
Journal of Computer Science 6 (4): 413-416, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Mamta Madan, Department of information Technology, Vivekananda Institute of Professional Studies,
(GGSIPU), India

413

Convalesce Optimization for Input Allocation Problem Using Hybrid Genetic Algorithm

1Mamta Madan and 2Sushila Madan

1Department of Information Technology, Vivekananda Institute of Professional Studies, (GGSIPU), India
2Department of Computer Science, Lady Shri Ram College, Delhi University, India

Abstract: Problem statement: The purpose of this study was to describe categories of hybrid genetic
algorithm and validate that the hybrid genetic algorithm converges to the optimal solution rather than a
near optimal solution so that Hybrid Genetic algorithms can be used to solve real world problems and
receive significant interest. Approach: We implemented the input allocation problem for a
manufacturing unit firstly with pure genetic algorithm using Matlab’s GA tool and then compared the
results with hybrid genetic algorithm. Results: We observed that the results from applying only pure
genetic algorithm to the problem were near optimal whereas when solved using hybrid genetic
algorithm the results were significantly better and were optimal. Conclusion: The results presented by
pure genetic algorithm and hybrid genetic algorithm are significant and validate that the hybrid genetic
algorithm converges to the optimal solution rather than a near optimal solution.

Key words: Genetic algorithm, Lamarckian search, Baldwinian search, Matlab

INTRODUCTION

 Genetic Algorithms (GAs) are search algorithms
that are conceptually based on the methods that living
organisms adapt to their environment. These methods,
known as natural selection or evolution, combine the
concept of survival of the fittest with a structured yet
randomized information exchange to form a search
algorithm with some of the innovative flair of human
search. In each generation, a new set of string structures
is created from the fittest strings from the previous
generation and occasionally a randomly altered new
part. This process of exploiting historical data allows
the GA to speculate on new search points and
producing better solutions. Genetic algorithms were
initially developed by John H. Holland, a professor of
psychology and computer science at the University of
Michigan. His research focused on what he called
complex adaptive systems. Since their development,
Genetic Algorithms have been used as optimization tools
for complex problems that involve numerous variables or
involve combinations of linear and, non-linear
equations. As an optimization tool, the Genetic
Algorithm attempts to improve performance leading to
an optimal solution. In this process, there are two distinct
steps (1) the process of improvement and (2) reaching
the optimum itself. Of these two steps, the most
important is the process of improvement (Goldberg,

1989). The genetic algorithm can be visualized as
follows:

1. Produce an initial generation of Genomes using a

random number generator.
2. Determine the fitness of all of the Genomes.
3. Determine which Genomes are allowed to

reproduce.
4. Crossover the Genome pairs in the allowable

population.
5. Pick the 2 fittest Genomes of the 2 parents and 2

children resulting from the crossover and add
them to the next generation.

6. Produce random mutations through the next
generation population.

7. Calculate the next generation’s fitness, if achieved
move to 8 else back to step 2.

8. Finish.

 Genetic algorithm promises convergence but not
optimally, although there is no guarantee of optimality,
exponential convergence is assured. If Genetic
Algorithm is run several times, it will converge each
time possibly at different optimal chromosomes.
Typically, Genetic Algorithm is coupled with a local
search mechanism to find the optimal chromosome in
the region. So if a hybrid genetic algorithm is used, it
becomes easy to reach to the optimal solution. Hybrid
genetic algorithm is discussed below in detail.

J. Computer Sci., 6 (4): 413-416, 2010

414

Hybrid genetic algorithm: Hybrid Genetic Algorithm
(HGA) is a novel genetic algorithm on some additional
heuristics which improves the convergence rate of the
algorithm as well as finds better solution. Genetic
Algorithms are not good at identifying the optimal
value of a chromosome for a problem but do very well
in identifying the regions where those optima lie.
Therefore a hybrid Genetic Algorithm is used-every ten
generations, the user anneals the best 10% of the
population. This has the effect of moving the top
chromosomes in that generation to the local maximum
in their region. Including a local search can also help
combat with the genetic (Asoh and Muhlenbeinm,
1994) Drift problem. Although a genetic algorithm can
rapidly locate the region in which the global optimum
exists, they take a relatively long time to locate the
exact local optimum in the region of convergence.
Therefore a combination of a genetic algorithm and a
local search method can speed up the search to locate
the global optimum.

