radix-2n S/S multiplication 
was shown in (Aggoun et al., 2004) for K = 4 (where K 
is the number of digits used). To obtain digit S/S 
architectures, the DG in (Aggoun et al., 2004) is 
projected onto the line l = 0 (i.e., onto the k axis) in the 
direction [1, 1]T.  However, although most of the design 
cycle in (Aggoun et al., 2004) was derived in a 
methodological way, some parts of the design are done 
in an ad hoc manner. For instance, making the most 
significant digits available to re-enter the structure, 
again, at the Kth cycle has not been done in a systematic 
way. In (Aggoun et al., 2004) an ad hoc approach of 
modifying the interface by introducing K/2 shift 
registers to store the most significant digits of both 
operands is adopted. This ad hoc approach renders the 
original scalable architectures non scalable. Also 
because of the limited amount of information the DG is 
carrying, only a subset of the solution space can be 
derived systematically using it. For instance the twin 
pipe version of both the unidirectional and bidirectional 
digit SSMs cannot be derived systematically in an easy 
way using the DG. Also the new mixed radix-2n SSMs, 
which will be explained later and proved the 
redundancy in digit serial-parallel architectures, cannot 
be observed or derived from the DG. 
 

MATERIALS AND METHODS 
 
The new Methodology   (TM): A new methodology 
for designing multiplication structures is presented here. 
The new Methodology (TM) is effectively a mapping of 
different aspects of the multiplication operation into a 
hierarchical tabular representation. The mapping of 
aspects into the tabular representation is based on rules. 
Each aspect could have its own space (table), such as 
variables, temporal, spatial, control and so on. 
Transformation rules are also introduced as part of the 
new methodology which allows the manipulation of 
tables without losing their basic functionality.  
 The TM captures, in an easy way, the entire digit 
SSMs spectrum as well as producing new novel 
efficient ones. Unlike other methodologies, the TM is 
used for the full design cycle, from the algorithm to the 
detailed architecture along with all the detailed 

enhancements (twin pipe, area efficient and so on) and 
the fine controls needed for those architectures. There 
are two types of rules, namely primary and secondary 
rules. These rules will be described in detail in the next 
two subsections and used in generating the whole 
classes of S/S algorithms. 
 
Primary rules: There are four primary transformation 
rules, two of them (Map and Split) will be used to 
construct the main multiplication table, while the other 
two (Fold and Merge) will be used in generating the 
main families of radix-2n S/S algorithms, namely the 
inherent and non-inherent S/S algorithms  
 
Constructing the main multiplication table using 
map and split: Mapping is a simple rule which maps an 
equation into a table or map one table into another, while 
Split rule is used to partition a table cell into smaller 
cells according to certain rules. In what follows, these 
two rules will be used in constructing the main 
multiplication table.  
 The multiplication of two numbers (U and V) can be 
written as: 
 

K 1 K 1
( j i)n

j i
j 0 i 0

P (u v )2
− −

+

= =

= ⋅∑∑   (1) 

 
where, uj and vi represent the jth and ith digits of U and V, 
respectively. 
 To perform the multiplication recursively, the 
above equation will be modified by introducing a 
dummy variable, k (where, k = i+j and represents the 
significance). The new multiplication equation is given 
by:  
 

2K 2 k
kn

j k j
k 0 j 0

P (u v )2
−

−
= =

= ⋅∑ ∑   (2) 

 
where, ui and vi = 0 for   i<0  and i>K-1. 
 The main multiplication table can be constructed as 
follows: 
 
• Use Map rule to map the above multiplication 

equation into a table to obtain Table 1 
• The split rule is applied to Table 1 to split it into 

two cells (Table 2) showing inputs, operation and 
outputs 

• Thirdly, the split rule is applied again to Table 2 to 
split the computation of the outer sigma into 2K-1 
rows as shown in Table 3. Since the index, k, of the 
outer sigma represents significance, each row in 
Table 3 represents a different significance where 
the first row has significance zero and subsequent 
rows increase in significance until the (2K-1)th row 
which has significance (2K-2) 
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Table 1: The main multiplication table 
2K 2 k

kn
j k j

k 0 j 0

P (u v )2
−

−
= =

= ⋅∑∑  

  
Table 2: The main multiplication table after the first split 

2K 2 k
kn

j k j
k 0 j 0

P (u v )2
−

−
= =

= ⋅∑∑  

 
Table 3: The modified table (splitting Table 2 into 2K-1 rows) 

P   

∑  
0

0
j 0 j

j 0

u v 2−
=

⋅∑  

 
1

n
j 1 j

j 0

u v 2−
=

⋅∑  

 
.

