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Abstract: Problem statement: Lucas function is a special form of second-order linear recurrence 
relation. It is used in LUC cryptosystems. The performance of LUC cryptosystem depends on the size 
of public key, messages and two relatively primes. The increasing of size of these parameters will 
increase the computation time need to perform the LUC Cryptosystem computation. The efficiency 
means the quality to avoid wasted time. Approach: Therefore, the main theme of this study was to 
design and implement an improve version of computation algorithm. The efficiency of computation 
can skip some computations time for a computerized calculation. Smaller computation time means the 
algorithm is better and more efficient than the other algorithm. In this study, the technique on reducing 
redundant number of computations steps in LUC Cryptosystem was investigated. The use of two 
variables w and t were proposed in order to reduce some computations steps in LUC Cryptosystem 
computation. Results: The new technique showed a better computation time compared to the existing 
algorithm. It also reduced some redundant multiplications without sacrificed the security of LUC 
Cryptosystem. At the same time, it increases the efficiency of computation algorithm. Conclusion: The 
proposed algorithm showed better speed and efficiency by reducing some redundant computation 
steps. It can reduce up to 20% of computation efforts compare to the existing one. 
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INTRODUCTION 

 
 The analysis of algorithms is the area of computer 
science that provides tools for contrasting the efficiency 
of different methods of solution. Notice the use of the 
term methods of solution rather than programs; it is 
important to emphasize that the analysis concerns itself 
primarily with significant differences in efficiency 
where these differences that can be usually obtain only 
through superior methods of solution and rarely through 
clever tricks in coding.  
 Although the efficient use of both time and space is 
important, inexpensive memory has reduced the 
significance of space efficiency. Thus, in this study the 
focus is primarily on time efficiency. Based on this 
focus, the possible approach is to implement the existing 
and proposed algorithms in C and run the programs. 
 In general, the total amount of computation for LUC 
Cryptosystems is approximately equal to the amount 
needed for the RSA cryptosystems (Rivest et al., 1978). 
Horster et al. (1996), the author discussed another 
approaches of using Lucas functions. Full Lucas Functions 
computation that involved both sequences Un and Vn are 
shown in (Horster et al., 1996). The cubic analogue of 
Lucas Functions is discussed in (Castagnos, 2007). 

 Meanwhile, the work in (Chiou and Laih, 2000) 
shows different technique compared to the work in 
(Ali et al., 2010). Smith and Lennon (1993) also 
provided two factors that give an impact to the 
performance and behavior of calculation of LUC 
cryptosystems, there are:  
 
(a) Computations of Ve and Vd are huge and require 

long computation for large values of e and d 
(b) The private-key d has to be recomputed for each 

block of messages 
 

 The related techniques to overcome these factors 
are provided. For factor (a) above, the computation of 
Lucas Function, Ve is almost the same as computation 
of powers. Therefore, the fast technique for the 
computation of powers can also be implemented on the 
computation of Lucas Functions.  
 Meanwhile, factor (b) shows that more 
computation works are required in the calculation of 
private key d than in the calculation of the private key 
for RSA systems. One of the techniques to compute 
private key d is shown in (Ali et al., 2010). However, 
this technique is only work when the value of two 
primes p and q are known.  
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 In this study, the new computation technique that 
required smaller numbers of computation compare to 
the existing computation algorithm will be discussed. 
Briefly, the proposed algorithm is based on Addition 
Chain.  
 Two variables such w and t are introduced in order 
to design an efficient computational algorithm. These 
values could be used in order to skip some redundant 
computation of LUC Cryptosystem. 
 As a result the number of computation is reduced. 
At the same time, the computations time were also 
reduced. The efficiency of computation algorithm was 
increased. 
 

MATERIALS AND METHODS 
 
LUC cryptosystem: Lucas Functions are the second 
order linear recurrence relation using large public 
integer as modulo. These functions used in LUC 
Cryptosystem.  
 These functions are used in encryption and 
decryption processes. It is clear that LUC Cryptosystem 
is a recurrence relation based cryptosystem compared to 
the RSA that was based on exponentiation (Ribenboim, 
1988).  
 Some important Lucas Functions properties are as 
follows (Horster et al., 1996; Ribenboim, 1988; Smith 
and Lennon, 1993 Williams, 1982): 
 
Vn = PVn-1-Vn-2 (1) 
 
V2n = Vn

2 – 2Qn (2) 
 
V2n-1 = VnVn-1 – PQn−1 (3) 
 
V2n+1 = PVn

2 -QVnVn-1 - PQn (4) 
 
