
Journal of Computer Science 5 (2): 90-96, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: R. Manoharan, Department of Master of Computer Applications, SNS College of Technology,
 Sathy Main Road, Coimbatore-641035, Tamil Nadu, India Tel: 91-422-2666264/+919363158114

90

A Software Agent for Speech Abiding Systems

1R. Manoharan, 2K. Vivekanandan and 3V. Sundaram

1Department of Master of Computer Applications, SNS College of Technology,
Sathy Main Road, Coimbatore-641035, Tamil Nadu, India

2Bharathiar University, Coimbatore-641046, Tamil Nadu, India
3Karpagam College of Engineering, Coimbatore-641032, Tamil Nadu, India

Abstract: Problem statement: In order to bring speech into the mainstream of business process an
efficient digital signal processor is necessary. The Fast Fourier Transform (FFT) and the butter fly
structure symmetry will enable the harwaring easier. With the DSP and software proposed, togetherly
established by means of a system, named here as “Speech Abiding System (SAS)”, a software agent,
which involves the digital representation of speech signals and the use of digital processors to analyze,
synthesize, or modify such signals. The proposed SAS addresses the issues in two parts. Part I:
Capturing the Speaker and the Language independent error free Speech Content for speech
applications processing and Part II: To accomplish the speech content as an input to the Speech User
Applications/Interface (SUI). Approach: Discrete Fourier Transform (DFT) of the speech signal is the
essential ingredient to evolve this SAS and Discrete-Time Fourier Transform (DTFT) links the
discrete-time domain to the continuous-frequency domain. The direct computation of DFT is
prohibitively expensive in terms of the required computer operations. Fortunately, a number of “fast”
transforms have been developed that are mathematically equivalent to the DFT, but which require
significantly a fewer computer operations for their implementation. Results: From Part-I, the SAS able
to capture an error free Speech content to facilitate the speech as a good input in the main stream of
business processing. Part-II provides an environment to implement the speech user applications at a
primitive level. Conclusion/Recommendations: The SAS agent along with the required hardware
architecture, a Finite State Automata (FSA) machine can be created to develop global oriented domain
specific speech user applications easily. It will have a major impact on interoperability and
disintermediation in the Information Technology Cycle (ITC) for computer program generating.

Key words: Speech abiding systems, speech science, speech technology, speech user interface, speech

user applications, MS speech server, SALT, companding

INTRODUCTION

 Speech and natural language understanding are the
key technologies that will have the most impact in the
next 15 years. Enabling users to speak and listen to a
computer will greatly enhance the ability for users to
access computers at any time from nearly any place.
Speaking and listening is so fundamental that people
take it for granted. Everyday people ask questions.
They give instructions. Speaking and listening are
necessary for learning and training, for selling and
buying, for persuading and agreeing and for most social
interactions. For the majority of people, speaking and
understanding spoken speech is simply the most
convenient and natural way of interacting with other

people. So, is it possible to speak and listen to a
computer? Yes.
 Speech technologies allow companies to offer the
option of a self-service interface to manage tasks like
rate quotes or reservations, technical troubleshooting
and customer support as well as the ability to handle
complex customer dialogs, capturing all the information
required to provide detailed responses.
 Despite the significant progress that has been made
in the areas of speech recognition and spoken-language
processing, building a successful dialogue system still
requires large amounts of development time and human
expertise. In addition, spoken dialogue systems
algorithms often have little generalization power and
are not portable across application domain.