.

.

 

 
2K 2

(2K 2)n
j 2K 2 j

j 0

u v 2
−

−
− −

=

⋅∑  

 
Table 4: Splitting Table 3 into the weighting of the significance and 

the inner sigma  

P  nk*2  

∑  k = 0 

  
0

j 0 j
j 0

u v −
=

⋅∑  

 K = 1 
1

j 1 j
j 0

u v −
=

⋅∑  

.

.  
.

.  
.

.  

 K = (2K-2) 
2K 2

j 2K 2 j
j 0

u v
−

− −
=

⋅∑  

 
• The split rule is applied to Table 3 to split the 

computation into the weighting of the significance  
and  the inner sigma as shown in Table 4 

• Finally, split rule is applied to Table 4 to split each 
row into K columns so that each cell contains one 
partial product computation as shown in Table 5 
 

 This will allow the computation of the sigma in 
each row in an iterative manner by distributing the 
partial products along columns. In Table 5, the index of 
the operand, U, is mapped to the column index. The 
following notes is noteworthy: 
 
• This way each column has different digits of V 
• Since k = i+j, each column has the same 

multiplicand, U 

Table 5: The modified table (split each row of Table 4 into K columns) 

P  nk*2  

∑  k = 0 

 ∑  

  0 0u v  

 K = 1 0 1u v  1 0u v  - - 

 

.

.

.

 
.

.

.

 
.

.

.

 
.

.

.

 
.

.

.

 

 K = K-1 0 K 1u v −  1 K 2u v −  2 K 3u v −  K 1 0u v−   

   1 K 1u v −  2 K 2u v −  . . . K 1 1u v−   

     2 K 1u v −  . . . 

     . . . 
 k = 2K-2    . . . K 1 K 1u v− −   

 
Table 6: The main multiplication Table (for K = 4)   
T P 0 1 2 3 P 
0 P0 u0v0    P0 

1 P1 u0v1 u1v0   P1 

2 P2 u0v2 u1v1 u2v0  P2 
3 P3 u0v3 u1v2 u2v1 u3v0 P3 
4 P4  u1v3 u2v2 u3v1 P4 
5 P5   u2v3 u3v2 P5 
6 P6    u3v3 P6 
7  P7     P7 

 
• The index of V increases by 1 in each successive 

row 
• The index of V decreases by 1 in each successive 

column  
• Each column has exactly K partial products 
 
 As can be seen from Table 5, each row represents a 
specific significance and the sum accumulated 
horizontally along the rows in the east/west direction 
for unidirectional/bidirectional algorithms and the carry 
can be transferred to any cell in next row (significance). 
This means that the columns order in Table 5 is 
insignificant and hence can be interchanged. This is 
another merit of the TM over the DG. 
 Table 6 which is a specific case of   Table   5  (for 
K = 4), is the main multiplication table that will be used 
in the remainder of this study to derive all classes of 
possible radix-2n S/S algorithms and architectures. 
 
Designing inherent S/S algorithms by applying the 
Folding rule: The Folding rule is applied only to cells 
which are engaged in generating partial products along 
a row. These cells are termed the active row. In this 
rule, each active row is folded on its centre. To apply 
this rule, all rows are scanned and each active row is 
folded on its centre. For instance, the first row, row 0, 
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has only one active cell, u0v0, so no action will be 
taken. Row 1, has two (even) active cells and their 
centre lies between them, so the right cell, u1v0, will be 
folded on the left cell, u0v1 as shown in Table 7. Row 2, 
has three (odd) active cells and their centre is the 
middle cell, u1v1. So, the cells on the right of the middle 
cell, u2v0 will be folded on the cells on its left, u0v2, as 
shown in Table 7. The remaining rows will be 
processed in the same manner. 
 It is worth noting that the number of columns after 
applying the Folding rule will not be changed. 
Furthermore, the Folding rule will ensure that the digits 
of the two input operands of a multiplication operation 
have the same temporal-spatial mapping (distribution). 
These algorithms, where both operands have the same 
temporal-spatial mapping will result in inherent S/S 
algorithms. Table 7, will be processed more in later, 

using the secondary rules) to result in more efficient 
algorithms. 
 