Categories of hybrid genetic algorithm: When a local
search method is added within a genetic algorithm, the
performance of the Genetic Algorithm increases. There
are several issues which should be taken care of when
designing a hybrid genetic algorithm. The way by
which information through local search is utilized
within a hybrid genetic algorithm has a great impact on
the performance of the search process. Two basic
approaches based on biological learning models have
been adopted to utilize local information: (a) The
Lamarckian approach (Ei-Mihoub et al., 2006) (b) The
Baldwinian Approach. There in an opportunity in
hybrid optimization to achieve to capture the best of
both schemes (Lobo and Goldberg, 1997). Both of these
schemes are described below.

Lamarckian learning: The Lamarckian approach is
based on the inheritance of acquired characteristics
obtained through learning. This approach forces the
genetic structure to reflect the result of local search.
The genetic structure of an individual and its fitness are
changed to match the solution found by a local search
method. In the Lamarckian approach, the local search
method is used as a refinement operator that modifies
the genetic structure of an individual and places it back.
Lamarckian evolution can accelerate the search process
of genetic algorithm (Whiteley et al., 1994), on the
other hands can disrupt the schema processing which
can badly affect the exploring abilities of genetic
algorithm, which may lead to premature convergence.
Most of the hybrid genetic algorithms that repair
chromosomes to satisfy constraints are Lamarckian and

the technique has been particularly effective in solving
Travelling Salesman Problem (Julstrom, 2005).

Baldwinian learning: The Baldwinian learning allows
an individual fitness to be improved by applying a local
search, without changing the genotype. In this way it
propagates its structure to next generation and thus
follows the normal process of evolution. The
Baldwinian approach in contrast to the Lamarckian
approach does not allow parents to pass their acquired
characteristics but only the fitness is retained. A local
search method in the Baldwinian approach is usually
used as a part of individual’s evaluation process. The
local search uses local knowledge to produce a new
fitness score that can be used by global genetic
algorithm to improve the results. The Baldwinian effect
consists of the following two steps (a) Learning gives
individuals the chance to change their phenotypes to
improve the performance. (b) The second step is called
genetic assimilation i.e., learning can accelerate the
genetic acquisition of learned traits. Hinton and Nolan
(1987) illustrated how the Baldwin effect can transform
the fitness landscape of a difficult optimization problem
into a less difficult one and how genetic search is
benefited.
 The selection of any form of learning in a hybrid
genetic algorithm has a great impact on its
performance. Various researchers have already worked
on this and showed how it affects the performance on
an optimization problem. Gruau and Whitley (1993)
compared Lamarckian, Baldwininan and pure genetic
algorithm in evolving the architecture that learn
Boolean functions. They also concluded that any form
of learning is better than pure genetic algorithm.

MATERIALS AND METHODS

 We used Matlab’s Genetic Algorithm and Direct
Search Toolbox both for implementing Genetic
Algorithm and Hybrid Genetic Algorithm on Input
Allocation problem. The fitness function was
customized to this specific optimization problem. This
fitness function will vary from one research problem to
another. Results were achieved with different
parameters such as objective function, display plots,
Local search techniques, one may find about these
parameters in Matlab GA toolbox documentation.

RESULTS

 Let us consider an input-Allocation Problem of a
manufacturing concern which produces a product

J. Computer Sci., 6 (4): 413-416, 2010

415

consisting of two raw materials say A1 and A2. The
production function is estimated as:

Z = f(x1,x2) = 3.6x1-0.4x1^2+1.6x2-0.2x2^2

Where:
Z = The quantity (in tons) of the product

produced
x1 and x2 = Designate the input amounts of raw

materials A1 and A2

 The company has RS 50,000 to spend on these two
raw materials. The unit price of A1 is Rs. 10,000 and of
A2 is Rs 5000. Determine how much input amounts of
A1 and A2 be decided so as to maximize the production
outputs (Taha, 1996).

Solution: We have used Genetic Algorithm and Direct
Search Toolbox of Matlab. We need to create a fitness
function which is given below:

• Fitness Function for the above Maximization

problem:

function y = simple_fitness(x)
y = 0.4*x(1)*x(1)+0.2*x(2)*x(2)-3.6*x(1)-
1.6*x(2)

• Constraint Function for the Input Allocation
Problem: This problem has certain constraints
which also has to be specified which is given
below:

function [c, ceq] = simple_constraint(x)
 c =2*x(1)+x(2)-10;
 ceq = []

 To execute this problem on Genetic Algorithm and
Direct Search Toolbox, we need to create the function
handler for the fitness function and constraint function
which is created as follows on the command line:

ObjectiveFunction=@simple_fitness

ConstraintFunction=@simple_constraint

 There are parameters which needs to be set e.g.,
Nvars = 2, which is the number of variables which is 2
(A1 and A2) for our problem. Set crossover as one
point crossover. Set selection as Tournament Selection.
In the stopping criterion fix number of population as
500. Set stall limit as infinity. Set plot interval to be
best fitness so that it can plot only best fitted individual.
After setting all these parameters for genetic algorithm,
the results are shown in Fig. 1.