J. Computer Sci., 5 (2): 90-96, 2009

91

Motivation for speaking and listening to a computer
to retrieve speech content: Despite physical
impairments such as blindness or poor physical
dexterity. Speaking enables impaired callers to access
computers. Callers with poor physical dexterity (who
cannot type) can use speech to enter requests to the
computer. The sight-impaired can listen to the computer
as it speaks. When visual and/or mechanical interfaces
are not an option, callers can perform transactions by
saying what they want done and supplying the
appropriate information. If a person with impairments
can speak and listen, that person can use a computer. To
bypass the limitations of small keyboards and screens.
As devices become smaller, our fingers do not. Keys on
the keypad shrink-often to the point where people with
thick fingers press two or more keys with one finger
stroke. The small screens on some cell phones may be
difficult to see, especially in extreme lighting
conditions. By speaking and listening, callers can
bypass the small screen of many handheld electronic
devices.
 A specific problem in speech input is the room
acoustics, where environmental noise may prevail, so
that the frequency-dependant reflections overlay a
sound wave along walls and objects with the primary
sound waves. Also, word boundaries have to be
defined, which is not easy, because most speakers or
most human languages do not emphasize the end of one
and beginning of that next word. A kind of time
standardization is required to be able to compare a
speech unit with existing samples. The same word can
be spoken fast or slow. However, we cannot simply
clench or stretch the time axis, because elongation
factors are not proportional to the total duration.
 Speech recognition and understanding called
(abiding), by machine or a system is still a difficult and
largely unsolved problem and there are a number of
areas of active research that are being explored in the
attempt to conquer the remaining serious problems. It is
not possible to understand speech and audio signal
processing in any depth without having a solid
background in the mathematical underpinnings of
signal processing and pattern recognition. So, advances
in speech processing owe much to advancing computer
technology; but, in addition, this progress has been
dependent on the mathematical disciplines of digital
signal processing. The connection between speech and
Digital Signal Processing (DSP) is straightforward.
Speech depends greatly on filtering, both production
and perception.
 The objective of this study to capture an error free
Speech Content after having considered all the
characteristics of NL. There is a viable solution to solve

these issues through a well defined algorithm with the
use of Fast Fourier Transform and also filtering through
Decimation[1]. However let us touch upon this issue
here, by giving the Signal Flow Graph (SFG) after the
FFT and decimation process, forming a “Butter-fly”
symmetry[2], which is really feasible to have a solution
through the hardware and/or through the software. Here
we have attempted to solve through software. The detail
study and design and required tools and software are
given in the following paragraphs.

MATERIALS AND METHODS

• Part I: Mathematical tool Fast Fourier Transform

(FFT) is used
• Part II: Microsoft Speech Server (MSS Server),

Speech Application Language Tags (SALT), C#,
NET Frame work, Widows XP O/S

Part I: Capturing Zero-error speech content for speech
user applications.

Why to focus on the FFT: The DFT[3] computational
yields the spectrum of a finite sequence and hence its
great importance in signal processes applications. In
analyzing speech signal variations with the Discrete-
Time Fourier Transform (DTFT), we encounter the
problem that a single Fourier transform cannot
characterize changes in speech content over time such
as time-varying formants and harmonics. In contrast,
the Fast Fourier Transform (FFT) consists of separate
Fourier Transform for each instant in time. In
particular, we associate with each instant the Fourier
transform of the signal in the neighborhood of the
instant, so that spectral evolution of the signal can be
traced in time.
 There are a great variety of FFT algorithms. They
can all derive from successive applications of a single
operation, by representing a one-dimensional string of
numbers as a two-dimensional array. If we have N-
point sequence, the integer N is either a prime or a
composite number. If N is composite, it can be
expressed as the product N1 N2. If either or both N1 and
N2 are composite, further reduction is permissible. For
example, we can express the number 60 as (12×5) or
(3×4×5) or (2×2×5×3) and so on. The term radix is
commonly used to describe this decomposition. If N
can be expressed as a product of the same integer ‘r’,
the FFT algorithm is called a radix ‘r’ algorithm[2]. If N
is a power of 2 then DFT can be computed in N log2N
operations. Thus for example, if N = 1024, log2N = 10,
then the number of operations = 1024×10 = 10240. This

J. Computer Sci., 5 (2): 90-96, 2009

92

is in contract with the “brutal force” DFT computation
which takes N2 = 1024×1024 operations.
 Therefore:

1024 1024 1024
Savings 102.4

10240 10
×= = =

 The savings is a factor lf 100 (ignoring the details).
Therefore FFT is 100 times better than direct DFT in
terms of operations alone.
 The motivation for the Fourier transforms comes
from the study of Fourier series. In the study, of Fourier
series, complicated periodic functions are written as the
sum of simple wave that are mathematically
represented by Sine and Cosine. Due to properties of
Sine and Cosine it is possible to recover the amount of
each wave in the sum by an integral. In many cases, it is
desirable to use Euler’s Formula which states that e e�j�
= Cos 2�� + i Sin 2��, to write Fourier series in terms
of the basic waves e 2�j� This has the advantage of
simplifying many of the formulae involved in Fourier
analysis. This passage from Sine and Cosine to
complex exponentials makes it necessary for the
Fourier co-efficient to be complex valued. The usual
interpretation of this complex number is that it gives
both the amplitude (and size) of the waves present in
the function and the phase (or the initial angle) of the
wave.
 Using compression techniques to reduce the
number of windows through the use of the powerful
mathematical tools like Discrete Fourier Transform
 Discrete Fourier Transform (DFT)[3] and the
Discrete Cosine Transform (DCT)[3] suitably adapted.
In other words, capturing speech content for the signal-
based audio data through discrete transformations.
 Most new systems for the processing of the speech
are now digital and as such are based on the
fundamental mathematical tools, namely Z-Transform,
Discrete Fourier Transform (DFT) and Fast Fourier
Transform (FFT) that are briefly reviewed here. The
transforms are the mathematical bridges that connect
the time and frequency properties. The computational
complexity []of the DFT is overcome by decimation
process, both in time and frequency. The computational
savings are quite significant and are shown herein with
small examples.
 Let x(n) be a signal defined for n o≥ and if Z is a
complex variable, X (z) is a function of a complex
variable, then the Z – transform X (z) is given by:

n

n 0

(z) x(n)Z
∞

−

=

χ =� (1)

 When the Z-transform is evaluated on the unit
circle in the Z-plane, then Z = ejθ and � = wt.
 The Z-transform becomes:

()jwT jwnT

n o

e x(n)e
∞

−

=

χ =� (2)

 The basic form of the DFT given by:

()
N 1

j2 mn / N

n o

m x(n)e
−

− π

=

χ =� (3)

 It is readily apparent that computation of �(m) for
any single value of m will require (in general) N
complex multiplications and N complex additions.
Therefore, Computing a Complete set of N values for
�(m) will entail N2 Complex multiplications and N2
complex additions. Furthermore, values of

1j2 mn Ne
−− π

need to be computed for various combinations of m and
n. This is overcome by indirectly using DFT using the
process of decimation explained here.
 Starting with the ‘usual’ DFT for an N-point
sequence:

()
N 1

mn
N,

n o

m x(n)W m 0,1.......N 1
−

=

χ = = −�

Where:

WN = exp 2 j
N

− π� �
� �
� �

 Breaking the Summation into two separate
summations-one for the even-indexed samples of x[n]
and one for the odd-indexed samples of x[n]:

()
N 1 N 1

mn mn
N, N

n o n 0

m x(n)W m x[n]W
− −

= =

χ = +� �

N/ 2 1 N /2 1
2mn (2n 1)m
N, N

n o n 0

x(2n)W x[2n 1]W
− −

+

= =

= + +� �

N / 2 1 N / 2 1
mn m nm
N /2, N N /2

n o n 0

(m) x(2n)W W x[2n 1]W
− −

= =

χ = + +� �

 The factor 2mn

NW is equal to 2mn
N / 2W and WN is called

the twiddle factor.
 The decimation process for an 8-point DFT and its
Signal Flow Graph (SFG) is illustrated here below:
An angle-point DFT is given by:

()
N 1

mn

n o

m x(n)W m 0,1..........7
−

=

χ = =� [I]

J. Computer Sci., 5 (2): 90-96, 2009

93

 (The subscript N has been omitted from W for
convenience).
 Splitting into separate DFTs for even and odd n:

3 3
2mn m 2nm

n o n 0

(m) x(2n)W W x[2n 1]W
= =

χ = + +� � [II]

 If we let A[m] denote the DFT of the even-indexed
samples and B[m] denote the DFT of the odd-indexed
samples, then we can write the above equation as:

�(m) = A[m]+Wm B[m] [III]

�(m) is an 8-point frequency sequence, but A[m] and
B[m] are only 4-point frequency sequences. Since an
N-pint DFT is periodic with a period of N samples i.e.:

A[4] = A[0], B[4] = B[0], A[5] = A[1] , B[5] = B[1]

 Therefore:

�[4] = A[0]+W4 B[0]
�[5] = A[1]+W5 B[1]
�[6] = A[2]+W6 B[2]
�[7] = A[3]+W7 B[3]

 The operations represented by the above equations
are depicted in the Signal Flow Graph (SFG) (Fig. 1).
In an SFG there are nodes and edges. Each node
represents a signal that is obtained by summing together
all of the signals represented by the edges directed into
the node. Each edge represents the multiplication of a
weight times the signal that is represented by the edge’s
source node. An edge’s weight is indicated by an
annotation near the arrowhead used to indicate the
edge’s direction.

Fig. 1: Signal flow graph illustrating how an 8-point

DFT can be formed in terms of two 4-point

 By decimation, “Butter-fly” symmetry is achieved
which would be congenial for hardware[2]
implementation, if necessary and as well software
implementation in Part-II. Sometime DFT, after
decimation process may be called as Decimated Fourier
Transform (DFT).

Part II: Providing an environment for developing and
deploying a Speech User Application/Interface
 A software study was conducted[4]. It is realized
that an effective languages and tools are required for
speech processing[5]. Based on the study these software
are proposed: MS Speech Server, SALT/C#, .NET
Framework, SDK, under Windows environment.
 Why to Focus on SALT: VoiceXML and SALT are
both markup languages that describe a speech interface.
However, they work in very different ways, largely due
to two reasons: (i) They have different goals; (ii) They
have different Web heritages. VoiceXML is designed
for telephony applications. It was developed to allow
the specification of Interactive Voice Response (IVR)
applications in a markup language that leveraged the
benefits of the World Wide Web. It is a simple, high-
level dialog markup language that facilitates the
authoring of system-driven and mixed-initiative voice
dialogs over telephones and cell phones. SALT targets
speech applications across a whole spectrum of devices,
including telephones, PDAs, tablet computers and
desktop PCs. Since many devices also contain displays,
multimodal interactions are a key focus. Developers use
SALT with existing Web programming standards to
author system-driven, user driven and mixed-initiative
voice dialogs and multimodal applications. These
differences are manifested mainly in (i) The form of the
markup, (ii) The programming and execution model
and (iii) The level of the programming interface
available to the developer.

Scope: VoiceXML incorporates speech interface, data
and control flow, SALT focuses on the speech interface
Programming model VoiceXML has a built-in, form-
filling algorithm, SALT enables application developers
to write customized dialog flow. Level of API:
VoiceXML has a high-level API and SALT has a lower
level API. Other standards: VoiceXML and SALT both
use W3C standards. Both VoiceXML and SALT
recommend the use of SRGS and SSML as grammar
and speech output formats, respectively. In addition,
SALT also recommends the use of NLSML as a
recognition result format and CCXML as a telephony
call control language (or a call control object closely
modeled on CCXML as an alternative). Licensing
VoiceXML may be subject to royalty payments and