Designing non-inherent S/S algorithms using merge 
rule: In merging, the cells along the rows of two 
adjacent columns are combined together to form one 
column. If the merge rule is applied to Table 6, it will 
produce Table 8 (the last two columns have been added 
to explain an important merit of the TM).  
 It is clear from Table 8 that the merging process 
will cause the digits of the two input operands to have 
different temporal-spatial mappings. Such tables will 
result in non-inherent S/S algorithms. The reason those 
algorithms are termed non-inherent S/S algorithms is 
that they are originally a serial-parallel algorithms 
where the multiplicand, U, is distributed and latched 
one significance per column, while the multiplier, V, is 
propagating through the columns and multiplied by the 
relevant multiplicand digit.  However, it is obvious, 
from the right most two columns in Table 8, that no 
more than one new operand from the multiplicand, U 
and the multiplier, V, is needed at any cycle. This 
means that the same functionality can be achieved by 
serial feeding. As a consequence, there is no need for 
parallel loading the multiplicand, U and hence the name 
non-inherent S/S algorithms (i.e., serial-parallel 
algorithms transformed to S/S ones). Table 8, will be 
processed more in later, (using the secondary rules) to 
result in more efficient algorithms. 
 
Secondary rules: All algorithms (tables) generated by 
the previous rules can be processed further to yield a 
variety of other more efficient multiplication algorithms 
(tables) by applying seven secondary rules.  
 The convention in this study is to use temporal 
mapping for rows and spatial mapping for columns 

(Although, the reverse can be used as multiplication is 
commutative). Accordingly, seven secondary rules are 
developed and used in this study.  
 
Shift time forward: Since different rows represent 
different time cycles, by shifting contents of cells along 
a column down implies shifting the content forward by 
one cycle in time. The shift time forward can be 
performed in either of the following two ways: 
 
• In a recursive way: Where at each stage, the first 

column will be fixed and the rest are shifted down 
one step (time unit). The output of each stage, the 
shifted block, will be processed in the same manner 

• Order way: Each column will be shifted down 
according to its order. For example the first column 
which has order zero will not be shifted, the second 
column will be shifted by one step and so on 

 
Systolise: This rule is similar to the previous rule, 
except that it is applied to every other column instead of 
each column. In this rule, column2j (where j represents 
the column index and (0≤j≤K/2-1)) will be fixed and all 
columns on its right are shifted down one step. This 
rule will be used to systolise bi-directional structures 
and hence the name of the rule. 
 
Shift time backward: As different rows represent 
different time cycles, shifting contents of cells along a 
column up implies shifting the content backward by one 
cycle in time. The shift time backward can be 
performed following the same procedure used for Shift 
time forward, with replacing a shift down action by a 
shift up one.  
 
Table 7: General inherent S/S algorithm   
T P 0 1 2 3 P 
0 p0 u0 v0    p0 
1 p1 u0v1+u1v0    p1 
2 p2 u0v2+u2v0 u1v1   p2 
3 p3 u0v3+u3v0 u1v2+u2v1   p3 
4 p4  u1v3+u3v1 u2v2  p4 
5 p5   u2v3+u3v2  p5 
6 p6    u3v3 p6 
7 p7     p7 

  
Table 8: Generic non-inherent S/S algorithm 
T P 0 1 P New u New v 
0 p0 u0 v0  p0 u0 v0 
1 p1 u0v1+u1v0  p1  u1  v1 
2 p2 u0v2+u1v1 u2 v0 p2 u2 v2 
3 p3 u0 v3+u1v2 u2v1+u3v0 p3 u3 v3 
4 p4 u1v3 u2v2+u3v1 p4 - - 
5 p5  u2v3+u3v2 p5 - - 
6 p6  u3v3 p6 - - 
7 p7   p7 - - 
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 It is significant to make the following notes about 
the above secondary rules: 
 
• The shift time rules can be interpreted in terms of 

adding or removing delay elements from data path 
of multiplication structures 

• When data paths move in the same direction 
(unidirectional algorithms), the Shift Time rules are 
equivalent to the unidirectional cut set rules (Kung, 
1988) 

• When data paths move in opposite directions 
(bidirectional algorithms), the Shift Time rules are 
equivalent to the bidirectional cut-set rules (Kung, 
1988)  