Fig. 1: Result with genetic algorithm

Fig. 2: Results with hybrid genetic algorithm

 The solution we got from this toolbox is: x1 =
3.551 and x2 = 2.89. The function value at these points
came out to be 10.54 tons. Thus the solution was close
to optimal solution.
 As we know that we are able to converge better
and faster if we use hybrid genetic algorithm. So with
these same parameters we incorporated the function for
hybrid genetic algorithm with the name as fminunc.
This function would automatically be activated where
genetic algorithm terminates. The results are shown in
Fig. 2.

J. Computer Sci., 6 (4): 413-416, 2010

416

 For this problem the maximum function value
evaluated is 10.7 tons which is the expected value. The
value for variables were x1 = 3.5 and x2 = 3.0 which
was the exact solution for the problem (Goldberg,
1998).

DISCUSSION

 As per problem statement in experimental study
section, the material required for the manufacturing
company with Pure Genetic Algorithm came to be A1 =
3.551 and A2 = 2.89. The profit calculated was 10.4
tons which was not the optimal value as from the source
of problem statement. The result for the same
manufacturing unit for hybrid Genetic Algorithm was
A1 as 3.5 and A2 as 3.0, profit come out to be 10.7 tons
which was the exact solution expected. The above
results demonstrates that Genetic Algorithm are able to
reach to near optimal solution while if it mixed with
any local search i.e., if it is made hybrid genetic
algorithm, it converges to the optimal result.

CONCLUSION

 In this study, we have implemented hybrid genetic
algorithm and try to explain how it can improve the
efficiency of the given problem and produce an optimal
instead of near optimal solution. This study focuses on
the use of a local search algorithm with genetic
algorithm to improve results. The ability of genetic-
local hybrid to solve hard problems quickly depends on
the way of utilizing local search information and on the
balance between local and genetic algorithm. The
approaches in the study (Goldberg, 1998) shows that
hybridizing is one possible way to solve hard problems
quickly, reliably and accurately without any human
intervention. The basic success lies in choosing of how
we merge a Local algorithm with the genetic algorithm.

REFRENCES

Asoh, H. and H. Muhlenbein, 1994. On the mean

convergence time of evolutionary algorithms
without selection and mutation. Lecture Notes
Comput. Sci., 866: 88-97. DOI: 10.1007/3-540-
58484-6_253

Ei-Mihoub, T.A., A.A. Hopgood, L. Nolle and
A. Batterby, 2006. Hybrid genetic algorithm a
review. Eng. Lett., 13: 124-137.
https://www.dora.dmu.ac.uk/handle/2086/1173

Goldberg, D.E., 1989. Genetic Algorithm in Search,
Optimization and Machine Learning. Addison-
Wesley, Hardcover, ISBN: 0201157675, pp: 372.

Goldberg, D., 1998. The race, the hurdle and the sweet
spot: Lessons from genetic algorithms for the
automation of design innovation and creativity.
University of Illinois at Urbana-Champaign,
Urbana, IL 61801, IlliGAL Report No. 98007.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.48.4758

Gruau, F. and D. Whitley, 1993. Adding learning to
cellular development of neural network: Evolution
and Baldwininian effect. Evolut. Comput., 1: 213-233.

Hinton, G. and S.J. Nolan, 1987. How learning can
guide evolution. Complex Syst., 1: 495-502.

Julstrom, B.A., 2005. Comparing Darwinian,
Baldwinian and Lamarckian search in a genetic
algorithm for the 4-cycle problem. Proceeding of
the Genetic and Evolutionary Computation
Conference, Hardback, pp: 324.
http://sciencestage.com/d/1328805/comparing-
darwinian-baldwinian-and-lamarckian-search-in-a-
genetic-algorithm-for-the-4-cycle-problem-.html

Lobo, F.G. and D.E. Goldberg, 1997. Decision making
in a hybrid genetic algorithm. Proceeding of the
IEEE International Conference on Evolutionary
Computation, IEEE Xplore Press, USA., pp: 121-125.
DOI: 10.1109/ICEC.1997.592281

Taha, H.A., 1996. Operations Research An
Introduction. 6th Edn., Prentice Hall, ISBN: 10:
0132729156, pp: 916.

Whiteley, D., S. Gordon and K. Mathias, 1994.
Lamarckian Evolution, the Baldwinian Effect and
Function Optimization. In: Parallel Problem
Solving from Nature, Davidor et al. (Eds.).
Springer-Verlag, Berlin, pp: 6-15.