Vn

2 = DUn
2 + 4Qn (5) 

 
 Initial values are V0 = 2 and V1 = P. While, D = P2-
4Q is discriminate. Two functions Un and Vn in Lucas 
sequences are defined as follows:  
 
U0 = 0, U1 = 1; Un= PUn-1–QUn-2  for n≥2 
V0 = 2, V1 = P; V1 = PVn-1-QVn-2  for n≥2 
 
 Only concentrates on function Vn with Q = 1. The 
computations of Vn need enormous computations 
(Horster et al., 1996; Joye and Quisquater, 1996) since 
the nature of Lucas Functions are based on recurrence 
relation.  
 In Lucas Functions computation, the computation 
of Vn needs two values of previous computation. The 
initial values should be V0 and V1.  

 A ciphertext, C is obtained by encrypting the 
message, P by E (P) = Ve(P,1)(mod N) = C (mod N). 
Where, Ve is a Lucas Function and e is a public key. 
While, the decryption function is applied to C by D(C) 
= Vd(C,1) = Vd(Ve(P,1),1) = Ved(P,1) = P(mod N). 
Where, Vd is a Lucas Function and d is a private key. 
 
An existing algorithm: The existing algorithm can be 
found in (Ali et al., 2010). In this algorithm, the 
generated Addition Chain will be used. The following 
ideas should be considered: 
 
(a) An Addition Chain provides an idea of skipping 

the iterations steps needed to compute Lucas 
Functions. 

(b) The computation of V2n, V2n−1 and V2n+1 is done for 
every k[m] = 0 

(c) No computation need for every k[m] = 1 and the 
only thing to do here is to initiate the next value to 
be used for next computation 

 
 Detail explanation on this algorithm can be found 
in (Ali et al., 2010). The algorithm to generate Addition 
Chain is shown in Fig. 1, while the algorithm on how to 
use it is shown in Fig. 2.  
 The generated array k [0,1,…m] should be used in 
backward. It means that the computation start with k 
[m], k [m-1] until k[0] and k[0] used to stop the 
iterations. In Fig. 2, Vn

2 is computed twice, first in line 
4.i.a and secondly in line 4.i.c.  
 

 
 
Fig. 1: An algorithm to generate array k [0,1,…,m] 
 

 
 
Fig. 2: Existing algorithm for Luc cryptosystem based 

on addition chain 
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 It is also clear that VnV j is also compute twice as 
shown in line 4.i.b and 4.i.c. Meanwhile, VnV j is also 
computed twice as can found it in line 4.i.b and line 
4.i.c. These redundant computations can increase the 
computation time and surely decrease the efficiency of 
computation algorithm.  
 On the other hand, in line 4.i.c, the computation of 
(4) can be skipped. This is unnecessary computation 
step found in this algorithm.  
 Therefore, the computation of this function for 
each k[m] = 1. Table 1 shows the illustration of LUC 
Cryptosystem computation for V1103 for the existing 
algorithm.  
 Remember that, array k [0,1,…,m] is generated by 
Fig. 1. The generating of array k did not show in this 
study, because the detail of generating array k can be 
found in (Ali et al., 2010).  
 Noted that, ‘Yes’ indicates the required 
computation, while ‘No’ indicates no computation is 
required. 
  

 
 
Fig. 3: Algorithm on reducing the number of 

computation 
 
Table 1: Existing algorithm for computation of V1103 

M k[m] Vn V j V2n V2n+1 V2n−1 
15 0 V2 V1 Yes Yes Yes 
14 0 V4 V3 Yes Yes Yes 
13 0 V8 V7 Yes Yes Yes 
12 0 V16 V15 Yes Yes Yes 
11 1 V17 V16 No  No  No  
10 0 V34 V33 Yes  Yes Yes 
9 0 V68 V67 Yes  Yes Yes 
8 0 V136 V135 Yes  Yes Yes 
7 1 V137 V136 No  No  No  
6 0 V274 V273 Yes  Yes Yes 
5 1 V275 V274 No  No  No  
4 0 V550 V549 Yes  Yes Yes 
3 1 V551 V550 No  No  No  
2 0 V1102 V1101 Yes  Yes Yes 
1 1 V1103 V1102 No  No  No  
0 0 V1103 V1102 No  No  No  

Proposed algorithm: This algorithm shows another 
computation technique for LUC Cryptosystems. This 
technique is definitely better than the sum redundancy 
computation in the existing algorithm. The using of two 
variables w and t can reduce redundancy in 
computation of LUC Cryptosystem. The main purpose 
of this algorithm is to reduce the computation of Lucas 
Functions. The improvements from the existing 
algorithm are shown in the following facts:  