 
Cell duplicate: This rule duplicates the contents of a 
group of cells to another empty ones. As will be seen in 
later, this rule is used to generate twin pipe algorithms. 
Twin pipe algorithms are simply derived by taking a 
copy of any active cells and pasting them into inactive 
cells to duplicate the same computation. If a new 
computation is required at every l cycles (where l = the 
maximum number of cycles in columns engaged in 
generating partial products), the cells that correspond to 
this computation are pasted at the lth cycle. In twin pipe 
algorithms a new result will be available every l cycles 
as opposed to classical one pipe structures where 2 K 
cycles are needed to complete the computation: 
 
Slide back: This rule is used in deriving area efficient 
algorithms, where a ~50% silicon saving is achieved. 
To apply this rule the following conditions have to be 
satisfied: 
 
• There should be K columns in the original 

algorithm 
• Whenever a cell in the region K/2 to K-1 become 

busy in generating partial products, a cell or more 
in the region 1 to K /2 in the same significance line 
should be free to generate the same number of 
partial products  

 
 As a consequence, the region K/2 to K-1 can be 
shifted back by K/2 positions along the significance line 
and the (K/2)th columns and above is accommodated by 
columns 0 to K/2-1 at the last K cycles. In this way a 
full utilization of columns 0 to K/2-1 can be achieved 
and ~50% of area will be saved. However, for this 
technique to work, the K/2 most significant digits need 
to be made available to the algorithm again at the last K 
cycles, which can be achieved, systematically as well, 
by applying the next rule (Data-feedback). 
 
Data-feedback: This rule is applied, only, to 
algorithms (tables) after applying the Slide back rule. 

For this rule to be applied the following condition has 
to be satisfied: (The data needed by the last K/2 
columns (BCs) have to be available at column K/2-1, 
which is the last active column (A column is active if it 
is performing some computation) after applying the 
slide back rule, at cycle k≤K+1).   
 As will be seen later, to apply this rule, the data 
will be fed back when it reaches the K/2 column; either 
by broadcasting if it arrives at cycle k = K+1 or through 
some delay elements if it arrives at cycle k<K+1.  
 
Split-and-shift: This rule is used to gain more efficient 
implementation, where each partial product, which is a 
2n-bit number, is divided into least significant n-bit 
number, LSD and most significant n-bit number, MSD. 
To carry out the radix-2n computation, it is necessary that 
either the LSD or the MSD are moved from cell (k,j) to 
cell (k-1, j) or (k+1, j), respectively, where k denotes rows 
and j denotes columns.  
 It is worth mentioning that the first six rules bring 
efficiency at the array level, while the seventh rule 
brings the efficiency at the BC level. 
 
More efficient inherent S/S algorithms: Table 7 can 
be synthesized into two S/S classes of architectures, 
namely unidirectional and bidirectional depending on 
the accumulation direction. It is clear that the 
synthesized architectures will not be efficient as the 
accumulation path (critical path) is too long (spanning 
the whole row). However, Shift time forward/backward 
rules can be applied Table 7 to generate another two 
algorithms, which can be synthesized to more efficient 
S/S classes of architectures. The reason is that the 
accumulation path will be localized and reduced to only 
one column at a time.  
 Table 9 is the result of applying Shift time forward 
rule and represents a family of fully systolic 
unidirectional algorithms. On the other side, Table 10 is 
the result of applying Shift time backward rule and 
represents a family of semi systolic bidirectional 
algorithms which can be made fully systolic by 
applying Systolise rule. 
 
Table 9: Systolic unidirectional inherent S/S algorithm  
T 0 1 2 3 P 
0 u0 v0     
1 u0v1+u1v0     
2 u0v2+u2v0     
3 u0v3+u3v0 u1v1   p0 
4  u1v2+u2v1   p1 
5  u1v3+u3v1   p2 
6   u2v2  p3 
7   u2v3+u3v2  p4 
8     p5 
9    u3v3 p6 
10     p7 
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Table 10: Semi systolic bidirectional inherent S/S algorithm  
T P 0 1 2 3 
0 p0 u0 v0    
1 p1 u0v1+u1v0 u1v1   
2 p2 u0v2+u2v0 u1v2+u2v1 u2v2  
3 p3 u0v3+u3v0 u1v3+u3v1 u2v3+u3v2 u3v3 
4 p4     
5 p5     
6 p6 
7 p7 