J. Computer Sci., 5 (2): 90-96, 2009

94

Fig. 2: Block Diagram of agent SAS

SALT will be royalty-free. The future: Although SALT
and VoiceXML were developed to solve different
problems, these problem spaces are beginning to
converge. Some VoiceXML developers are asking for a
stripped-down version of VoiceXML, without the FIA,
so they can write their own turn taking strategies for
complex speech applications. Other VoiceXML
developers are asking that VoiceXML be modularized
so that its tags can be embedded into other languages.
SALT already applies a model that fits these roles.
 Figure 2 shows the flow of processing of SAS. The
user will interact with help of a microphone and in the
front end signal processing and extraction is done by a
DSP, after the analogue to digital conversion process is
done. This captured error free speech content are then
matched with predefined recorded sample which have
gone through the same process and stored. Through the
function global decoder an automatic intelligent
construct is made through a subroutine language model,
to response an unorganized query into a disciplined
query and response.
 Figure 3 shows the proposed architecture that can
support the proposed agent SAS. The development
tools are Speech application SDK and Microsoft Visual
Studio. The SALT clients are through telephones,
pocket PC and desktops. The Web Server could be
Microsoft Speech server having the interface ASP.net
or C# which could do the job of prompts and
grammatical disciplines. If we attempt to do through
web IIS (Internet Information Server) need to be
configured. Through the SALT with HTML along with
any scripts can interface with server to fetch the speech
content from the speech core.

Fig. 3: Proposed architecture of an intelligent software

agent

Fig. 4: The basic structure of SALT

Sample coding: The following example shows a
simple form of dialog flow management using client-
side script. The SALT primitives <listen> and
<prompt> are activated accordingly to the RunAsk()
script which examines the values inside the input fields
and executes the relevant prompts and recognitions
until the values of the both fields are obtained. In order
to illustrate programmatic result processing, the binding
of the recognition results into the relevant input fields is
accomplished below by the script functions
procOriginCity() and procDestCity(), which are
triggered by onReco events of the relevant <listen>
elements. The handler for an unrecognized speech event
onNoReco is used to play an appropriate message - the
SayDidntUnderstand prompt, which restarts the cycle
on its completion.
 A sample program (part of the main program) is
shown as per the SALT structure shown in the Fig. 4.

<!—- HTML -->
<html xmlns:salt="urn:saltforum.org/schemas/020124">
<body onload="RunAsk()">
<form id="travelForm">
 <input name="txtBoxOriginCity" type="text" />

J. Computer Sci., 5 (2): 90-96, 2009

95

 <input name="txtBoxDestCity" type="text" />
 </form>
<!—- Speech Application Language Tags -->
<salt:prompt id="askOriginCity"> Where would you
like to leave from? </salt:prompt>
<salt:prompt id="askDestCity"> Where would you like
to go to? </salt:prompt>
<salt:prompt id="sayDidntUnderstand"
onComplete="runAsk()">
Sorry, I didn't understand.
</salt:prompt>
<salt:listen id="recoOriginCity"
onReco="procOriginCity()"
onNoReco="sayDidntUnderstand.Start()">
<salt:grammar src="city.xml" />
</salt:listen>
<salt:listen id="recoDestCity"
onReco="procDestCity()"
onNoReco="sayDidntUnderstand.Start()">
<salt:grammar src="city.xml" />
</salt:listen>
<!—- script -->
<script>
function RunAsk() {
if (travelForm.txtBoxOriginCity.value=="") {
askOriginCity.Start();
recoOriginCity.Start();
} else if (travelForm.txtBoxDestCity.value=="") {
askDestCity.Start();
recoDestCity.Start(); }
 }
function procOriginCity() {
travelForm.txtBoxOriginCity.value = recoOriginCity.text;
RunAsk();
}
function procDestCity() {
travelForm.txtBoxDestCity.value = recoDestCity.text;
travelForm.submit();
}
</script>
</body>
</html>

 As noted above, further event handlers are
available in the <listen> and <prompt>11 elements to
manage user silences, errors and other situations
requiring some form of dialog recovery.
 By deploying SAS, a primitive level of application
is generated for creating a domain specific speaker and
language independent processing.