 
(a) The values of w and t are computed in every k[m] 

= 1, therefore this technique can reduce some 
computations 

(b) The value w is calculated from Vn
2 and t is 

calculated from VnV j 
(c) Clearly, both values of w and t are small parts of 

Eq. 2 and 3 
(d) In detail, the computation of V2n and V2n−1 is done 

for every k [m] = 0 
(e) The computation of V2n+1 is done for every k [m] = 

1 using w and t that are calculated previously 
(f) The next values to be used such as Vn and Vj are 

also initiated in each k[m] = 0 and k [m] = 1 

 
 Figure 3 shows the proposed algorithm which is 
concentrated on reducing some redundant 
computations. 
 Two variables w and t are introduced in such away 
to reduce some computation steps. It is clearly shown in 
lines 4.i.a and 4.i.t.  
 These values are then used in line 4.ii.a. Table 2 
shows the illustration of LUC Cryptosystem computation 
for V1103 for the proposed algorithm. Once again, noted 
that the array k [0, 1,..., m] is generated by Fig. 1.  

 
Table 2: Proposed algorithm for V1103 

M k[m] V n Vj V2n V2n+1 V2n-1 w t 
15 0 V2 V1 Yes No Yes Yes Yes 
14 0 V4 V3 Yes No Yes Yes Yes 
13 0 V8 V7 Yes No Yes Yes Yes 
12 0 V16 V15 Yes No Yes Yes Yes 
11 1 V17 V16 No Yes No No  No  
10 0 V34 V33 Yes No Yes Yes Yes 
9 0 V68 V67 Yes No  Yes Yes Yes 
8 0 V136 V135 Yes No  Yes Yes Yes 
7 1 V137 V136 No Yes No No  No  
6 0 V274 V273 Yes No  Yes Yes Yes 
5 1 V275 V274 No Yes No No  No  
4 0 V550 V549 Yes No  Yes Yes Yes 
3 1 V551 V550 No Yes No No  No  
2 0 V1102 V1101 Yes No Yes Yes Yes 
1 1 V1103 V1102 No Yes No No No  
0 0 V1103 V1102 No No  No No  No  
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RESULTS 
 
 In this study, the efficiency of those algorithms will 
be tested with very large size of keys, messages and 
primes.  These three different situations may produce 
different computation time. When the size of keys, 
messages and primes are increased; the computation 
time is increased.  
 The public key e would also be relatively large 
integer, because e is chosen so that e is relatively 
primes to p and q. The primes p and q should also be in 
large size. Therefore, the value of N is also large, 
because N = p×q.  It is a property of the encryption 
technique that modest increase in computational cost 
can produce vast increases in security.  
 In many applications, the cryptography itself 
accounts for only a small fraction of the computing 
cost, compared to such processes of video, voice or 
image compressions required to prepare the material of 
encryption. The size of encryption keys could 
strengthen the security of the systems and the difficulty 
of all possible keys grows exponentially with the 
number of bits used. The bigger the primes size, the 
more work is needed to compute modulo N.  
  

DISCUSSION 
 
 The discussion on these algorithms will look into 
all aspect that could give an impact onto their 
performance. The following symbols are useful in the 
discussion:  
 
(a) M is a total number of iterations for Addition 

Chain 
(b) R is a total number of k [m] = 0 for Addition Chain 
(c) s is total number of k [m] = 1 for Addition Chain 
 
 Based on the notation of symbols above, the 
simplified number of computation for the existing 
algorithm as 9r and the number of computation for 
proposed algorithm as 4r+3s.  
 
Table 3: Computation time on different size of public key 
 Encryption (sec) Decryption (sec) 
Public Key e ------------------------------- ------------------------------- 
(digits) Existing Proposed Existing Proposed 
 19 7.78 6.79 190.56 155.79 
159 88.68 68.73 255.10 211.56 
339 380.26 301.34 414.01 393.31 
579 775.88 687.99 417.05 389.51 
 
Table 4: Computation time on different size of messages 
 Encryption (sec) Decryption (sec) 
Messages P ------------------------------- --------------------------------  
(digits) Existing Proposed Existing Proposed 
20 31.98 28.33 1497.65 1301.43 
160 36.09 31.54 1441.57 1276.54 
250 39.69 36.44 1440.48 1345.32 
390 46.98 42.44 1442.57 1365.35 