 
Table 11: General twin pipe inherent S/S algorithm 
T P1 P2 0 1 2 3 P1 P2 

0 p0  u0 v0    p0  
1 p1  u0v1+u1v0    p1  
2 p2  u0v2+u2v0 u1v1   p2  
3 p3  u0v3+u3v0 u1v2+u2v1   p3  
4 p0 p4 u0 v0 u1v3+u3v1 u2v2  p0 p4 
5 p1 p5 u0v1+u1v0  u2v3+u3v2  p1 p5 
6 p2 p6 u0v2+u2v0 u1v1  u3v3 p2 p6 
7 p3 p7 u0v3+u3v0 u1v2+u2v1   p3 p7 
8  p4  u1v3+u3v1 u2v2   p4 
9  p5   u2v3+u3v2   p5 
10  p6    u3v3  p6 
11  p7      p7 

 
Table 12: General Area efficient inherent S/S algorithm 
T P 0 1 P 
0 p0 u0 v0  p0 
1 p1 u0v1+u1v0  p1 
2 p2 u0v2+u2v0 u1v1 p2 
3 p3 u0v3+u3v0 u1v2+u2v1 p3 
4 p4 u2v2 u1v3+u3v1 p4 
5 p5 u2v3+u3v2  p5 
6 p6  u3v3 p6 
7 p7   p7 

 
 In addition, it is clear from Table 7 that the area 
utilization of the columns decreased linearly as we 
move from cell 0 to cell K-1. In the 2nd K cycles the 
grey cells are used, only, in propagating the results (in 
bidirectional algorithms) or staying idle (in the 
unidirectional ones).  
 To maximize the efficiency of these algorithms, 
two techniques, namely the twin piping and the cell re-
mapping (area efficiency) can be derived systematically 
from the inherent S/S algorithm (Table 7). These two 
techniques are derived by applying Cell Duplicate and 
Slide back rules.   
 Table 11, which is a generic twin pipe algorithm, is 
the result of applying Cell Duplicate rule. Furthermore, 
Table 11can be modified in the same systematic way 
described previously, by applying the Shift time 
forward/ backward rules, to yield systolic unidirectional 
and semi systolic bidirectional twin pipe algorithms 
respectively. Furthermore, the semi systolic algorithms 
can be made fully systolic by applying the Systolise 
rule. 

Table 13: Systolic unidirectional non-inherent S/S algorithm 
T 0 1 P New u New v 
0     u0 v0   u0 v0 
1  u0v1+u1v0  p0  u1  v1 
2  u0v2+u1v1  p1 - v2 
3  u0 v3+u1v2      u2 v0 p2 u2 v3 
4 u1v3  u2v1+u3v0 p3 u3 - 
5   u2v2+u3v1 p4 - - 
6   u2v3+u3v2 p5 - - 
7   u3v3 p6 - - 
8   p7 - - 
 
 The second technique, cell re-mapping, can be 
achieved by applying Slide back rule. It can be seen 
from Table 7 that the conditions of Slide back are 
satisfied; so this rule can be applied to Table 7 to 
generate a generic area efficient algorithm (Table 12).  
 As mentioned early, for this technique to work, the 
K/2 most significant digits need to be made available to 
the algorithm again at the last K cycles. Furthermore, 
instead of modifying the interface in an ad hoc manner 
(by using shift registers at the front end of the structures 
derived from this algorithm, which is the case in the 
non scalable area efficient structures reported in the 
open literature (Aggoun et al., 2004) the Data-feedback 
rule can be applied. It is worth mentioning that area 
efficient algorithms derived using the proposed TM 
have three merits. Firstly, they are developed in a 
systematic way; secondly they preserve the true 
scalability of the original algorithm as they avoid the 
use of word length dependent elements; and finally they 
ended up using less silicon compared with area efficient 
algorithms which have been designed in an ad hoc 
manner. The area efficient algorithm, Table 12, can 
then be modified in the same systematic way described 
previously, by applying the Shift time 
forward/backward rules, to yield systolic unidirectional 
and semi systolic bidirectional area efficient algorithms. 
 Furthermore, the semi systolic algorithms can be 
made fully systolic by applying the Systolise rule. 
 