RESULTS

 A software agent is created to capture zero-error
speech content instantly and is stored in the speech

database as samples for that particular domain. These
samples are speaker independent and language
independent. Further this is be retrieved for actions and
also being queried for intelligence and intellisense
response automatically. In essence, SAS agent
facilitates for developing a primitive level of a global
oriented domain specific, speaker and language
independent applications, for any speech users interface
business process systems. The SAS agent will enhance
the accessibility of the users those who know natural
language by 85% in number and will reduce the cost of
transactions processing[5] in business applications,
projected for about 50%.

DISCUSSION

 The same level of agents, components and products
will have more impact and be the ingredients of key
technologies of business processing in the years to
come. Even the blind and visually impaired people can
also be supported by these technologies[6]. The first
commercial implementation of a free speech speaker
verification system is implemented in a call center[7]. A
single source formatting[4] is also possible by the
combinations of Graphic User Interface (GUI) and
Voice User Interface (VUI) by leveraging the existing
infrastructure. People who can able to speak will
interact with computer in any language the know with
help of the intelligent agent SAS proposed.

CONCLUSION

 The Speech Abiding System (SAS) agent along
with required hardware architecture can be made as a
product instead of component, to accomplish all speech
users’ applications. It might emphasize naturalness in
the mechanism of interoperability and reduce
disintermediation (known delays), in the Information
Technology Cycle (ITC), in the spectrum of computer
application programming. And as Natural Language
(NL) speech applications move into the mainstream,
chances are your enterprise will install the technology
during the next 12-18 months[8].

ACKNOWLEDGEMENT

 The researcher would like to thank Dr. S.N.
Subbramanian, Director cum Secretary, Dr. S.
Rajalakshmi, Correspondent, SNS College of
Technology, Coimbatore, India for their motivation and
continual constant encouragement.

J. Computer Sci., 5 (2): 90-96, 2009

96

REFERENCES

1. Britton Rorabaugh, C., 2005. DSP Primer. Tata

McGraw-Hill Publishing Company Limited, New
Delhi, ISBN: 0-07-060349-9, pp: 163-164.

2. Hsu, Y.P. and S.Y. Lin, 2008. Implementation of
low memory reference FFT on digital signal
processor. Int. J. Comput. Sci., 4: 545-549.
http://www.scipub.org/fulltext/jcs/jcs47545-549.pdf

3. Subramanian, V.S., 2001. Principles of Multimedia
Database Systems. Morgan Kaufmann Publishers,
Inc., San Francisco, CA., USA., ISBN: 81-7867-
041-0, pp: 223.

4. Plomp, C.J. and O. Mayora-Ibarra, 2002. A generic
widget vocabulary for the generation of graphical
and speech-driven user interfaces. Int. J. Speech
Technol., 5: 39-47. DOI:�
10.1023/A:1013678514806

5. Suhm, B. and P. Peterson, 2002. A data-driven
methodology for evaluating and optimizing call
center IVRs. Int. J. Speech Technol., 5: 23-37.
DOI:�10.1023/A:1013674413897

6. Olaszi, P., I. Koutny and S.L. Kálmán, 2002. From
bliss symbols to grammatically correct voice
output: A communication tool for people with
disabilities. Int. J. Speech Technol., 5: 49-56. DOI:
10.1023/A:1013682632553

7. Fogel, N., 2002, A commercial implementation of
free-speech speaker verification system in a call
center. Int. J. Speech Technol., 5: 313-320. DOI:�
10.1023/A:1020956924277

8. Aaron Fisher, 2009. A natural part of natural language.
http://www.speechtechmag.com/Articles/Column/I
nside-Outsourcing/A-Natural-Part-of-Natural-Language-
52492.aspx