 Table 6-8 show the combination of r and s for 
Table 3-5. The total of 1 and 0 must equal to the total 
number of iterations for Addition Chain.  
 Consider the situation of Addition Chain (Table 6) 
with the size of public key is e = 579 with 2868 
iterations, s = 948 and r = 1920. The total number of 
computation for existing algorithm is 17280 (9×1920).  
 On the other hand, the total number of computation 
for proposed algorithm is only 10524 (4×1920+3×948). 
The efficiency of those algorithms also gives an impact 
to the decryption process. 
 Therefore, decryption process required 5940 
(9×660) computations for existing algorithm. 
Meanwhile, the proposed algorithm only required 3636 
(4×660+3×332). Total number of computations for 
numerical experiments is shown in Table 9-11. 
 The proposed algorithm has the smallest total 
number of computations compared to the existing one. 
As the size of primes increase, the size of private keys 
also increases. The size of private key d will also 
increase in almost double of the prime sizes.  
 
Table 5: Computation time for existing and proposed algorithms on 

different size of primes 
 Encryption (sec) Decryption (sec) 
Primes p and q ---------------------------- ----------------------------- 
(digits) Existing Proposed Existing Proposed 
100 88.75 74.12 209.58 175.54 
160 246.60 205.78 972.86 834.12 
220 344.45 295.99 1830.33 1683.44 
280 456.61 400.12 3072.36 2734.34 
 
Table 6: Combination of s and r, for different size of public key 
 Encryption   Decryption 
 -------------------- --------------------- 
Public key e s r s r 
19 36 59 324 660 
159 292 525  345 659 
339 561 1122 317 660 
579 948 1920 332 660 

 
Table 7: Combination of s and r, for different size of messages 
 Encryption  Decryption  
Messages  ------------------------ -------------------------- 
P s  r s r  
20 36 59 699 1324 
160 36 59 699 1324 
250 36 59 656 1321 
390 36 59 656 1321 

 
Table 8: Combination of s and r, for different size of primes 
 Encryption   Decryption 
Primes ----------------------- --------------------------- 
p and q s r s r 
100 292 525 331 656 
160 292 525 537 1059 
220 292 525 715 1449 
280 292 525 874 1854 
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Table 9: Number of computations for different size of public key  
 Encryption  Decryption  
 -------------------------------- -------------------------------- 
E Existing  Proposed Existing Proposed  
19 531 334 5940 3612 
159 4725 2976 5931 3671 
339 10098 6171 5940 3591 
579 17280 10524 5940 3636 
 
Table 10: Number of computations for different size of messages  
 Encryption   Decryption  
 ------------------------------- -------------------------------- 
P Existing  Proposed Existing  Proposed  
20 531 334 11916 7393 
160 531 334 11916 7393 
250 531 334 11889 7252 
390 531 334 11889 7252 
 
Table 11: Number of computations for different size of primes  
 Encryption  Decryption 
 ----------------------------------- ------------------------------- 
p and q Existing Proposed Existing Proposed 
100 4725 2976 5904 3617 
160 4725 2976 9531  5847 
220 4725 2976 13041  7941 
280 4725 2976 16686 10038 

 
 Overall, the popular Moore’s Law could be useful 
to estimate the minimum strength required as a function 
of time. Taking into account both the life span of 
cryptographic equipment and the secrets it protects. 
 

CONCLUSION 
 

 The proposed algorithm shows better computation 
time and smaller total number of computations. The 
algorithms are proposed to manipulate the Addition 
Chain. All algorithms have been implemented to 
increase the speed of LUC Cryptosystem computation. 
The proposed algorithm surely shows better speed and 
efficiency by reducing some redundant computation 
steps.  
 The longer the Addition Chain, the longer 
computation time is needed. Therefore, the size of array 
k[m] generated by Addition Chain is always depends on 
the size of public key or private keys. Thus, increasing 
the key size to gain greater security is feasible by the 
computation algorithm. Surely, the size of primes plays 
important roles in LUC Cryptosystems computations.  
 The two primes, p and q built up modulo N used in 
LUC computations. It is also found that, the size of 
private key is almost double when the size of primes is 
increased. The proposed algorithm proposed can speed 
up the computations of LUC cryptosystems compared 
to the existing algorithm (Ali et al., 2010).  
 The proposed techniques discussed here leads to 
high reduction in the multiplications required for both 

encryption and decryption operations without sacrificed 
the key size of LUC Cryptosystem security. It makes 
the LUC cryptosystem computations more efficient for 
security implementation.  
 The improvement of the proposed algorithms in 
this study can be focused on: (a) Generating shorter 
sequence compare to Addition Chain and (b) Finding 
new property of Lucas Functions. 
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