More efficient non-inherent S/S algorithms: Table 8, 
can be synthesized into two S/S classes of architectures 
(unidirectional and bidirectional) depending on the 
accumulation direction. It should be noted that the 
synthesized architectures will not be efficient as the 
accumulation path is too long (spanning the whole row). 
 However, Shift time forward/backward rules, can 
be applied to Table 8 to generate more efficient S/S 
algorithms.  The reason is that the accumulation path 
will be localized and reduced to only one column at a 
time. Table 13 is the result of applying shift time 
forward rule and represents a family of fully systolic 
unidirectional algorithms. On the other side, Table 14 is 
the result of applying Shift time backward rule and 
represents a family of semi systolic bidirectional 
algorithms which can be made fully systolic by 
applying the Systolise rule. 
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Table 14: Semi systolic bidirectional non-inherent S/S algorithm   
T P 0 1 New u New v 
0 p0       u0 v0  u0 v0 
1 p1  u0v1+u1v0      u2 v0 u1 u2 v1 
2 p2  u0v2+u1v1  u2v1+u3v0 u3 v2 
3 p3  u0 v3+u1v2  u2v2+u3v1 -   v3 
4 p4  u1v3  u2v3+u3v2 - - 
5 p5    u3v3 - - 
6 p6        - - 
7 p7   - - 
 
 It should be noted that, for the bidirectional semi 
systolic algorithm (Table 14) two operands from U are 
required at some cycles; so for this algorithm to work in 
a S/S fashion, two operands of U have to be fed at each 
cycle. It is worth pointing out that Table 14 is the 
essence of the bit serial-parallel algorithm in (Ait-
Boudaoud et al., 1991) and the digit serial-parallel 
algorithm of (Ashur et al., 1996). This demonstrates 
clearly the power of the TM, which proves that there is 
no need to make all the bits/digits of the multiplicand, 
U, available (by parallel loading) at each cycle, thus 
noticeable saving in I/O pins, area and energy will be 
gained.   
 Moreover, following the same procedure described 
early, Table 8 can be made more efficient by applying 
cell duplicate rule to produce a twin pipe algorithm. 
This generic twin pipe algorithm can be modified in the 
same systematic way described early by applying Shift 
time forward/backward rules, to yield systolic 
unidirectional and semi systolic bidirectional twin pipe 
algorithms. Furthermore, the semi systolic bidirectional 
twin pipe algorithms can be made fully systolic by 
applying the Systolise rule. 
 It should be mentioned that area efficient 
algorithms cannot be generated from non-inherent S/S 
algorithms as they do not satisfy the conditions of the 
Slide back rule. The reason is that the number of 
columns is already halved by the merging process and 
no more scope for any further remapping. This is 
another merit of the TM where, at the table level and 
before any synthesis, it shows the maximum level of 
efficiency that can be gained from structures generated 
from a specific algorithm. This will definitely save time 
and efforts and shorten the time to market period. 
 As a final remark, all algorithms can be made more 
efficient, at the BC level, by applying the Split-and-
Shift rule. 
 

RESULTS 
 
Detailed case study: New high performance scalable 
non-inherent unidirectional radix-2n SSMs: The TM 
is utilized, here, in designing a new unidirectional 
radix-2n SSM., Table 15 is the result of applying the 
Split-and-Shift rule to the systolic unidirectional 
algorithm (Table 13). 

Table 15: Systolic uni-non-inherent radix-2n S/S algorithm 

T BC 0 BC 1 P 

0 (u0 v0)L   
1 (u0 v0)H  + (u0v1+u1v0)L   
2 (u0v1+u1v0)H + (u0v2+u1v1)L   
3 (u0v2+u1v1)H + (u0 v3+u1v2)L (u2 v0)L p0 
4 (u0 v3+u1v2)H + (u1v3)L (u2 v0)H + (u2v1+u3v0)L p1 
5 (u1v3)H (u2v1+u3v0)H + (u2v2+u3v1)L p2 
6  (u2v2+u3v1)H + (u2v3+u3v2)L p3 
7  (u2v3+u3v2)H + (u3v3)L p4 
8  (u3v3)H p5 
9   p6 
10   p7 

 

 
 
Fig. 2: Non-inherent systolic unidirectional radix-2n S/S 

architecture 
 
 Figure 2 shows the unidirectional digit SSM 
synthesized from Table 15. It consists of K/2 BCs, 
which corresponds to the mapping of all cells (i, j) with 
i≥j onto a single BC j, where j = 0, 1, 2,…,(K/2-1).  
 Due to the chosen mapping, it can be seen that the 
carry digit, Cout, generated by BC, j, is delayed then fed 
back to the same BC. The multiplicand U pass through 
K holding latches, where each one is devoted to a 
specific significance by the use of specific control 
signals, Con. However, the multiplier, V, propagate 
through a set of delay elements. A BC, j, start by 
computing the product u2jvi-3j during cycle i = 3j and 
then the terms [u2jvi-3j+u2j+1vi-3j-1] are computed during 
the next K cycles. The terms computed in BC j will be 
added to an accumulating result from the BC, j-1 and 
then propagated in the next cycle to the BC, j+1. 
Following the above discussion, a BC, j, should contain 
two n-bit multipliers, accumulators and latches controlled 
by a control signal, Con, to allow storage of the input 
data u2j and u2j+1. The BC is shown in Fig. 3 and the 
multiplier structure is depicted in Fig. 4.  Carry save 
arithmetic implemented using n-bit 4-2 compressors is 
used for the accumulation of the partial results to reduce 
the hardware cost (Almiladi and Ibrahim, 2009). The BC 
is subdivided into two stages working in a pipeline 
manner. The first stage deals with the multiplication 
process of the relevant data, while the second stage 
performs the addition of the result of the first stage with 
the  shifted  result  from  the neighbor  BC  on  the  left.  
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Fig. 3: BC of the non-inherent unidirectional radix-2n 

SSM 
 

 
 
Fig. 4: A non-inherent systolic unidirectional radix-2n

 

SSM 
 
The first part of the first stage of the BC is implemented 
using two PPGs and log2(n) rows of n-bit 4-2 
compressors arranged in a tree type structure as shown 
in Fig. 3 for n = 4 and can be generalized for any digit-
size. The carry digit, Cout, consist of the MSDs of the 
two partial products, u2jvi-3j and u2j+1vi-3j-1 and all the 
carry bits generated by the n-bit 4-2 compressors. The 
carry digit, Cout, is delayed and then fed back into the 
same BC as shown in Fig. 2. The delay and feed back to 
the same BC, j, of the MSDs of all the partial products, 
u2jvi-3j and u2j+1vi-3j-1, is carried out by delaying these 
MSDs and adding them to the LSDs of the same partial 
products generated in the following cycle. This is 
achieved  by  delaying  the input data, vi--3j during cycles 
i = 3j and vi--3j and vi-3j-1, (during the next K cycles) 
prior to their multiplication with the stored data u2j and 
u2j+1 (Almiladi and Ibrahim, 2009). This results in the 
reduction of the number of delay elements from n(n-1)/2 
to (n-1) per PPG. This is a total of K (n-1)(n-2) reduction 
in the total number of delay elements. The partial product 
generated by the first stage is shifted to the second stage, 
which consists of an n-bit 4-2 compressor. The second 
stage is used to add the carry and sum word from the first 
stage to the partial sums, S1in and S2in transferred from the 

neighboring BC on the left. The output of the second 
stage is shifted to the next BC on the right and the process 
is repeated. As   shown in Fig.  4, a final adder is needed 
to sum the two digits, S1out and S2out produced by the last 
BC on the right hand side of the multiplier to obtain the 
correct result.  
 

DISCUSSION 
 

The case study presented in the previous 
section showed the power of the TM in designing new 
efficient serial multipliers in an easy way. Before the 
TM tables where used to prove functionality but not 
designing architectures. Now tables are used for the full 
design cycle, from the algorithm to the detailed 
architecture along with all the detailed enhancements 
(twin pipe, area efficient and so on) and the fine control 
needed for those architecture as proved in the previous 
section. The merit of TM over other methodologies 
comes from the fact that tables carry more information.  
In addition, the information contained in the tables are 
explicit and leads to straightforward algorithms 
derivation and architectures implementation. 
 

CONCLUSION 
 

 In this study a new design methodology for the 
design of radix-2n SSMs is presented. The methodology 
is a table based one, where the radix-2n arithmetic, as 
well as two primary rules, is used to construct the main 
multiplication table. Another two primary rules are then 
applied to the main table to derive the main two 
families of multiplication algorithms namely, inherent 
S/S algorithms and non-inherent S/S algorithms. The 
resulting algorithms are processed further by applying 
other seven secondary rules to yield various more 
efficient S/S multiplication algorithms. Also, a detailed 
case study of using the TM in designing new highly 
regular, modular and scalable non-inherent digit SSMs 
is presented. This design proves the power of TM in 
designating efficient multipliers in an easy and 
systematic way.  
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